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Preface

In the winter of 2010, I taught a topics graduate course on random matrix
theory, the lecture notes of which then formed the basis for this text. This
course was inspired by recent developments in the subject, particularly with
regard to the rigorous demonstration of universal laws for eigenvalue spacing
distributions of Wigner matrices (see the recent survey [Gu2009b]). This
course does not directly discuss these laws, but instead focuses on more
foundational topics in random matrix theory upon which the most recent
work has been based. For instance, the first part of the course is devoted
to basic probabilistic tools such as concentration of measure and the cen-
tral limit theorem, which are then used to establish basic results in random
matrix theory, such as the Wigner semicircle law on the bulk distribution of
eigenvalues of a Wigner random matrix, or the circular law on the distribu-
tion of eigenvalues of an iid matrix. Other fundamental methods, such as
free probability, the theory of determinantal processes, and the method of
resolvents, are also covered in the course.

This text begins in Chapter 1 with a review of the aspects of prob-
ability theory and linear algebra needed for the topics of discussion, but
assumes some existing familiarity with both topics, as well as a first-year
graduate-level understanding of measure theory (as covered for instance in
my books [Ta2011, Ta2010]). If this text is used to give a graduate course,
then Chapter 1 can largely be assigned as reading material (or reviewed as
necessary), with the lectures then beginning with Section 2.1.

The core of the book is Chapter 2. While the focus of this chapter is
ostensibly on random matrices, the first two sections of this chapter focus
more on random scalar variables, in particular, discussing extensively the
concentration of measure phenomenon and the central limit theorem in this
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% Preface

setting. These facts will be used repeatedly when we then turn our attention
to random matrices, and also many of the proof techniques used in the scalar
setting (such as the moment method) can be adapted to the matrix context.
Several of the key results in this chapter are developed through the exercises,
and the book is designed for a student who is willing to work through these
exercises as an integral part of understanding the topics covered here.

The material in Chapter 3 is related to the main topics of this text, but
is optional reading (although the material on Dyson Brownian motion from
Section 3.1 is referenced several times in the main text).

This text is not intended as a comprehensive introduction to random
matrix theory, which is by now a vast subject. For instance, only a small
amount of attention is given to the important topic of invariant matrix
ensembles, and we do not discuss connections between random matrix theory
and number theory, or to physics. For these topics we refer the reader
to other texts such as [AnGuZi2010], [DeGi2007], [Del1999], [Fo2010],
[Me2004]. We hope, however, that this text can serve as a foundation for
the reader to then tackle these more advanced texts.
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2 1. Preparatory material

1.1. A review of probability theory

Random matriz theory is the study of matrices whose entries are random
variables (or equivalently, the study of random variables which take values in
spaces of matrices). As such, probability theory is an obvious prerequisite
for this subject. As such, we will begin by quickly reviewing some basic
aspects of probability theory that we will need in the sequel.

We will certainly not attempt to cover all aspects of probability theory in
this review. Aside from the basic foundations, we will be focusing primarily
on those probabilistic concepts and operations that are useful for bounding
the distribution of random variables, and on ensuring convergence of such
variables as one sends a parameter n off to infinity.

We will assume familiarity with the foundations of measure theory, which
can be found in any text book (including my own text [Ta2011]). This is
also mot intended to be a first introduction to probability theory, but is
instead a revisiting of these topics from a graduate-level perspective (and
in particular, after one has understood the foundations of measure theory).
Indeed, it will be almost impossible to follow this text without already having
a firm grasp of undergraduate probability theory.

1.1.1. Foundations. At a purely formal level, one could call probability
theory the study of measure spaces with total measure one, but that would
be like calling number theory the study of strings of digits which terminate.
At a practical level, the opposite is true: just as number theorists study
concepts (e.g., primality) that have the same meaning in every numeral sys-
tem that models the natural numbers, we shall see that probability theorists
study concepts (e.g., independence) that have the same meaning in every
measure space that models a family of events or random wvariables. And
indeed, just as the natural numbers can be defined abstractly without ref-
erence to any numeral system (e.g., by the Peano axioms), core concepts of
probability theory, such as random variables, can also be defined abstractly,
without explicit mention of a measure space; we will return to this point
when we discuss free probability in Section 2.5.

For now, though, we shall stick to the standard measure-theoretic ap-
proach to probability theory. In this approach, we assume the presence of
an ambient sample space 2, which intuitively is supposed to describe all
the possible outcomes of all the sources of randomness that one is studying.
Mathematically, this sample space is a probability space 2 = (Q,B,P)—a
set €2, together with a o-algebra B of subsets of Q (the elements of which we
will identify with the probabilistic concept of an event), and a probability
measure P on the space of events, i.e., an assignment E +— P(FE) of a real
number in [0, 1] to every event E (known as the probability of that event),
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such that the whole space 2 has probability 1, and such that P is countably
additive.

Elements of the sample space 2 will be denoted w. However, for reasons
that will be explained shortly, we will try to avoid actually referring to such
elements unless absolutely required to.

If we were studying just a single random process, e.g., rolling a single
die, then one could choose a very simple sample space; in this case, one
could choose the finite set {1,...,6}, with the discrete o-algebra oll6} .=
{A:AcC{l,...,6}} and the uniform probability measure. But if one later
wanted to also study additional random processes (e.g., supposing one later
wanted to roll a second die, and then add the two resulting rolls), one would
have to change the sample space (e.g., to change it now to the product space
{1,...,6} x{1,...,6}). If one was particularly well organised, one could in
principle work out in advance all of the random variables one would ever
want or need, and then specify the sample space accordingly, before doing
any actual probability theory. In practice, though, it is far more convenient
to add new sources of randomness on the fly, if and when they are needed,
and extend the sample space as necessary. This point is often glossed over
in introductory probability texts, so let us spend a little time on it. We say
that one probability space (€, B/, P’) extends' another (2, B, P) if there is
a surjective map 7 : ' — Q which is measurable (ie. 7 Y(E) € B for
every E € B) and probability preserving (i.e. P'(7~Y(E)) = P(E) for every
E € B). By definition, every event E in the original probability space is
canonically identified with an event 7~!(E) of the same probability in the
extension.

Example 1.1.1. As mentioned earlier, the sample space {1,...,6}, that
models the roll of a single die, can be extended to the sample space {1,...,6}
x {1,...,6} that models the roll of the original die together with a new die,
with the projection map 7 : {1,...,6} x {1,...,6} — {1,...,6} being given
by 7(x,y) := x.

Another example of an extension map is that of a permutation; for
instance, replacing the sample space {1,...,6} by the isomorphic space
{a,..., f} by mapping a to 1, etc. This extension is not actually adding
any new sources of randomness, but is merely reorganising the existing ran-
domness present in the sample space.

1Strictly speaking, it is the pair ((Q',B’,P’), 7) which is the extension of (22, B, P), not just
the space (', B’,P’), but let us abuse notation slightly here.
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In order to have the freedom to perform extensions every time we need
to introduce a new source of randomness, we will try to adhere to the fol-
lowing important dogma?: probability theory is only “allowed” to
study concepts and perform operations which are preserved with
respect to extension of the underlying sample space. As long as one
is adhering strictly to this dogma, one can insert as many new sources of
randomness (or reorganise existing sources of randomness) as one pleases;
but if one deviates from this dogma and uses specific properties of a single
sample space, then one has left the category of probability theory and must
now take care when doing any subsequent operation that could alter that
sample space. This dogma is an important aspect of the probabilistic way
of thinking, much as the insistence on studying concepts and performing
operations that are invariant with respect to coordinate changes or other
symmetries is an important aspect of the modern geometric way of think-
ing. With this probabilistic viewpoint, we shall soon see the sample space
essentially disappear from view altogether, after a few foundational issues
are dispensed with.

Let us now give some simple examples of what is and what is not a
probabilistic concept or operation. The probability P(E) of an event is a
probabilistic concept; it is preserved under extensions. Similarly, Boolean
operations on events such as union, intersection, and complement are also
preserved under extensions and are thus also probabilistic operations. The
emptiness or non-emptiness of an event FE is also probabilistic, as is the
equality or non-equality® of two events F, F. On the other hand, the car-
dinality of an event is not a probabilistic concept; for instance, the event
that the roll of a given die gives 4 has cardinality one in the sample space
{1,...,6}, but has cardinality six in the sample space {1,...,6} x{1,...,6}
when the values of an additional die are used to extend the sample space.
Thus, in the probabilistic way of thinking, one should avoid thinking about
events as having cardinality, except to the extent that they are either empty
or non-empty. For a related reason, the notion of the underlying probability
space being complete (i.e. every subset of a null set is again a null set) is not
preserved by extensions, and is thus technically not a probabilistic notion.
As such, we will downplay the role of completeness in our probability spaces.

Indeed, once one is no longer working at the foundational level, it is best
to try to suppress the fact that events are being modeled as sets altogether.

2This is analogous to how differential geometry is only “allowed” to study concepts and
perform operations that are preserved with respect to coordinate change, or how graph theory
is only “allowed” to study concepts and perform operations that are preserved with respect to
relabeling of the vertices, etc..

3Note how it was important here that we demanded the map 7 to be surjective in the
definition of an extension.
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To assist in this, we will choose notation that avoids explicit use of set the-
oretic notation. For instance, the union of two events E, F' will be denoted
E V F rather than E U F, and will often be referred to by a phrase such as
“the event that at least one of F or F' holds”. Similarly, the intersection
E N F will instead be denoted E A F, or “the event that ¥ and F' both
hold”, and the complement Q\E will instead be denoted E, or “the event
that E does not hold” or “the event that E fails”. In particular, the sure
event () can now be referred to without any explicit mention of the sample
space as . We will continue to use the subset notation E C F (since the
notation £ < F' may cause confusion), but refer to this statement as “FE is
contained in F” or “FE implies F” or “E holds only if F' holds” rather than
“F is a subset of F”, again to downplay the role of set theory in modeling
these events.

We record the trivial but fundamental union bound
(1.1) P(\/E) <) P(E)
i i

for any finite or countably infinite collection of events F;. Taking comple-
ments, we see that if each event F; fails with probability at most &;, then
the joint event \; E; fails with probability at most ), ;. Thus, if one wants
to ensure that all the events E; hold at once with a reasonable probability,
one can try to do this by showing that the failure rate of the individual
E; is small compared to the number of events one is controlling. This is
a reasonably efficient strategy so long as one expects the events E; to be
genuinely “different” from each other; if there are plenty of repetitions, then
the union bound is poor (consider for instance the extreme case when FE;
does not even depend on 7).

We will sometimes refer to use of the union bound to bound probabil-
ities as the zeroth moment method, to contrast it with the first moment
method, second moment method, exponential moment method, and Fourier
moment methods for bounding probabilities that we will encounter later in
this course; see (1.22) below for an explanation of the terminology “zeroth
moment method”.

Let us formalise some specific cases of the union bound that we will use
frequently in the course. In most of this course, there will be an integer
parameter n, which will often be going off to infinity, and upon which most
other quantities will depend; for instance, we will often be considering the
spectral properties of n X n random matrices.

Definition 1.1.2 (Asymptotic notation). We use X = O(Y), ¥ = Q(X),
X < Y,orY > X to denote the estimate |X| < CY for some C inde-
pendent of n and all n > C'. If we need C to depend on a parameter, e.g.,
C = C}, we will indicate this by subscripts, e.g., X = O(Y). We write
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X =o(Y) if | X| < ¢(n)Y for some ¢ that goes to zero as n — oco. We write
X~YoX=0Y)ifX<Y <X.

Given an event F = E,, depending on such a parameter n, we have five
notions (in decreasing order of confidence) that an event is likely to hold:

(i) An event E holds surely (or is true) if it is equal to the sure event

0.

(ii) An event E holds almost surely (or with full probability) if it occurs
with probability 1: P(E) = 1.

(iii) An event E holds with overwhelming probability if, for every fixed
A > 0, it holds with probability 1 —0O4(n~4) (i.e., one has P(FE) >
1 — Cyn~4 for some C, independent of n).

(iv) An event E holds with high probability if it holds with probability

1 —0(n™°) for some ¢ > 0 independent of n (i.e., one has P(F) >
1 — Cn~¢ for some C independent of n).

(v) An event E holds asymptotically almost surely if it holds with prob-
ability 1 —o(1), thus the probability of success goes to 1 in the limit
n — 0.

Of course, all of these notions are probabilistic notions.

Given a family of events FE, depending on some parameter «, we say
that each event in the family holds with overwhelming probability uniformly
in « if the constant C'4 in the definition of overwhelming probability is
independent of «; one can similarly define uniformity in the concepts of
holding with high probability or asymptotic almost sure probability.

From the union bound (1.1) we immediately have

Lemma 1.1.3 (Union bound).

(i) If Ey is an arbitrary family of events that each hold surely, then
Ao Ea holds surely.

(ii) If Eq4 is an at most countable family of events that each hold almost
surely, then N\, Eq holds almost surely.

(iii) If Ey is a family of events of polynomial cardinality (i.e., cardinality
O(no(l))) which hold with uniformly overwhelming probability, the
A Ea holds with overwhelming probability.

(iv) If E4 is a family of events of sub-polynomial cardinality (i.e., car-
dinality O(n°M) ) which hold with uniformly high probability, the
Ao Ea holds with high probability. (In particular, the cardinality
can be polylogarithmic in size, O(logo(l) n).)
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(v) If E4 is a family of events of uniformly bounded cardinality (i.e.,
cardinality O(1) ) which each hold asymptotically almost surely, then
Ao Ea holds asymptotically almost surely. (Note that uniformity
of asymptotic almost sureness is automatic when the cardinality is
bounded.)

Note how as the certainty of an event gets stronger, the number of
times one can apply the union bound increases. In particular, holding with
overwhelming probability is practically as good as holding surely or almost
surely in many of our applications (except when one has to deal with the
metric entropy of an n-dimensional system, which can be exponentially large,
and will thus require a certain amount of caution).

1.1.2. Random variables. An event F can be in just one of two states:
the event can hold or fail, with some probability assigned to each. But
we will usually need to consider the more general class of random variables
which can be in multiple states.

Definition 1.1.4 (Random variable). Let R = (R, R) be a measurable space
(i.e., a set R, equipped with a o-algebra of subsets of R). A random variable
taking values in R (or an R-valued random variable) is a measurable map X
from the sample space to R, i.e., a function X : @ — R such that X ~1(9)
is an event for every S € R.

As the notion of a random variable involves the sample space, one has
to pause to check that it invariant under extensions before one can assert
that it is a probabilistic concept. But this is clear: if X : Q@ — R is a
random variable, and 7 : ' —  is an extension of 0, then X’ := X o7 is
also a random variable, which generates the same events in the sense that
(X"7HS) = 71X L(9)) for every S € R.

At this point let us make the convenient convention (which we have,
in fact, been implicitly using already) that an event is identified with the
predicate which is true on the event set and false outside of the event set.
Thus, for instance, the event X ~!(S) could be identified with the predicate
“X € S”; this is preferable to the set-theoretic notation {w € Q : X(w) € S},
as it does not require explicit reference to the sample space and is thus more
obviously a probabilistic notion. We will often omit the quotes when it is
safe to do so, for instance, P(X € S) is shorthand for P(“X € S7).

Remark 1.1.5. On occasion, we will have to deal with almost surely defined
random variables, which are only defined on a subset Q' of Q of full prob-
ability. However, much as measure theory and integration theory is largely
unaffected by modification on sets of measure zero, many probabilistic con-
cepts, in particular, probability, distribution, and expectation, are similarly
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unaffected by modification on events of probability zero. Thus, a lack of
definedness on an event of probability zero will usually not cause difficulty,
so long as there are at most countably many such events in which one of
the probabilistic objects being studied is undefined. In such cases, one can
usually resolve such issues by setting a random variable to some arbitrary
value (e.g., 0) whenever it would otherwise be undefined.

We observe a few key subclasses and examples of random variables:

(i) Discrete random wvariables, in which R = 2f is the discrete o-
algebra, and R is at most countable. Typical examples of R include
a countable subset of the reals or complexes, such as the natural
numbers or integers. If R = {0, 1}, we say that the random variable
is Boolean, while if R is just a singleton set {c} we say that the
random variable is deterministic, and (by abuse of notation) we
identify this random variable with c itself. Note that a Boolean
random variable is nothing more than an indicator function I(E)
of an event F, where E is the event that the Boolean function
equals 1.

(ii) Real-valued random wvariables, in which R is the real line R and
R is the Borel o-algebra, generated by the open sets of R. Thus
for any real-valued random variable X and any interval I, we have
the events “X € I”. In particular, we have the upper tail event
“X > N and lower tail event “X < \” for any threshold \. (We
also consider the events “X > A\” and “X < A" to be tail events;
in practice, there is very little distinction between the two types of
tail events.)

(iii) Complex random wvariables, whose range is the complex plane C
with the Borel o-algebra. A typical event associated to a complex
random variable X is the small ball event “|X — z| < r” for some
complex number z and some (small) radius » > 0. We refer to
real and complex random variables collectively as scalar random
variables.

(iv) Given an R-valued random variable X, and a measurable map f :
R — R/, the R'-valued random variable f(X) is indeed a random
variable, and the operation of converting X to f(X) is preserved
under extension of the sample space and is thus probabilistic. This
variable f(X) can also be defined without reference to the sample
space as the unique random variable for which the identity

“f(X) €8 =X e sy

holds for all R'-measurable sets S.
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(v)

(vii)

(viii)

Given two random variables X; and X taking values in Ry, Ro,
respectively, one can form the joint random variable (X1, X2) with
range Ry X Ry with the product o-algebra, by setting (X1, X9)(w) :=
(X1(w), X2(w)) for every w € €. One easily verifies that this
is indeed a random variable, and that the operation of taking a
joint random variable is a probabilistic operation. This variable
can also be defined without reference to the sample space as the
unique random variable for which one has (X7, X2) = X; and
7T2(X1,X2) = XQ, where IS (.CCl,JZQ) = X1 and o - (331,332) = X9
are the usual projection maps from R; X Rs to Ry, Ro, respectively.
One can similarly define the joint random variable (X, )aea for any
family of random variables X, in various ranges R,. Note here that
the set A of labels can be infinite or even uncountable, though of
course one needs to endow infinite product spaces [] .4 Ra with
the product o-algebra to retain measurability.

Combining the previous two constructions, given any measurable
binary operation f : Ry x Ry — R’ and random variables X, X5
taking values in Ry, Rs, respectively, one can form the R’-valued
random variable f(X1, X3) := f((X1, X2)), and this is a probabilis-
tic operation. Thus, for instance, one can add or multiply together
scalar random variables, and similarly for the matrix-valued ran-
dom variables that we will consider shortly. Similarly for ternary
and higher order operations. A technical issue: if one wants to per-
form an operation (such as division of two scalar random variables)
which is not defined everywhere (e.g., division when the denomina-
tor is zero). In such cases, one has to adjoin an additional “unde-
fined” symbol L to the output range R’. In practice, this will not
be a problem as long as all random variables concerned are defined
(i.e., avoid L) almost surely.

Vector-valued random variables, which take values in a finite-dimen-
sional vector space such as R"™ or C™ with the Borel o-algebra. One
can view a vector-valued random variable X = (X1,..., X,) as the
joint random variable of its scalar component random variables
X1,...,Xp. (Here we are using the basic fact from measure theory
that the Borel o-algebra on R"™ is the product c-algebra of the
individual Borel o-algebras on R.)

Matriz-valued random variables or random matrices, which take
values in a space M, x,(R) or Myx,(C) of n x p real or complex-
valued matrices, again with the Borel o-algebra, where n,p > 1 are
integers (usually we will focus on the square case n = p). Note
here that the shape n x p of the matrix is deterministic; we will
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not consider in this course matrices whose shapes are themselves
random variables. One can view a matrix-valued random variable
X = (Xij)1<i<n:;1<j<p as the joint random variable of its scalar com-
ponents X;;. One can apply all the usual matrix operations (e.g.,
sum, product, determinant, trace, inverse, etc.) on random matri-
ces to get a random variable with the appropriate range, though
in some cases (e.g., with inverse) one has to adjoin the undefined
symbol L as mentioned earlier.

(ix) Point processes, which take values in the space 91(S) of subsets A
of a space S (or more precisely, on the space of multisets of S, or
even more precisely still as integer-valued locally finite measures
on S), with the o-algebra being generated by the counting func-
tions |A N B| for all precompact measurable sets B. Thus, if X
is a point process in S, and B is a precompact measurable set,
then the counting function |X N B| is a discrete random variable
in {0,1,2,...} U{+4o00}. For us, the key example of a point pro-
cess comes from taking the spectrum {Ai,...,A\,} of eigenvalues
(counting multiplicity) of a random n x n matrix M,. Point pro-
cesses are discussed further in [Ta2010b, §2.6]. We will return to
point processes (and define them more formally) later in this text.

Remark 1.1.6. A pedantic point: strictly speaking, one has to include
the range R = (R, R) of a random variable X as part of that variable
(thus one should really be referring to the pair (X, R) rather than X'). This
leads to the annoying conclusion that, technically, Boolean random variables
are not integer-valued, integer-valued random variables are not real-valued,
and real-valued random variables are not complex-valued. To avoid this
issue we shall abuse notation very slightly and identify any random variable
X = (X, R) to any coextension (X, R') of that random variable to a larger
range space R’ O R (assuming of course that the o-algebras are compatible).
Thus, for instance, a real-valued random variable which happens to only
take a countable number of values will now be considered a discrete random
variable also.

Given a random variable X taking values in some range R, we define
the distribution px of X to be the probability measure on the measurable
space R = (R, R) defined by the formula

(1.2) px(5) :=P(X €5),

thus px is the pushforward X,P of the sample space probability measure
P by X. This is easily seen to be a probability measure, and is also a
probabilistic concept. The probability measure px is also known as the law
for X.
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We write X =Y for ux = py; we also abuse notation slightly by writing
X = ux.

We have seen that every random variable generates a probability distri-
bution px. The converse is also true:

Lemma 1.1.7 (Creating a random variable with a specified distribution).
Let 1 be a probability measure on a measurable space R = (R, R). Then
(after extending the sample space S if necessary) there exists an R-valued
random variable X with distribution p.

Proof. Extend Q2 to © x R by using the obvious projection map (w,r) — w
from Q x R back to €2, and extending the probability measure P on €2 to
the product measure P x p on 2 x R. The random variable X (w,r) :=r
then has distribution u. ([l

If X is a discrete random variable, pux is the discrete probability measure

(1.3) px(8) = pe

€S

where p, := P(X = x) are non-negative real numbers that add up to 1. To
put it another way, the distribution of a discrete random variable can be
expressed as the sum of Dirac masses (defined below):

(1.4) ux = pr&c.

z€R
We list some important examples of discrete distributions:
(i) Dirac distributions d4,, in which p, = 1 for x = z¢ and p, = 0
otherwise;
(ii) discrete uniform distributions, in which R is finite and p, = 1/|R|
for all z € R;
(iii) (unsigned) Bernoulli distributions, in which R = {0,1}, p1 = p,
and pg = 1 — p for some parameter 0 < p < 1;
(iv) the signed Bernoulli distribution, in which R = {—1,+1} and py; =
p-1=1/2
(v) lazy signed Bernoulli distributions, in which R = {—1,0,+1}, py1 =
p—1 = p/2, and pg = 1 — p for some parameter 0 < p < 1;
(vi) geometric distributions, in which R = {0,1,2,...} and py = (1 —
p)Fp for all natural numbers & and some parameter 0 < p < 1; and
(vil) Poisson distributions, in which R = {0,1,2,...} and p; = )‘kl‘j—,_A
for all natural numbers k£ and some parameter \.
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Now we turn to non-discrete random variables X taking values in some
range R. We say that a random variable is continuous if P(X = z) = 0 for
all z € R (here we assume that all points are measurable). If R is already
equipped with some reference measure dm (e.g., Lebesgue measure in the
case of scalar, vector, or matrix-valued random variables), we say that the
random variable is absolutely continuous if P(X € S) = 0 for all null sets
S in R. By the Radon-Nikodym theorem (see e.g., [Ta2010, §1.10]), we can
thus find a non-negative, absolutely integrable function f € L'(R, dm) with
Jr f dm =1 such that

(1.5) px(8) = [ 1 dm

S
for all measurable sets S C R. More succinctly, one has
(1.6) dpux = f dm.

We call f the probability density function of the probability distribution px
(and thus, of the random variable X). As usual in measure theory, this
function is only defined up to almost everywhere equivalence, but this will
not cause any difficulties.

In the case of real-valued random variables X, the distribution px can
also be described in terms of the cumulative distribution function

(1.7) Fx(z):=P(X <z) = pux((—o0,z]).

Indeed, pyx is the Lebesgue-Stieltjes measure of Fx, and (in the absolutely
continuous case) the derivative of Fx exists and is equal to the probability
density function almost everywhere. We will not use the cumulative distri-
bution function much in this text, although we will be very interested in
bounding tail events such as P(X > \) or P(X < \).

We give some basic examples of absolutely continuous scalar distribu-
tions:

(i) wniform distributions, in which f := ﬁl 1 for some subset I of
the reals or complexes of finite non-zero measure, e.g., an interval

[a, b] in the real line, or a disk in the complex plane.

(ii) The real normal distribution N(u,02) = N(u,0%)r of mean u €
R and variance ¢? > 0, given by the density function f(z) :=

\/2;7 exp(—(z — p)?/20?) for € R. We isolate, in particular,

the standard (real) normal distribution N(0,1). Random variables
with normal distributions are known as Gaussian random variables.

(iii) The complex normal distribution N(u,0?)c of mean p € C and
variance o2 >0, given by the density function f(z):= # exp(—|z—
wl?/a?). Again, we isolate the standard complex normal distribu-
tion N(0,1)c.
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Later on, we will encounter several more scalar distributions of relevance
to random matrix theory, such as the semicircular law or Marcenko-Pastur
law. We will also of course encounter many matrix distributions (also known
as matriz ensembles) as well as point processes.

Given an unsigned random variable X (i.e., a random variable taking
values in [0, 4+00]), one can define the expectation or mean EX as the un-
signed integral

(1.8) EX := /Ooox dux(x),

which by the Fubini-Tonelli theorem (see e.g. [Ta2011, §1.7]) can also be
rewritten as

(1.9) EX = /OOP(X > \) dA.
0

The expectation of an unsigned variable lies in also [0,+oc]. If X is a
scalar random variable (which is allowed to take the value oo) for which
E|X| < oo, we say that X is absolutely integrable, in which case we can
define its expectation as

(1.10) EX ::/ x dux(zx)
R

in the real case, or

(1.11) EX ::/ z dux(2)
C

in the complex case. Similarly, for vector-valued random variables (note
that in finite dimensions, all norms are equivalent, so the precise choice of
norm used to define |X| is not relevant here). If X = (Xi,...,X,) is a
vector-valued random variable, then X is absolutely integrable if and only
if the components X; are all absolutely integrable, in which case one has
EX = (EX;y,...,EX,).

Examples 1.1.8. A deterministic scalar random variable ¢ is its own mean.
An indicator function I(E) has mean P(E). An unsigned Bernoulli variable
(as defined previously) has mean p, while a signed or lazy signed Bernoulli
variable has mean 0. A real or complex Gaussian variable with distribution
N(u,0?) has mean p. A Poisson random variable has mean \; a geometric
random variable has mean p. A uniformly distributed variable on an interval
[a,b] C R has mean %t

A fundamentally important property of expectation is that it is linear: if
X1,..., X} are absolutely integrable scalar random variables and cy,...,cg
are finite scalars, then c1 X7 + - - - + ¢ X} is also absolutely integrable and

(1.12) Eci X1+ -4 Xy =aEXy + - 4+t EX.
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By the Fubini-Tonelli theorem, the same result also applies to infinite sums
Y2y ¢iX; provided that > 2 |¢;|E|X;] is finite.

We will use linearity of expectation so frequently in the sequel that we
will often omit an explicit reference to it when it is being used. It is im-
portant to note that linearity of expectation requires no assumptions of
independence or dependence* amongst the individual random variables X;;
this is what makes this property of expectation so powerful.

In the unsigned (or real absolutely integrable) case, expectation is also
monotone: if X <Y is true for some unsigned or real absolutely integrable
X,Y, then EX < EY. Again, we will usually use this basic property without
explicit mentioning it in the sequel.

For an unsigned random variable, we have the obvious but very useful
Markov inequality

(1.13) P(X >\ < %EX

for any A > 0, as can be seen by taking expectations of the inequality
M(X > )\) < X. For signed random variables, Markov’s inequality becomes

1
(1.14) P(|X| 2 2) < TEIX].

Another fact related to Markov’s inequality is that if X is an unsigned
or real absolutely integrable random variable, then X > EX must hold
with positive probability, and also X < EX must also hold with positive
probability. Use of these facts or (1.13), (1.14), combined with monotonicity
and linearity of expectation, is collectively referred to as the first moment
method. This method tends to be particularly easy to use (as one does not
need to understand dependence or independence), but by the same token
often gives sub-optimal results (as one is not exploiting any independence
in the system).

Exercise 1.1.1 (Borel-Cantelli lemma). Let Ej, Fs,... be a sequence of
events such that ), P(E;) < co. Show that almost surely, at most finitely
many of the events E; occur at once. State and prove a result to the effect
that the condition ), P(E;) < oo cannot be weakened.

If X is an absolutely integrable or unsigned scalar random variable, and
F' is a measurable function from the scalars to the unsigned extended reals
[0, +00], then one has the change of variables formula

(1.15) EF(X) :/RF(CC) dux ()

4We will define these terms in Section 1.1.3.
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when X is real-valued and
(1.16) EF(X) = / F(z) dux(z)
C

when X is complex-valued. The same formula applies to signed or complex
F if it is known that |F'(X)| is absolutely integrable. Important examples
of expressions such as EF(X) are moments

(1.17) E|X*

for various k > 1 (particularly k = 1,2, 4), exponential moments
(1.18) Ec'*

for real t, X, and Fourier moments (or the characteristic function)
(1.19) EeitX

for real ¢, X, or

(1.20) Ee'tX

for complex or vector-valued ¢, X, where - denotes a real inner product. We
shall also occasionally encounter the resolvents
1

X —z

for complex z, though one has to be careful now with the absolute conver-
gence of this random variable. Similarly, we shall also occasionally encounter
negative moments E|X|™* of X, particularly for k = 2. We also sometimes
use the zeroth moment E|X|° = P(X # 0), where we take the somewhat
unusual convention that 2 := lim;_,o+ ¥ for non-negative z, thus z° := 1
for z > 0 and 0° := 0. Thus, for instance, the union bound (1.1) can be
rewritten (for finitely many i, at least) as

(1.22) EY Xl <) el ’BLX)°

(1.21) E

for any scalar random variables X; and scalars ¢; (compare with (1.12)).

It will be important to know if a scalar random variable X is “usually
bounded”. We have several ways of quantifying this, in decreasing order of
strength:

(i) X is surely bounded if there exists an M > 0 such that | X| < M
surely.
(ii) X is almost surely bounded if there exists an M > 0 such that
|X| < M almost surely.
(iii) X is sub-Gaussian if there exist C,c¢ > 0 such that P(|X| > \) <
C exp(—cA?) for all A > 0.
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(iv) X has sub-exponential tail if there exist C,c,a > 0 such that
P(|X]| > A) < Cexp(—cA?) for all A > 0.

(v) X has finite k'™ moment for some k > 1 if there exists C such that
E|X|F <C.
(vi) X is absolutely integrable if E|X| < oco.

(vii) X is almost surely finite if | X| < oo almost surely.

Exercise 1.1.2. Show that these properties genuinely are in decreasing
order of strength, i.e., that each property on the list implies the next.

Exercise 1.1.3. Show that each of these properties are closed under vector
space operations, thus, for instance, if X,Y have sub-exponential tail, show
that X +Y and ¢X also have sub-exponential tail for any scalar c.

Examples 1.1.9. The various species of Bernoulli random variable are
surely bounded, and any random variable which is uniformly distributed
in a bounded set is almost surely bounded. Gaussians and Poisson dis-
tributions are sub-Gaussian, while the geometric distribution merely has
sub-exponential tail. Cauchy distributions (which have density functions of
the form f(x) = %m) are typical examples of heavy-tailed distri-
butions which are almost surely finite, but do not have all moments finite
(indeed, the Cauchy distribution does not even have finite first moment).

If we have a family of scalar random variables X, depending on a pa-
rameter «, we say that the X, are uniformly surely bounded (resp. uni-
formly almost surely bounded, uniformly sub-Gaussian, have uniform sub-
exponential tails, or uniformly bounded k" moment) if the relevant param-
eters M, C, c,a in the above definitions can be chosen to be independent of
.

Fix k& > 1. If X has finite &*" moment, say E|X|* < C, then from
Markov’s inequality (1.14) one has

(1.23) P(|X|>)) <CA7F,

thus we see that the higher the moments that we control, the faster the tail
decay is. From the dominated convergence theorem we also have the variant

(1.24) lim \P(|X| > \) =0.
A—00

However, this result is qualitative or ineffective rather than quantitative
because it provides no rate of convergence of A*P(|X| > \) to zero. Indeed,
it is easy to construct a family X, of random variables of uniformly bounded
k™ moment, but for which the quantities A*P(|X,| > )\) do not converge
uniformly to zero (e.g., take X,,, to be m times the indicator of an event of
probability m=F for m = 1,2, .. .). Because of this issue, we will often have



1.1. A review of probability theory 17

to strengthen the property of having a uniformly bounded moment, to that
of obtaining a uniformly quantitative control on the decay in (1.24) for a
family X, of random variables; we will see examples of this in later lectures.
However, this technicality does not arise in the important model case of
tdentically distributed random variables, since in this case we trivially have
uniformity in the decay rate of (1.24).

We observe some consequences of (1.23) and the preceding definitions:

Lemma 1.1.10. Let X = X,, be a scalar random variable depending on a
parameter n.

(i) If | X,| has uniformly bounded expectation, then for any e > 0 in-
dependent of n, we have | X, | = O(n®) with high probability.
(ii) If X,, has uniformly bounded k™ moment, then for any A > 0, we
have | X,,| = O(n/*) with probability 1 — O(n=4).
(iii) If X, has wuniform sub-exponential tails, then we have
|X,| = O(log®M n) with overwhelming probability.

Exercise 1.1.4. Show that a real-valued random variable X is sub-Gaussian
if and only if there exists C' > 0 such that Ee!X < Cexp(Ct?) for all real
t, and if and only if there exists C' > 0 such that E|X|* < (Ck)*/? for all
k>1.

Exercise 1.1.5. Show that a real-valued random variable X has sub-expo-
nential tails if and only if there exists C' > 0 such that E|X|*¥ < exp(CkY)
for all positive integers k.

Once the second moment of a scalar random variable is finite, one can
define the variance

(1.25) Var(X) := E|X — E(X)|%

From Markov’s inequality we thus have Chebyshev’s inequality
Var(X)

(1~26) P(|X B E(X)’ > ) < BV

Upper bounds on P(|X — E(X)| > A) for X\ large are known as large de-
viation inequalities. Chebyshev’s inequality (1.26) gives a simple but still
useful large deviation inequality, which becomes useful once A exceeds the
standard deviation Var(X)'/? of the random variable. The use of Cheby-
shev’s inequality, combined with a computation of variances, is known as
the second moment method.

Exercise 1.1.6 (Scaling of mean and variance). If X is a scalar random
variable of finite mean and variance, and a, b are scalars, show that E(a +
bX) = a + bE(X) and Var(a + bX) = |b|>Var(X). In particular, if X has
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non-zero variance, then there exist scalars a, b such that a + bX has mean
zero and variance one.

Exercise 1.1.7. We say that a real number M(X) is a median of a real-
valued random variable X if P(X > M(X)),P(X < M(X)) <1/2.

(i) Show that a median always exists, and if X is absolutely continuous
with strictly positive density function, then the median is unique.

(ii) If X has finite second moment, show that
M(X) = E(X) + O(Var(X)'/?)
for any median M(X).

Exercise 1.1.8 (Jensen’s inequality). Let F': R — R be a convex function
(thus F(1—t)z+ty) < (1—t)F(z) +tF(y) forallz,y € Rand 0 <t < 1),
and let X be a bounded real-valued random variable. Show that EF(X) >
F(EX). (Hint: Bound F from below using a tangent line at EX.) Extend
this inequality to the case when X takes values in R™ (and F' has R"™ as its
domain.)

Exercise 1.1.9 (Paley-Zygmund inequality). Let X be a positive random
variable with finite variance. Show that
2 (EX)?

P(X 2 AE(X)) = (1 - V£ 55

for any 0 < X < 1.

If X is sub-Gaussian (or has sub-exponential tails with exponent a > 1),
then from dominated convergence we have the Taylor expansion

Lk
t
tXx k
(1.27) Ee =1+ E k;!EX
k=1

for any real or complex ¢, thus relating the exponential and Fourier moments
with the &*® moments.

1.1.3. Independence. When studying the behaviour of a single random
variable X, the distribution px captures all the probabilistic information
one wants to know about X. The following exercise is one way of making
this statement rigorous:

Exercise 1.1.10. Let X, X’ be random variables (on sample spaces Q, ',
respectively) taking values in a range R, such that X = X’. Show that after
extending the spaces 2, Q, the two random variables X, X’ are isomorphic,
in the sense that there exists a probability space isomorphism 7 : Q —
(i.e., an invertible extension map whose inverse is also an extension map)
such that X = X' o .
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However, once one studies families (Xa)aca of random variables X,
taking values in measurable spaces R, (on a single sample space (), the
distribution of the individual variables X, are no longer sufficient to de-
scribe all the probabilistic statistics of interest; the joint distribution of the
variables (i.e., the distribution of the tuple (X4)aca, which can be viewed
as a single random variable taking values in the product measurable space
[Ioca Ra) also becomes relevant.

Example 1.1.11. Let (X;, X2) be drawn uniformly at random from the
set {(—1,-1),(-1,+1),(+1,-1),(+1,+1)}. Then the random variables
X1, Xo, and —X; all individually have the same distribution, namely the
signed Bernoulli distribution. However, the pairs (X1, X3), (X1, X;), and
(X1, —X1) all have different joint distributions: the first pair, by definition,
is uniformly distributed in the set

{(-1,-1),(-1,41), (+1,-1),(+1,+1)},

while the second pair is uniformly distributed in {(—1,—1), (+1,+1)}, and
the third pair is uniformly distributed in {(—1,+1),(+1,—1)}. Thus, for
instance, if one is told that X, Y are two random variables with the Bernoulli
distribution, and asked to compute the probability that X = Y, there is
insufficient information to solve the problem; if (X,Y) were distributed as
(X1, X2), then the probability would be 1/2, while if (X,Y") were distributed
as (X1, X1), the probability would be 1, and if (X,Y’) were distributed as
(X1,—X1), the probability would be 0. Thus one sees that one needs the
joint distribution, and not just the individual distributions, to obtain a
unique answer to the question.

There is, however, an important special class of families of random vari-
ables in which the joint distribution is determined by the individual distri-
butions.

Definition 1.1.12 (Joint independence). A family (X, )aea of random vari-
ables (which may be finite, countably infinite, or uncountably infinite) is
said to be jointly independent if the distribution of (X4 )aec4 is the product
measure of the distribution of the individual X,.

A family (X4 )aca is said to be pairwise independent if the pairs (X, Xp)
are jointly independent for all distinct o, f € A. More generally, (X, )acAa
is said to be k-wise independent if (Xq,,..., Xqo,, ) are jointly independent
for all 1 < k' < k and all distinct aq, ..., € A.

We also say that X is independent of Y if (X,Y") are jointly independent.

A family of events (Fy)aca is said to be jointly independent if their
indicators (I(Ey))aca are jointly independent. Similarly for pairwise inde-
pendence and k-wise independence.
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From the theory of product measure, we have the following equivalent
formulation of joint independence:

Exercise 1.1.11. Let (X,)aeca be a family of random variables, with each
X, taking values in a measurable space R,,.

(i) Show that the (X4)aeca are jointly independent if and only for every
collection of distinct elements oy, ..., ay of A, and all measurable
subsets E; C Ry, for 1 <i < k’, one has

k,/
P(X,, € Eiforall 1 <i <) =[][P(Xa, € E).
i=1
(ii) Show that the necessary and sufficient condition (X4 )aca being k-

wise independent is the same, except that k' is constrained to be
at most k.

In particular, a finite family (X7,..., X) of random variables X;, 1 <i <k
taking values in measurable spaces R; are jointly independent if and only if

k
P(X; € E forall1 <i<k)=[][P(X;€E)
i=1
for all measurable F; C R;.

If the X, are discrete random variables, one can take the E; to be
singleton sets in the above discussion.

From the above exercise we see that joint independence implies k-wise
independence for any k, and that joint independence is preserved under
permuting, relabeling, or eliminating some or all of the X,. A single random
variable is automatically jointly independent, and so 1-wise independence
is vacuously true; pairwise independence is the first non-trivial notion of
independence in this hierarchy.

Example 1.1.13. Let Fy be the field of two elements, let V C F3 be
the subspace of triples (z1,2,73) € F3 with 21 + 22 + 23 = 0, and let
(X1, X2, X3) be drawn uniformly at random from V. Then (X;, X2, X3)
are pairwise independent, but not jointly independent. In particular, X3 is
independent of each of X1, Xs separately, but is not independent of (X7, Xs).

Exercise 1.1.12. This exercise generalises the above example. Let F be a
finite field, and let V be a subspace of F” for some finite n. Let (X1,...,X},)
be drawn uniformly at random from V. Suppose that V is not contained in
any coordinate hyperplane in F".

(i) Show that each X;, 1 <14 < n is uniformly distributed in F.
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(ii) Show that for any k > 2, that (X7, ..., X,,) is k-wise independent if
and only if V' is not contained in any hyperplane which is definable
using at most k of the coordinate variables.

(iii) Show that (Xi,...,X,) is jointly independent if and only if V' =
F".

Informally, we thus see that imposing constraints between k variables at a
time can destroy k-wise independence, while leaving lower-order indepen-
dence unaffected.

Exercise 1.1.13. Let V C F3 be the subspace of triples (z1, 79, 23) € F3
with z; + 22 = 0, and let (X1, X2, X3) be drawn uniformly at random from
V. Then X3 is independent of (X7, X2) (and in particular, is independent
of z1 and z2 separately), but X;, Xy are not independent of each other.

Exercise 1.1.14. We say that one random variable Y (with values in Ry)
is determined by another random variable X (with values in Rx) if there
exists a (deterministic) function f : Rx — Ry such that Y = f(X) is surely
true (i.e., Y(w) = f(X(w)) for all w € ). Show that if (X4 )aea is a family
of jointly independent random variables, and (Y3)gep is a family such that
each Yj is determined by some subfamily (Xa)aca, of the (Xa)aca, with
the Ag disjoint as § varies, then the (Y3)gep are jointly independent also.

Exercise 1.1.15 (Determinism vs. independence). Let X,Y be random
variables. Show that Y is deterministic if and only if it is simultaneously
determined by X, and independent of X.

Exercise 1.1.16. Show that a complex random variable X is a complex
Gaussian random variable (i.e., its distribution is a complex normal distri-
bution) if and only if its real and imaginary parts Re(X), Im(X) are indepen-
dent real Gaussian random variables with the same variance. In particular,
the variance of Re(X) and Im(X) will be half of the variance of X.

One key advantage of working with jointly independent random variables
and events is that one can compute various probabilistic quantities quite
easily. We give some key examples below.

Exercise 1.1.17. If Ey, ..., E; are jointly independent events, show that

k k
(1.28) P(\ E)=]]PE)
=1 =1
and

(1.29) P(v E)=1- H(l —P(E)).
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Show that the converse statement (i.e., that (1.28) and (1.29) imply joint
independence) is true for k = 2, but fails for higher k. Can one find a correct
replacement for this converse for higher &7

Exercise 1.1.18.

(i) If X1q,..., X are jointly independent random variables taking val-
ues in [0, +o0], show that
k k
EJ[ X =]]ExX..
i=1 i=1

(ii) If Xy,..., X} are jointly independent absolutely integrable scalar
random variables taking values in [0, +o0c], show that [JF_, X; is
absolutely integrable, and

k k
E H X; = H EX,.
=1 =1

Remark 1.1.14. The above exercise combines well with Exercise 1.1.14.
For instance, if Xy, ..., X are jointly independent sub-Gaussian variables,
then from Exercises 1.1.14, 1.1.18 we see that

k k
(1.30) E[]% =[] B
=1 =1

for any complex t. This identity is a key component of the ezponential
moment method, which we will discuss in Section 2.1.

The following result is a key component of the second moment method.

Exercise 1.1.19 (Pairwise independence implies linearity of variance). If
X1,..., X} are pairwise independent scalar random variables of finite mean
and variance, show that

k k
Var(z X;) = Z Var(Xj;)
‘ i=1

=1

and more generally,
k k
Var(z ¢iXi) = Z |ci|*Var(X;)
i=1 i=1

for any scalars ¢; (compare with (1.12), (1.22)).

The product measure construction allows us to extend Lemma 1.1.7:



1.1. A review of probability theory 23

Exercise 1.1.20 (Creation of new, independent random variables). Let
(Xa)aca be a family of random variables (not necessarily independent or
finite), and let (1g)sep be a finite collection of probability measures f15 on
measurable spaces Rg. Then, after extending the sample space if necessary,
one can find a family (Ys)gep of independent random variables, such that
each Yj3 has distribution p1g, and the two families (Xq)aeca and (Y3)gep are
independent of each other.

Remark 1.1.15. It is possible to extend this exercise to the case when B
is infinite using the Kolmogorov extension theorem, which can be found in
any graduate probability text (see e.g. [Ka2002]). There is, however, the
caveat that some (mild) topological hypotheses now need to be imposed on
the range Rg of the variables Y3. For instance, it is enough to assume that
each Rg is a locally compact o-compact metric space equipped with the
Borel o-algebra. These technicalities will, however, not be the focus of this
course, and we shall gloss over them in the rest of the text.

We isolate the important case when g = p is independent of 3. We say
that a family (X, )aeca of random variables is independently and identically
distributed, or iid for short, if they are jointly independent and all the X,
have the same distribution.

Corollary 1.1.16. Let (X4)aca be a family of random variables (not neces-
sarily independent or finite), let p be a probability measure on a measurable
space R, and let B be an arbitrary set. Then, after extending the sample
space if necessary, one can find an wd family (Y)sep with distribution p
which is independent of (Xa)acA-

Thus, for instance, one can create arbitrarily large iid families of Bernoulli
random variables, Gaussian random variables, etc., regardless of what other
random variables are already in play. We thus see that the freedom to ex-
tend the underlying sample space allows us access to an unlimited source
of randomness. This is in contrast to a situation studied in complexity the-
ory and computer science, in which one does not assume that the sample
space can be extended at will, and the amount of randomness one can use
is therefore limited.

Remark 1.1.17. Given two probability measures px, uy on two measur-
able spaces Rx, Ry, a joining or coupling of these measures is a random
variable (X,Y’) taking values in the product space Rx x Ry, whose indi-
vidual components X,Y have distribution px,py, respectively. Exercise
1.1.20 shows that one can always couple two distributions together in an in-
dependent manner; but one can certainly create non-independent couplings
as well. The study of couplings (or joinings) is particularly important in
ergodic theory, but this will not be the focus of this text.
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1.1.4. Conditioning. Random variables are inherently non-deterministic
in nature, and as such one has to be careful when applying deterministic laws
of reasoning to such variables. For instance, consider the law of the excluded
middle: a statement P is either true or false, but not both. If this statement
is a random variable, rather than deterministic, then instead it is true with
some probability p and false with some complementary probability 1 — p.
Also, applying set-theoretic constructions with random inputs can lead to
sets, spaces, and other structures which are themselves random variables,
which can be quite confusing and require a certain amount of technical care;
consider, for instance, the task of rigorously defining a Euclidean space R?
when the dimension d is itself a random variable.

Now, one can always eliminate these difficulties by explicitly working
with points w in the underlying sample space €2, and replacing every ran-
dom variable X by its evaluation X (w) at that point; this removes all the
randomness from consideration, making everything deterministic (for fixed
w). This approach is rigorous, but goes against the “probabilistic way of
thinking”, as one now needs to take some care in extending the sample
space.

However, if instead one only seeks to remove a partial amount of ran-
domness from consideration, then one can do this in a manner consistent
with the probabilistic way of thinking, by introducing the machinery of con-
ditioning. By conditioning an event to be true or false, or conditioning a
random variable to be fixed, one can turn that random event or variable into
a deterministic one, while preserving the random nature of other events and
variables (particularly those which are independent of the event or variable
being conditioned upon).

We begin by considering the simpler situation of conditioning on an
event.

Definition 1.1.18 (Conditioning on an event). Let E be an event (or state-
ment) which holds with positive probability P(E). By conditioning on the
event E, we mean the act of replacing the underlying sample space 2 with
the subset of 2 where E holds, and replacing the underlying probability
measure P by the conditional probability measure P(|E), defined by the
formula

(1.31) P(F|E) := P(F A E)/P(E).

All events F on the original sample space can thus be viewed as events (F|E)
on the conditioned space, which we model set-theoretically as the set of all
w in E obeying F'. Note that this notation is compatible with (1.31).

All random variables X on the original sample space can also be viewed
as random variables X on the conditioned space, by restriction. We will
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refer to this conditioned random variable as (X|E), and thus define con-
ditional distribution p(x|g) and conditional expectation E(X|E) (if X is
scalar) accordingly.

One can also condition on the complementary event E, provided that
this event holds with positive probility also.

By undoing this conditioning, we revert the underlying sample space
and measure back to their original (or unconditional) values. Note that any
random variable which has been defined both after conditioning on F, and
conditioning on E, can still be viewed as a combined random variable after
undoing the conditioning.

Conditioning affects the underlying probability space in a manner which
is different from extension, and so the act of conditioning is not guaranteed
to preserve probabilistic concepts such as distribution, probability, or expec-
tation. Nevertheless, the conditioned version of these concepts are closely
related to their unconditional counterparts:

Exercise 1.1.21. If E and E both occur with positive probability, establish
the identities

(1.32) P(F)=P(F|E)P(E)+P(F|E)P(E)
for any (unconditional) event F' and
(1.33) px = x|z P(E) + pix 5 P(E)

for any (unconditional) random variable X (in the original sample space).
In a similar spirit, if X is a non-negative or absolutely integrable scalar
(unconditional) random variable, show that (X|E), (X|E) are also non-
negative and absolutely integrable on their respective conditioned spaces,
and that

(1.34) EX = E(X|E)P(E) + E(X|E)P(E).

In the degenerate case when E occurs with full probability, conditioning to
the complementary event E is not well defined, but show that in those cases
we can still obtain the above formulae if we adopt the convention that any
term involving the vanishing factor P(E) should be omitted. Similarly if £
occurs with zero probability.

The above identities allow one to study probabilities, distributions, and
expectations on the original sample space by conditioning to the two condi-
tioned spaces.

From (1.32) we obtain the inequality
(1.35) P(F|E) <P(F)/P(E),
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thus conditioning can magnify probabilities by a factor of at most 1/P(E).
In particular:

(i) If F' occurs unconditionally surely, it occurs surely conditioning on
E also.

(ii) If F' occurs unconditionally almost surely, it occurs almost surely
conditioning on E also.

(iii) If F' occurs unconditionally with overwhelming probability, it oc-
curs with overwhelming probability conditioning on F also, pro-
vided that P(FE) > en~¢ for some ¢, C' > 0 independent of n.

(iv) If F' occurs unconditionally with high probability, it occurs with
high probability conditioning on E also, provided that P(E) >
en~® for some ¢ > 0 and some sufficiently small a > 0 independent
of n.

(v) If F occurs unconditionally asymptotically almost surely, it occurs
asymptotically almost surely conditioning on F also, provided that
P(FE) > ¢ for some ¢ > 0 independent of n.

Conditioning can distort the probability of events and the distribution
of random variables. Most obviously, conditioning on E elevates the prob-
ability of E to 1, and sends the probability of the complementary event E
to zero. In a similar spirit, if X is a random variable uniformly distributed
on some finite set S, and S’ is a non-empty subset of S, then conditioning
to the event X € S’ alters the distribution of X to now become the uniform
distribution on S’ rather than S (and conditioning to the complementary
event produces the uniform distribution on S\S’).

However, events and random variables that are independent of the event
FE being conditioned upon are essentially unaffected by conditioning. Indeed,
if F'is an event independent of F, then (F|E) occurs with the same proba-
bility as F'; and if X is a random variable independent of E (or equivalently,
independently of the indicator I(E)), then (X|E) has the same distribution
as X.

Remark 1.1.19. One can view conditioning to an event E and its comple-
ment F as the probabilistic analogue of the law of the excluded middle. In
deterministic logic, given a statement P, one can divide into two separate
cases, depending on whether P is true or false; and any other statement @) is
unconditionally true if and only if it is conditionally true in both of these two
cases. Similarly, in probability theory, given an event E, one can condition
into two separate sample spaces, depending on whether F is conditioned to
be true or false; and the unconditional statistics of any random variable or
event are then a weighted average of the conditional statistics on the two
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sample spaces, where the weights are given by the probability of E and its
complement.

Now we consider conditioning with respect to a discrete random variable
Y, taking values in some range R. One can condition on any event Y = y,
y € R which occurs with positive probability. It is then not difficult to
establish the analogous identities to those in Exercise 1.1.21:

Exercise 1.1.22. Let Y be a discrete random variable with range R. Then
we have

(1.36) P(F) =) P(F|Y =y)P(Y =y)
yER

for any (unconditional) event F', and

(1.37) Hx = Z ,U(X|y:y)P(Y = y)

YyER
for any (unconditional) random variable X (where the sum of non-negative
measures is defined in the obvious manner), and for absolutely integrable or
non-negative (unconditional) random variables X, one has

(1.38) EX =) EX[|Y =y)P(Y =y).
yeER

In all of these identities, we adopt the convention that any term involving
P(Y = y) is ignored when P(Y =y) = 0.

With the notation as in the above exercise, we define® the conditional
probability P(F|Y) of an (unconditional) event F' conditioning on Y to be
the (unconditional) random variable that is defined to equal P(F|Y = y)
whenever Y = y, and similarly, for any absolutely integrable or non-negative
(unconditional) random variable X, we define the conditional expectation
E(X|Y) to be the (unconditional) random variable that is defined to equal
E(X|Y = y) whenever Y = y. Thus (1.36), (1.38) simplify to

(1.39) P(F)=E(P(F|Y))
and
(1.40) E(X)=EEX|Y)).

From (1.12) we have the linearity of conditional expectation
(1.41) E(a1 Xy + -+ aXilY) =aEX 1Y) + - + . E(X;]Y),
where the identity is understood to hold almost surely.

5Strictly speaking, since we are not defining conditional expectation when P(Y = y) = 0,
these random variables are only defined almost surely, rather than surely, but this will not cause
difficulties in practice; see Remark 1.1.5.
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Remark 1.1.20. One can interpret conditional expectation as a type of
orthogonal projection; see, for instance, [Ta2009, §2.8]. But we will not
use this perspective in this course. Just as conditioning on an event and its
complement can be viewed as the probabilistic analogue of the law of the
excluded middle, conditioning on a discrete random variable can be viewed
as the probabilistic analogue of dividing into finitely or countably many
cases. For instance, one could condition on the outcome Y € {1,2,3,4,5,6}
of a six-sided die, thus conditioning the underlying sample space into six
separate subspaces. If the die is fair, then the unconditional statistics of a
random variable or event would be an unweighted average of the conditional
statistics of the six conditioned subspaces; if the die is weighted, one would
take a weighted average instead.

Example 1.1.21. Let X, Xo be iid signed Bernoulli random variables,
and let Y := X + Xo, thus Y is a discrete random variable taking values in
—2,0,+2 (with probability 1/4, 1/2, 1/4, respectively). Then X; remains a
signed Bernoulli random variable when conditioned to ¥ = 0, but becomes
the deterministic variable +1 when conditioned to ¥ = +2, and similarly
becomes the deterministic variable —1 when conditioned to ¥ = —2. As a
consequence, the conditional expectation E(X;|Y) is equal to 0 when Y = 0,
+1 when Y = 42, and —1 when Y = —2; thus E(X;|Y) = Y/2. Similarly,
E(X3|Y) = Y/2; summing and using the linearity of conditional expectation
we obtain the obvious identity E(Y|Y) =Y.

If X,Y are independent, then (X|Y = y) = X for all y (with the con-
vention that those y for which P(Y = y) = 0 are ignored), which implies, in
particular (for absolutely integrable X), that

E(X]Y) = E(X)
(so in this case the conditional expectation is a deterministic quantity).

Example 1.1.22. Let X,Y be bounded scalar random variables (not nec-
essarily independent), with Y discrete. Then we have

E(XY) = E(E(XY|Y)) = E(YE(X|Y))

where the latter equality holds since Y clearly becomes deterministic after
conditioning on Y.

We will also need to condition with respect to continuous random vari-
ables (this is the probabilistic analogue of dividing into a potentially un-
countable number of cases). To do this formally, we need to proceed a little
differently from the discrete case, introducing the notion of a disintegration
of the underlying sample space.
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Definition 1.1.23 (Disintegration). Let Y be a random variable with range
R. A disintegration (R, (y)yer) of the underlying sample space 2 with
respect to Y is a subset R’ of R of full measure in py (thus Y € R’ almost
surely), together with assignment of a probability measure P(]Y = y) on
the subspace Q, := {w € Q : Y(w) = y} of Q for each y € R, which is
measurable in the sense that the map y — P(F|Y = y) is measurable for
every event F', and such that

P(F) = EP(F|Y)

for all such events, where P(F|Y) is the (almost surely defined) random
variable defined to equal P(F|Y = y) whenever Y = y.

Given such a disintegration, we can then condition to the event ¥ =y
for any y € R’ by replacing Q with the subspace €, (with the induced o-
algebra), but replacing the underlying probability measure P with P(|Y =
y). We can thus condition (unconditional) events F' and random variables X
to this event to create conditioned events (F|Y = y) and random variables
(X|Y = y) on the conditioned space, giving rise to conditional probabil-
ities P(F|Y = y) (which is consistent with the existing notation for this
expression) and conditional expectations E(X|Y = y) (assuming absolute
integrability in this conditioned space). We then set E(X|Y") to be the (al-
most surely defined) random variable defined to equal E(X|Y = y) whenever
Y =y.

A disintegration is also known as a regular conditional probability in the
literature.

Example 1.1.24 (Discrete case). If Y is a discrete random variable, one can
set R’ to be the essential range of Y, which in the discrete case is the set of all
y € R for which P(Y =y) > 0. For each y € R/, we define P(]Y = y) to be
the conditional probability measure relative to the event Y = y, as defined
in Definition 1.1.18. It is easy to verify that this is indeed a disintegration;
thus the continuous notion of conditional probability generalises the discrete
one.

Example 1.1.25 (Independent case). Starting with an initial sample space
), and a probability measure p on a measurable space R, one can adjoin a
random variable Y taking values in R with distribution p that is independent
of all previously existing random variables, by extending €2 to  x R as in
Lemma 1.1.7. One can then disintegrate Y by taking R’ := R and letting
iy be the probability measure on Q, = Q x {y} induced by the obvious
isomorphism between Qx {y} and €; this is easily seen to be a disintegration.
Note that if X is any random variable from the original space €2, then
(X]Y =y) has the same distribution as X for any y € R.
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Example 1.1.26. Let Q = [0,1]? with Lebesgue measure, and let (X7, X5)
be the coordinate random variables of €2, thus X7, Xo are iid with the uni-
form distribution on [0,1]. Let Y be the random variable Y := X; + Xo
with range R = R. Then one can disintegrate Y by taking R’ = [0, 2] and
letting p, be normalised Lebesgue measure on the diagonal line segment
{(%1,1’2) S [O, 1]2 1x1+ a0 = y}.

Exercise 1.1.23 (Almost uniqueness of disintegrations). Let (R', (1y)yecr/),
(R, (fy) e ) be two disintegrations of the same random variable Y. Show

that for any event F, one has P(F|Y = y) = P(F|Y = y) for py-almost
every y € R, where the conditional probabilities P(|Y = y) and P([Y = y)
are defined using the disintegrations (R, (1y)yer'), (R, (fy),cp), respec-
tively. (Hint: Argue by contradiction, and consider the set of y for which

P(F|Y = y) exceeds P(F|Y = y) (or vice versa) by some fixed £ > 0.)

Similarly, for a scalar random variable X, show that for py-almost every
y € R, that (X|Y = y) is absolutely integrable with respect to the first
disintegration if and only if it is absolutely integrable with respect to the
second disintegration, and one has E(X|Y = y) = E(X|Y = y) in such
cases.

Remark 1.1.27. Under some mild topological assumptions on the under-
lying sample space (and on the measurable space R), one can always find at
least one disintegration for every random variable Y, by using tools such as
the Radon-Nikodym theorem; see [Ta2009, Theorem 2.9.21]. In practice,
we will not invoke these general results here (as it is not natural for us to
place topological conditions on the sample space), and instead construct dis-
integrations by hand in specific cases, for instance, by using the construction
in Example 1.1.25. See, e.g., [Ka2002] for a more comprehensive discus-
sion of these topics; fortunately for us, these subtle issues will not have any
significant impact on our discussion.

Remark 1.1.28. Strictly speaking, disintegration is not a probabilistic con-
cept; there is no canonical way to extend a disintegration when extending
the sample space. However, due to the (almost) uniqueness and existence
results alluded to earlier, this will not be a difficulty in practice. Still, we
will try to use conditioning on continuous variables sparingly, in particular,
containing their Use inside the proofs of various lemmas, rather than in their
statements, due to their slight incompatibility with the “probabilistic way
of thinking”.

Exercise 1.1.24 (Fubini-Tonelli theorem). Let (R', (uy)ycr) be a disinte-
gration of a random variable Y taking values in a measurable space R, and
let X be a non-negative (resp. absolutely integrable) scalar random vari-
able. Show that for py-almost all y € R, (X|Y = y) is a non-negative (resp.
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absolutely integrable) random variable, and one has the identity%
(1.42) E(E(X|Y)) = B(X),

where E(X|Y) is the (almost surely defined) random variable that equals
E(X|Y = y) whenever y € R'. More generally, show that

(1.43) EEXY)f(Y)) = E(Xf(Y)),

whenever f : R — R is a non-negative (resp. bounded) measurable function.
(One can essentially take (1.43), together with the fact that E(X|Y) is
determined by Y, as a definition of the conditional expectation E(X|Y),
but we will not adopt this approach here.)

A typical use of conditioning is to deduce a probabilistic statement from
a deterministic one. For instance, suppose one has a random variable X,
and a parameter y in some range R, and an event E(X,y) that depends on
both X and y. Suppose we know that PE(X,y) < ¢ for every y € R. Then,
we can conclude that whenever Y is a random variable in R independent of
X, we also have PE(X,Y) < ¢, regardless of what the actual distribution of
Y is. Indeed, if we condition Y to be a fixed value y (using the construction
in Example 1.1.25, extending the underlying sample space if necessary), we
see that P(E(X,Y)|Y = y) < e for each y; and then one can integrate out
the conditioning using (1.42) to obtain the claim.

The act of conditioning a random variable to be fixed is occasionally also
called freezing.

1.1.5. Convergence. In a first course in undergraduate real analysis, we
learn what it means for a sequence z,, of scalars to converge to a limit z;
for every e > 0, we have |z, — x| < ¢ for all sufficiently large n. Later on,
this notion of convergence is generalised to metric space convergence, and
generalised further to topological space convergence; in these generalisations,
the sequence x,, can lie in some other space than the space of scalars (though
one usually insists that this space is independent of n).

Now suppose that we have a sequence X, of random variables, all taking
values in some space R; we will primarily be interested in the scalar case
when R is equal to R or C, but will also need to consider fancier random
variables, such as point processes or empirical spectral distributions. In
what sense can we say that X,, “converges” to a random variable X, also
taking values in R?

It turns out that there are several different notions of convergence which
are of interest. For us, the four most important (in decreasing order of

6Note that one first needs to show that E(X|Y) is measurable before one can take the
expectation.
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strength) will be almost sure convergence, convergence in probability, con-
vergence in distribution, and tightness of distribution.

Definition 1.1.29 (Modes of convergence). Let R = (R, d) be a o-compact’
metric space (with the Borel o-algebra), and let X, be a sequence of random
variables taking values in R. Let X be another random variable taking values
in R.

(i) X, converges almost surely to X if, for almost every w € Q, X, (w)

converges to X (w), or equivalently

P(limsupd(X,,X) <e)=1
n— oo

for every € > 0.

(ii) X,, converges in probability to X if, for every € > 0, one has
liminf P(d(X,,X) <¢) =1,
n—o0

or equivalently if d(X,, X) < e holds asymptotically almost surely
for every € > 0.

(iii) X,, converges in distribution to X if, for every bounded continuous
function F' : R — R, one has

lim EF(X,) = EF(X).
n—oo

(iv) X, has a tight sequence of distributions if, for every ¢ > 0, there
exists a compact subset K of R such that P(X, € K) > 1 —¢ for
all sufficiently large n.

Remark 1.1.30. One can relax the requirement that R be a o-compact
metric space in the definitions, but then some of the nice equivalences and
other properties of these modes of convergence begin to break down. In our
applications, though, we will only need to consider the o-compact metric
space case. Note that all of these notions are probabilistic (i.e., they are
preserved under extensions of the sample space).

Exercise 1.1.25 (Implications and equivalences). Let X, X be random
variables taking values in a o-compact metric space R.

(i) Show that if X,, converges almost surely to X, then X, converges
in probability to X. (Hint: Use Fatou’s lemma.)

(ii) Show that if X,, converges in distribution to X, then X, has a tight
sequence of distributions.

(iii) Show that if X,, converges in probability to X, then X,, converges
in distribution to X. (Hint: First show tightness, then use the fact

7A metric space is o-compact if it is the countable union of compact sets.
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that on compact sets, continuous functions are uniformly continu-
ous.)

(iv) Show that X,, converges in distribution to X if and only if ux,,
converges to px in the vague topology (i.e., [ f dux, — [ f dux
for all continuous functions f : R — R of compact support).

(v) Conversely, if X,, has a tight sequence of distributions, and ux, is
convergent in the vague topology, show that X, is convergent in
distribution to another random variable (possibly after extending
the sample space). What happens if the tightness hypothesis is
dropped?

(vi) If X is deterministic, show that X,, converges in probability to X
if and only if X,, converges in distribution to X.

(vii) If X,, has a tight sequence of distributions, show that there is a
subsequence of the X, which converges in distribution. (This is
known as Prokhorov’s theorem).

(viii) If X,, converges in probability to X, show that there is a subse-
quence of the X,, which converges almost surely to X.

(ix) X, converges in distribution to X if and only if liminf,,_,., P(X,, €
U) > P(X € U) for every open subset U of R, or equivalently if
limsup,,_,.. P(X,, € K) < P(X € K) for every closed subset K of
R.

Exercise 1.1.26 (Skorokhod representation theorem). Let u, be a sequence
of probability measures on C that converge in the vague topology to an-
other probability measure p. Show (after extending the probability space if
necessary) that there exist random variables X,, with distribution pu, that
converge almost surely to a random variable X with distribution pu.

Remark 1.1.31. The relationship between almost sure convergence and
convergence in probability may be clarified by the following observation. If
E,, is a sequence of events, then the indicators I(E,,) converge in probability
to zero iff P(E,) — 0 as n — oo, but converge almost surely to zero iff
P(U,>y En) = 0as N — oo.

Example 1.1.32. Let Y be a random variable drawn uniformly from [0, 1].
For each n > 1, let E, be the event that the decimal expansion of Y begins
with the decimal expansion of n, e.g., every real number in [0.25,0.26) lies
in Fy5. (Let us ignore the annoying 0.999... = 1.000... ambiguity in the
decimal expansion here, as it will almost surely not be an issue.) Then the
indicators I(E,,) converge in probability and in distribution to zero, but do
not converge almost surely.

If 3, is the n'® digit of Y, then the y, converge in distribution (to the
uniform distribution on {0, 1,...,9}), but do not converge in probability or
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almost surely. Thus we see that the latter two notions are sensitive not only
to the distribution of the random variables, but how they are positioned in
the sample space.

The limit of a sequence converging almost surely or in probability is
clearly unique up to almost sure equivalence, whereas the limit of a sequence
converging in distribution is only unique up to equivalence in distribution.
Indeed, convergence in distribution is really a statement about the distri-
butions ux,, ux rather than of the random variables X,,, X themselves. In
particular, for convergence in distribution one does not care about how cor-
related or dependent the X,, are with respect to each other, or with X;
indeed, they could even live on different sample spaces €,,, 2 and we would
still have a well-defined notion of convergence in distribution, even though
the other two notions cease to make sense (except when X is determin-
istic, in which case we can recover convergence in probability by Exercise
1.1.25(vi)).

Exercise 1.1.27 (Borel-Cantelli lemma). Suppose that X,,, X are random
variables such that ) P(d(X,,X) > ) < oo for every ¢ > 0. Show that
X, converges almost surely to X.

Exercise 1.1.28 (Convergence and moments). Let X,, be a sequence of
scalar random variables, and let X be another scalar random variable. Let
k,e > 0.

(i) If sup,, E|X,|* < oo, show that X,, has a tight sequence of distri-
butions.

(ii) If sup, E|X,|* < 0o and X,, converges in distribution to X, show
that E|X|* < liminf, . E|X,*.

(iii) If sup,, E|X,|**¢ < oo and X, converges in distribution to X, show
that E|X|* = lim,, 0 E|X,|*.

(iv) Give a counterexample to show that (iii) fails when ¢ = 0, even if
we upgrade convergence in distribution to almost sure convergence.

(v) If the X,, are uniformly bounded and real-valued, and EX* =
lim,, oo EX* for every k =0,1,2,..., then X,, converges in distri-
bution to X. (Hint: Use the Weierstrass approximation theorem.
Alternatively, use the analytic nature of the moment generating
function Ee!* and analytic continuation.)

(vi) If the X, are uniformly bounded and complex-valued, and
EX'X = limy, 00 EXﬁX_nl for every k,l = 0,1,2,..., then X,
converges in distribution to X. Give a counterexample to show
that the claim fails if one only considers the cases when [ = 0.
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There are other interesting modes of convergence on random variables
and on distributions, such as convergence in total variation norm, in the
Lévy-Prokhorov metric, or in Wasserstein metric, but we will not need these
concepts in this text.

1.2. Stirling’s formula

In this section we derive Stirling’s formula, which is a useful approximation
for n! when n is large. This formula (and related formulae for binomial
coefficients) (') will be useful for estimating a number of combinatorial
quantities in this text, and also in allowing one to analyse discrete random
walks accurately.

From Taylor expansion we have " /n! < e* for any x > 0. Specialising
this to x = n we obtain a crude lower bound
(1.44) n! >n"e "
In the other direction, we trivially have
(1.45) n! <n",
so we know already that n! is within® an exponential factor of n".

One can do better by starting with the identity

n
logn! = Z logm
m=1

and viewing the right-hand side as a Riemann integral approximation to
fln logz dz. Indeed, a simple area comparison (cf. the integral test) yields
the inequalities

n n n
/ logx dor < Zlogmglogn—i—/ log x dx
1 1

m=1

which leads to the inequalities
(1.46) en"e™" <n!<enxn"e ",
so the lower bound in (1.44) was only off? by a factor of n or so.

One can improve these bounds further by using the trapezoid rule as
follows. On any interval [m, m+1], log z has a second derivative of O(1/m?),

80mne can also obtain a cruder version of this fact that avoids Taylor expansion, by observing
the trivial lower bound n! > (n/2)L"/2] coming from considering the second half of the product
nl=1--... n.

9This illustrates a general principle, namely that one can often get a non-terrible bound for
a series (in this case, the Taylor series for €™) by using the largest term in that series (which is
n"/n!).
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which by Taylor expansion leads to the approximation

m—+1 1 1
/ log da::glogm—kglog(m—i-l)—kem

m
for some error €,, = O(1/m?).
The error is absolutely convergent; by the integral test, we have Y ", €,
= C + O(1/n) for some absolute constant C' := Y °_, €,,. Performing this
sum, we conclude that

n—1

" 1
/ log x dszlogm+—logn+C+O(1/n)
1 m=1 2

which after some rearranging leads to the asymptotic
(1.47) n! = (14 0(1/n))et=%Vnn"e™,

so we see that n! actually lies roughly at the geometric mean of the two
bounds in (1.46).

This argument does not easily reveal what the constant C' actually is
(though it can in principle be computed numerically to any specified level
of accuracy by this method). To find this out, we take a different tack,
interpreting the factorial via the Gamma function I' : R — R as follows.
Repeated integration by parts reveals the identity!”

(1.48) n! :/ the ! dt.
0

So to estimate n!, it suffices to estimate the integral in (1.48). Elementary
calculus reveals that the integrand t"e~* achieves its maximum at t = n, so
it is natural to make the substitution t = n + s, obtaining

n! = / (n+s)"e " ds

—n

which we can simplify a little bit as

n_—m > S n_—s
n!=n"e / (14 —)"e™* ds,
“n n

pulling out the now-familiar factors of n"e™".

into a single exponential,

We combine the integrand

o S
n! = n”e‘"/ exp(nlog(l+ —) — s) ds.
n n
From Taylor expansion we see that

2

S S
log(l+—-)=8— — +...
n log( —|—n) s 2n+ ,

10The right-hand side of (1.48), by definition, is T'(n + 1).
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so we heuristically have
exp(nlog(l + E) — 5) ~ exp(—s%/2n).
n

To achieve this approximation rigorously, we first scale s by y/n to remove
the n in the denominator. Making the substitution s = y/nz, we obtain

n! = \/ﬁn"e"/ exp(nlog(l + —) Vvnzx) du,
—Jn vn
thus extracting the factor of \/n that we know from (1.47) has to be there.

Now, Taylor expansion tells us that for fixed x, we have the pointwise
convergence

(1.49) exp(nlog(1 + i) — Vnzx) = exp(—z%/2)

Vn
as n — oo. To be more precise, as the function nlog(1 + %) equals 0 with

derivative y/n at the origin, and has second derivative W, we see from
two applications of the fundamental theorem of calculus that

k2 - [T _(z—y)dy
os(1-+ 7o) = vie == [

This gives a uniform lower bound

nlog(l + 7) Vnz < —ca?

for some ¢ > 0 when |z| < y/n, and
nlog(l + %) —Vnx < —czv/n

for |x| > /n. This is enough to keep the integrands exp(n log(1+ —)—/nz)

dominated by an absolutely integrable function. By (1.49) and the Lebesgue
dominated convergence theorem, we thus have

/_o\jﬁ exp(nlog(1 + %) —V/nx) dv — /_Z exp(—22/2) dx

A classical computation (based, for instance, on computing ffooo ffooo exp(—
(2 4 y?)/2) dxdy in both Cartesian and polar coordinates) shows that

/OO exp(—x2/2) dz = V21

— 00

and so we conclude Stirling’s formula

(1.50) n! = (14 o(1))v2rnn"e™™.
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Remark 1.2.1. The dominated convergence theorem does not immediately
give any effective rate on the decay o(1) (though such a rate can eventually
be extracted by a quantitative version of the above argument. But one can
combine (1.50) with (1.47) to show that the error rate is of the form O(1/n).
By using fancier versions of the trapezoid rule (e.g., Simpson’s rule) one can
obtain an asymptotic expansion of the error term in 1/n; see [KeVa2007].

Remark 1.2.2. The derivation of (1.50) demonstrates some general prin-
ciples concerning the estimation of exponential integrals [ e®@) dr when ¢
is large. First, the integral is dominated by the local maxima of ¢. Then,
near these maxima, e®?®) usually behaves like a rescaled Gaussian, as can
be seen by Taylor expansion (though more complicated behaviour emerges
if the second derivative of ¢ degenerates). So one can often understand the
asymptotics of such integrals by a change of variables designed to reveal the
Gaussian behaviour. This technique is known as Laplace’s method. A simi-
lar set of principles also holds for oscillatory exponential integrals [ @) dy:
these principles are collectively referred to as the method of stationary phase.

One can use Stirling’s formula to estimate binomial coefficients. Here is
a crude bound:

Exercise 1.2.1 (Entropy formula). Let n be large, let 0 < v < 1 be fixed,
and let 1 < m < n be an integer of the form m = (v + o(1))n. Show that
(') = exp((h(y) 4+ o(1))n), where h(v) is the entropy function

m

1
h(vy) :=~vlog—+ (1 — ) log .
() () log

For m near n/2, one also has the following more precise bound:

Exercise 1.2.2 (Refined entropy formula). Let n be large, and let 1 < m <
n be an integer of the form m = n/2 + k for some k = o(n?/3). Show that

(1.51) (Z) = (\/g+0(1))%exp(—2k2/n).

Note the Gaussian-type behaviour in k. This can be viewed as an il-
lustration of the central limit theorem (see Section 2.2) when summing iid
Bernoulli variables X1, ..., X,, € {0,1}, where each X; has a 1/2 probability
of being either 0 or 1. Indeed, from (1.51) we see that

P(Xi 4.+ Xn=n/2+k) = (\/%Jr 0(1))% exp(—2k*/n)

when k = o(n?/3), which suggests that X; + - - - + X, is distributed roughly
like the Gaussian N(n/2,n/4) with mean n/2 and variance n/4.
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1.3. Eigenvalues and sums of Hermitian matrices

Let A be a Hermitian n x n matrix. By the spectral theorem for Hermit-
ian matrices (which, for sake of completeness, we prove below), one can
diagonalise A using a sequence!!

A(A) > ... > A (4)

of n real eigenvalues, together with an orthonormal basis of eigenvectors
ui(A),...,un(A) € C". The set {\i(A4),...,\n(A4)} is known as the spec-
trum of A.

A basic question in linear algebra asks the extent to which the eigenval-
ues A\ (4),...,\u(A4) and A\ (B), ..., \y(B) of two Hermitian matrices A, B
constrain the eigenvalues A\ (A+B), ..., A\, (A+ B) of the sum. For instance,
the linearity of trace

tr(A+ B) = tr(A) + tr(B),
when expressed in terms of eigenvalues, gives the trace constraint
(1.52) MA+DB)+ -+ XA+ B) = (A)+ -+ M\ (A4)
+A1(B) + -+ \(B);
the identity

(1.53) A1(A) = sup v*Av
lv]=1

(together with the counterparts for B and A + B) gives the inequality
(1.54) AM(A+ B) < Ai(A) + \(B),
and so forth.

The complete answer to this problem is a fascinating one, requiring a
strangely recursive description (once known as Horn’s conjecture, which is
now solved), and connected to a large number of other fields of mathemat-
ics, such as geometric invariant theory, intersection theory, and the combi-
natorics of a certain gadget known as a “honeycomb”. See [KnTa2001] for
a survey of this topic.

In typical applications to random matrices, one of the matrices (say, B) is
“small” in some sense, so that A+ B is a perturbation of A. In this case, one
does not need the full strength of the above theory, and instead relies on a
simple aspect of it pointed out in [HeR01995], [To1994]|, which generates
several of the eigenvalue inequalities relating A, B, and A + B, of which

1 The eigenvalues are uniquely determined by A, but the eigenvectors have a little ambiguity
to them, particularly if there are repeated eigenvalues; for instance, one could multiply each
eigenvector by a complex phase . In this text we are arranging eigenvalues in descending order;
of course, one can also arrange eigenvalues in increasing order, which causes some slight notational
changes in the results below.
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(1.52) and (1.54) are examples'?. These eigenvalue inequalities can mostly
be deduced from a number of minimaz characterisations of eigenvalues (of
which (1.53) is a typical example), together with some basic facts about
intersections of subspaces. Examples include the Weyl inequalities

(1.55) Aitj—1(A+ B) < N(A) + \;(B),
valid whenever 4,7 > 1 and ¢ + j — 1 < n, and the Ky Fan inequality

MA+B) 4+ (A4 B) <

One consequence of these inequalities is that the spectrum of a Hermitian
matrix is stable with respect to small perturbations.

We will also establish some closely related inequalities concerning the
relationships between the eigenvalues of a matrix, and the eigenvalues of its
minors.

Many of the inequalities here have analogues for the singular values of
non-Hermitian matrices (by exploiting the augmented matrix (2.80)). How-
ever, the situation is markedly different when dealing with eigenvalues of
non-Hermitian matrices; here, the spectrum can be far more unstable, if
pseudospectrum is present. Because of this, the theory of the eigenvalues of
a random non-Hermitian matrix requires an additional ingredient, namely
upper bounds on the prevalence of pseudospectrum, which after recenter-
ing the matrix is basically equivalent to establishing lower bounds on least
singular values. See Section 2.8.1 for further discussion of this point.

We will work primarily here with Hermitian matrices, which can be
viewed as self-adjoint transformations on complex vector spaces such as
C". One can of course specialise the discussion to real symmetric matrices,
in which case one can restrict these complex vector spaces to their real
counterparts R™. The specialisation of the complex theory below to the real
case is straightforward and is left to the interested reader.

1.3.1. Proof of spectral theorem. To prove the spectral theorem, it is
convenient to work more abstractly, in the context of self-adjoint operators
on finite-dimensional Hilbert spaces:

Theorem 1.3.1 (Spectral theorem). Let V' be a finite-dimensional complex
Hilbert space of some dimension n, and let T : V. — V be a self-adjoint
operator. Then there exists an orthonormal basis vi,...,v, € V of V and
etgenvalues Ai, ..., A\, € R such that Tv; = \jv; for all 1 <i<n.

12 Actually, this method eventually generates all of the eigenvalue inequalities, but this is a
non-trivial fact to prove; see [KnTaWo2004]
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The spectral theorem as stated in the introduction then follows by spe-
cialising to the case V' = C" and ordering the eigenvalues.

Proof. We induct on the dimension n. The claim is vacuous for n = 0, so
suppose that n > 1 and that the claim has already been proven for n = 1.

Let v be a unit vector in V (thus v*v = 1) that maximises the form
Re(v*Tw); this maximum exists by compactness. By the method of La-
grange multipliers, v is a critical point of Re(v*Tv) — Av*v for some A € R.
Differentiating in an arbitrary direction w € V', we conclude that

Re(v'Tw + w*Tv — Aw*w — Aw*v) = 0;
this simplifies using self-adjointness to
Re(w*(Tv — Av)) = 0.

Since w € V was arbitrary, we conclude that Tv = Av, thus v is a unit
eigenvector of T'. By self-adjointness, this implies that the orthogonal com-
plement v+ := {w € V : v*w = 0} of v is preserved by T. Restricting T
to this lower-dimensional subspace and applying the induction hypothesis,
we can find an orthonormal basis of eigenvectors of T' on v. Adjoining the
new unit vector v to the orthonormal basis, we obtain the claim. ([l

Suppose we have a self-adjoint transformation A : C* — C™, which
of course can be identified with a Hermitian matrix. Using the orthogonal
eigenbasis provided by the spectral theorem, we can perform an orthonormal
change of variables to set that eigenbasis to be the standard basis eq, . .., ey,
so that the matrix of A becomes diagonal. This is very useful when dealing
with just a single matrix A; for instance, it makes the task of computing
functions of A, such as A* or exp(tA), much easier. However, when one has
several Hermitian matrices in play (e.g., A, B, A+ B), then it is usually not
possible to standardise all the eigenbases simultaneously (i.e., to simultane-
ously diagonalise all the matrices), except when the matrices all commute.
Nevertheless, one can still normalise one of the eigenbases to be the stan-
dard basis, and this is still useful for several applications, as we shall soon
see.

Exercise 1.3.1. Suppose that the eigenvalues A\j(A) > --- > A\, (A4) of
an n X n Hermitian matrix are distinct. Show that the associated eigen-
basis u1(A),...,up(A) is unique up to rotating each individual eigenvec-
tor u;(A) by a complex phase e%i. In particular, the spectral projections
P;(A) := uj(A)*u;(A) are unique. What happens when there is eigenvalue
multiplicity?
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1.3.2. Minimax formulae. The i'" eigenvalue functional A +— \;(4) is
not a linear functional (except in dimension one). It is not even a convex
functional (except when ¢ = 1) or a concave functional (except when i = n).
However, it is the next best thing, namely it is a minimazr expression of
linear functionals'3. More precisely, we have

Theorem 1.3.2 (Courant-Fischer minimax theorem). Let A be an n x n
Hermitian matriz. Then we have

(1.57) Ai(A) = sup inf 0" Av
dim(V)=4 vE€V:|v|=1

and

1.58 Ai(A) = inf sup v Av
( ) ( ) dim(V)=n—i+1 yev:|y|=1

for all 1 < i <n, where V ranges over all subspaces of C™ with the indicated
dimension.

Proof. It suffices to prove (1.57), as (1.58) follows by replacing A by —A
(noting that A\j(—A) = —A\—it1(A)).

We first verify the i = 1 case, i.e., (1.53). By the spectral theorem, we

can assume that A has the standard eigenbasis ey, ..., e,, in which case we
have
n
(1.59) v Av = Z | vi 2
i=1
whenever v = (v1,...,vy,). The claim (1.53) is then easily verified.

To prove the general case, we may again assume A has the standard
eigenbasis. By considering the space V spanned by ey,...,e;, we easily see
the inequality

Ai(A) < sup inf  v*Av,
dim(V)=i veV:|v|=1
so we only need to prove the reverse inequality. In other words, for every
i-dimensional subspace V of C", we have to show that V contains a unit
vector v such that

v Av < \i(A).

Let W be the space spanned by e;, ..., e,. This space has codimension i —1,
S0 it must have non-trivial intersection with V. If we let v be a unit vector
in VN W, the claim then follows from (1.59). O

13Note that a convex functional is the same thing as a max of linear functionals, while a
concave functional is the same thing as a min of linear functionals.



1.3. Eigenvalues and sums 43

Remark 1.3.3. By homogeneity, one can replace the restriction |v| = 1
with v # 0 provided that one replaces the quadratic form v*Av with the
Rayleigh quotient v* Av/v*v.

A closely related formula is as follows. Given an n x n Hermitian matrix
A and an m-dimensional subspace V of C", we define the partial trace
tr(A |v) to be the expression

tr(A ly) = Zv;‘Avi
i=1

where vy, ..., v, is any orthonormal basis of V. It is easy to see that this
expression is independent of the choice of orthonormal basis, and so the
partial trace is well-defined.

Proposition 1.3.4 (Extremal partial trace). Let A be an n x n Hermitian
matriz. Then for any 1 < k <n, one has
M(A) + -+ X(A) = sup tr(A |v)
dim(V)=k
and

Mkea(A) + o dn(A) = it (A L)

As a corollary, we see that A +— Aj(A)+---+ A\ (A) is a convex function,
and A — A\p_k4+1(A) + -+ A\ (A) is a concave function.

Proof. Again, by symmetry it suffices to prove the first formula. As before,
we may assume, without loss of generality, that A has the standard eigenba-
sis eq, ..., e, corresponding to A\1(A),..., A\ (A), respectively. By selecting

V to be the span of ey, ..., e, we have the inequality
M(A) + -+ M (A) < sup tr(4 ),
dim(V)=k

so it suffices to prove the reverse inequality. For this we induct on the dimen-
sion n. If V has dimension k, then it has a k—1-dimensional subspace V' that
is contained in the span of es, ..., e,. By the induction hypothesis applied
to the restriction of A to this span (which has eigenvalues A2(A), ..., An(A4)),
we have

A2(A) 4 -+ 4+ Ar(A) = tr(A Ly).

On the other hand, if v is a unit vector in the orthogonal complement of V'
in V, we see from (1.53) that

A (A) > v* Av.

Adding the two inequalities we obtain the claim. O
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Specialising Proposition 1.3.4 to the case when V is a coordinate sub-
space (i.e., the span of k of the basis vectors ey, ..., e,), we conclude the
Schur-Horn inequalities
>\n—k+1(A) +oeeet /\TL(A) < Qiyiy + o Gy

S A(A) + -+ Ak(4)
for any 1 < 4y < --- < i < n, where ai1,a99,...,a,, are the diagonal
entries of A.

(1.60)

Exercise 1.3.2. Show that the inequalities (1.60) are equivalent to the
assertion that the diagonal entries diag(A) = (a11, a2, ..., any,) lies in the
permutahedron of A\i(A),..., \,(A), defined as the convex hull of the n!
permutations of (A1(A),..., A\, (A4)) in R™.

Remark 1.3.5. It is a theorem of Schur and Horn [Ho1954] that these are
the complete set of inequalities connecting the diagonal entries diag(A) =
(a11,a22,...,an,) of a Hermitian matrix to its spectrum. To put it an-
other way, the image of any coadjoint orbit O4 := {UAU* : U € U(n)}
of a matrix A with a given spectrum Aq,..., A\, under the diagonal map
diag : A — diag(A) is the permutahedron of Aj,...,\,. Note that the
vertices of this permutahedron can be attained by considering the diagonal
matrices inside this coadjoint orbit, whose entries are then a permutation of
the eigenvalues. One can interpret this diagonal map diag as the moment
map associated with the conjugation action of the standard maximal torus
of U(n) (i.e., the diagonal unitary matrices) on the coadjoint orbit. When
viewed in this fashion, the Schur-Horn theorem can be viewed as the special
case of the more general Atiyah convexity theorem [At1982] (also proven
independently by Guillemin and Sternberg [GuSt1982]) in symplectic ge-
ometry. Indeed, the topic of eigenvalues of Hermitian matrices turns out to
be quite profitably viewed as a question in symplectic geometry (and also
in algebraic geometry, particularly when viewed through the machinery of
geometric invariant theory).

There is a simultaneous generalisation of Theorem 1.3.2 and Proposition
1.3.4:

Exercise 1.3.3 (Wielandt minimax formula). Let 1 < i3 < --- < i < n
be integers. Define a partial flag to be a nested collection V4 C --- C Vj
of subspaces of C™ such that dim(V;) = i; for all 1 < j < k. Define
the associated Schubert variety X (Vi,..., V) to be the collection of all k-
dimensional subspaces W such that dim(W N V;) > j. Show that for any
n X n matrix A,

Ny (A 4+ N, (A) = s inf tr(A ).
L (A) L (4) vl,.l.l.l,)vkwexélvll,...,vk) r(A lw)
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1.3.3. Eigenvalue inequalities. Using the above minimax formulae, we
can now quickly prove a variety of eigenvalue inequalities. The basic idea is
to exploit the linearity relationship

(1.61) v*(A+ B)v =v*Av + v*Bv
for any unit vector v, and more generally,
(1.62) tr((A+ B) ly) =tr(A |v) + tr(B |v)

for any subspace V.

For instance, as mentioned before, the inequality (1.54) follows imme-
diately from (1.53) and (1.61). Similarly, for the Ky Fan inequality (1.56),
one observes from (1.62) and Proposition 1.3.4 that

tr((A+ B) lw) < tr(A4 lw) + M(B) + -+ + Ax(B)

for any k-dimensional subspace W. Substituting this into Proposition 1.3.4
gives the claim. If one uses Exercise 1.3.3 instead of Proposition 1.3.4, one
obtains the more general Lidskii inequality

Aiy(A+B)+ -+ A\, (A+ B)

(1.63) <A (A) 4+ X (A) + M (B) + -+ M\(B)

forany 1 <iy < -+ <1 <n.

In a similar spirit, using the inequality
[v*Bo| < ||Bllop = max(|A1(B)], [An(B)])

for unit vectors v, combined with (1.61) and (1.57), we obtain the eigenvalue
stability inequality

(1.64) [Ai(A+ B) = Ai(A)] < [Bllop,

thus the spectrum of A + B is close to that of A if B is small in operator
norm. In particular, we see that the map A — \;(A) is Lipschitz continuous
on the space of Hermitian matrices, for fixed 1 < i < n.

More generally, suppose one wants to establish the Weyl inequality
(1.55). From (1.57) that it suffices to show that every ¢ + j — 1-dimensional
subspace V contains a unit vector v such that

V(A + B < M(A) + \(B).

But from (1.57), one can find a subspace U of codimension ¢ — 1 such that
v*Av < \;(A) for all unit vectors v in U, and a subspace W of codimension
j — 1 such that v*Bv < A\;(B) for all unit vectors v in W. The intersection
UNW has codimension at most ¢+ j —2 and so has a non-trivial intersection
with V; and the claim follows.
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Remark 1.3.6. More generally, one can generate an eigenvalue inequal-
ity whenever the intersection numbers of three Schubert varieties of com-
patible dimensions is non-zero; see [HeR01995]. In fact, this generates
a complete set of inequalities; see [Klyachko]. One can in fact restrict
attention to those varieties whose intersection number is exactly one; see
[KnTaWo2004|. Finally, in those cases, the fact that the intersection is
one can be proven by entirely elementary means (based on the standard
inequalities relating the dimension of two subspaces V, W to their intersec-
tion VN W and sum V + W); see [BeCoDyLiTi2010]. As a consequence,
the methods in this section can, in principle, be used to derive all possible
eigenvalue inequalities for sums of Hermitian matrices.

Exercise 1.3.4. Verify the inequalities (1.63) and (1.55) by hand in the
case when A and B commute (and are thus simultaneously diagonalisable),
without the use of minimax formulae.

Exercise 1.3.5. Establish the dual Lidskii inequality
Mii(A+B)+---+ X, (A+B) > XN (A) + -+ X, (4)
+ A—kt1(B) + -+ A(B)
for any 1 <4y < --- <1 < n and the dual Weyl inequality
Netjon(A+ B) 2 Ni(4) + Xy (B)
whenever 1 <i,5,94+j —n < n.
Exercise 1.3.6. Use the Lidskii inequality to establish the more general

inequality

n n n

D eidi(A+B) <) cidi(A) + ) ¢ hi(B)
i=1 i=1 i=1

whenever cj,...,¢, > 0, and ¢] > --- > ¢} > 0 is the decreasing rearrange-

ment of ci,...,c,. (Hint: Express ¢; as the integral of I(¢; > \) as A

runs from 0 to infinity. For each fixed A, apply (1.63).) Combine this with

Holder’s inequality to conclude the p- Weilandt-Hoffman inequality
(1.65) I(Ai(A+ B) = Ai(A))izillen < 1Bl se

1

for any 1 < p < oo, where
n
(@il = O laif”)!/?
i=1

is the usual ¢’ norm (with the usual convention that |(a;)ji_|le> :=
SUP; <j<p |ai]), and

(1.66) [Bllsr := [[(Ai(B))izller

is the p-Schatten norm of B.
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Exercise 1.3.7. Show that the p-Schatten norms are indeed norms on the
space of Hermitian matrices for every 1 < p < oo.

Exercise 1.3.8. Show that for any 1 < p < oo and any Hermitian matrix
A = (aj)1<i,j<n, one has

(1.67) I(aii)ic llem < | Allse-
Exercise 1.3.9. Establish the non-commutative Holder inequality
| tr(AB)| < [|Alls# || B| g’

whenever 1 < p,p’ < oo with 1/p+1/p’ =1, and A, B are n x n Hermitian
matrices. (Hint: Diagonalise one of the matrices and use the preceding
exercise. )

The most important'* p-Schatten norms are the oo-Schatten norm
| Al|see = ||Allop, Which is just the operator norm, and the 2-Schatten norm
[Allg2 = (37, Mi(A)?)Y/2, which is also the Frobenius norm (or Hilbert-
Schmidt norm)

1452 = |Allp = tr(AA")Y? = ZZ!%! )72

=1 j=1

where a;; are the coefficients of A. Thus we see that the p = 2 case of the
Weilandt-Hoffman inequality can be written as

(1.65) >IN+ B) ~ A < Bl

We will give an alternate proof of this inequality, based on eigenvalue defor-
mation, in the next section.

1.3.4. Eigenvalue deformation. From the Weyl inequality (1.64), we
know that the eigenvalue maps A — \;(A) are Lipschitz continuous on
Hermitian matrices (and thus also on real symmetric matrices). It turns
out that we can obtain better regularity, provided that we avoid repeated
eigenvalues. Fortunately, repeated eigenvalues are rare:

Exercise 1.3.10 (Dimension count). Suppose that n > 2. Show that the
space of Hermitian matrices with at least one repeated eigenvalue has codi-
mension 3 in the space of all Hermitian matrices, and the space of real sym-
metric matrices with at least one repeated eigenvalue has codimension 2 in
the space of all real symmetric matrices. (When n = 1, repeated eigenvalues
of course do not occur.)

14The 1-Schatten norm S, also known as the nuclear norm or trace class norm, is important
in a number of applications, such as matrix completion, but will not be used in this text.
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Let us say that a Hermitian matrix has simple spectrum if it has no re-
peated eigenvalues. We thus see from the above exercise and (1.64) that the
set of Hermitian matrices with simple spectrum forms an open dense set in
the space of all Hermitian matrices, and similarly for real symmetric matri-
ces; thus simple spectrum is the generic behaviour of such matrices. Indeed,
the unexpectedly high codimension of the non-simple matrices (naively, one
would expect a codimension 1 set for a collision between, say, A\;(A) and
Ai+1(A)) suggests a repulsion phenomenon: because it is unexpectedly rare
for eigenvalues to be equal, there must be some “force” that “repels” eigen-
values of Hermitian (and to a lesser extent, real symmetric) matrices from
getting too close to each other. We now develop some machinery to make
this intuition more precise.

We first observe that when A has simple spectrum, the zeroes of the
characteristic polynomial A — det(A — AI) are simple (i.e., the polynomial
has nonzero derivative at those zeroes). From this and the inverse function
theorem, we see that each of the eigenvalue maps A — \;(A) are smooth
on the region where A has simple spectrum. Because the eigenvectors u;(A)
are determined (up to phase) by the equations (A — \;(A)I)u;(A) = 0 and
u;(A)*u;(A) = 1, another application of the inverse function theorem tells
us that we can (locally'®) select the maps A + u;(A) to also be smooth.

Now suppose that A = A(t) depends smoothly on a time variable ¢, so
that (when A has simple spectrum) the eigenvalues \;(t) = \;(A(t)) and
eigenvectors u;(t) = wu;(A(t)) also depend smoothly on t. We can then
differentiate the equations

(1'69) Aui = )\iui
and
(1.70) uiu; =1

to obtain various equations of motion for A\; and u; in terms of the derivatives
of A.

Let’s see how this works. Taking first derivatives of (1.69), (1.70) using
the product rule, we obtain

(1.71) Aul + Au; = )\lul + At
and
(1.72) Ui u; 4+ uju; = 0.

15There may be topological obstructions to smoothly selecting these vectors globally, but
this will not concern us here as we will be performing a local analysis only. In some applications,
it is more convenient not to work with the u;(A) at all due to their phase ambiguity, and work
instead with the spectral projections P;(A) := u;(A)u;(A)*, which do not have this ambiguity.
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The equation (1.72) simplifies to @fu; = 0, thus 4; is orthogonal to u,.
Taking inner products of (1.71) with u;, we conclude the Hadamard first
variation formula

(1.73) /\Z = U:A’LLZ

This can already be used to give alternate proofs of various eigenvalue
identities. For instance, if we apply this to A(t) := A + ¢t B, we see that
d
EAi(A +tB) =uij(A+tB)"Bu;(A+tB)
whenever A +tB has simple spectrum. The right-hand side can be bounded
in magnitude by | B||op, and so we see that the map ¢t — X\;(A + tB) is
Lipschitz continuous, with Lipschitz constant ||B||o, whenever A + tB has
simple spectrum, which happens for generic A, B (and all t) by Exercise
1.3.10. By the fundamental theorem of calculus, we thus conclude (1.64).

Exercise 1.3.11. Use a similar argument to the one above to establish
(1.68) without using minimax formulae or Lidskii’s inequality.

Exercise 1.3.12. Use a similar argument to the one above to deduce Lid-
skii’s inequality (1.63) from Proposition 1.3.4 rather than Exercise 1.3.3.

One can also compute the second derivative of eigenvalues:

Exercise 1.3.13. Suppose that A = A(t) depends smoothly on ¢t. By
differentiating (1.71) and (1.72), establish the Hadamard second variation
formula™®

2

dt?

|u;Auk]2

1.74

A = u’,;Auk + 2 Z
J#k
whenever A has simple spectrum and 1 < k < n.
Remark 1.3.7. In the proof of the four moment theorem [TaVu2009b] on
the fine spacing of Wigner matrices, one also needs the variation formulae
for the third, fourth, and fifth derivatives of the eigenvalues (the first four
derivatives match up with the four moments mentioned in the theorem, and
the fifth derivative is needed to control error terms). Fortunately, one does
not need the precise formulae for these derivatives (which, as one can imag-
ine, are quite complicated), but only their general form, and in particular,
an upper bound for these derivatives in terms of more easily computable
quantities.

161f one interprets the second derivative of the eigenvalues as being proportional to a “force”
on those eigenvalues (in analogy with Newton’s second law), (1.74) is asserting that each eigenvalue
A; “repels” the other eigenvalues Aj by exerting a force that is inversely proportional to their
separation (and also proportional to the square of the matrix coefficient of A in the eigenbasis).
See [Ta2009b, §1.5] for more discussion.
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1.3.5. Minors. In the previous sections, we perturbed n x n Hermitian
matrices A = A, by adding a (small) n x n Hermitian correction matrix B
to them to form a new n x n Hermitian matrix A + B. Another important
way to perturb a matrix is to pass to a principal minor, for instance to the
top left n — 1 x n — 1 minor A,_1 of A,,. There is an important relationship
between the eigenvalues of the two matrices:

Exercise 1.3.14 (Cauchy interlacing law). For any n x n Hermitian matrix
A, with top left n — 1 x n — 1 minor A,,_1, then

(1.75) Ait1(An) < Xi(An—1) < Xi(4y)

for all 1 <i < n. (Hint: Use the Courant-Fischer minimax theorem, The-
orem 1.3.2.) Show furthermore that the space of A, for which equality
holds in one of the inequalities in (1.75) has codimension 2 (for Hermitian
matrices) or 1 (for real symmetric matrices).

Remark 1.3.8. If one takes successive minors A,_1,A,_o,..., A7 of an
n x n Hermitian matrix A,, and computes their spectra, then (1.75) shows
that this triangular array of numbers forms a pattern known as a Gelfand-
Tsetlin pattern.

One can obtain a more precise formula for the eigenvalues of A,, in terms
of those for A,,_1:

Exercise 1.3.15 (Eigenvalue equation). Let A,, be an n x n Hermitian
matrix with top left n — 1 x n — 1 minor A,_1. Suppose that A\ is an
eigenvalue of A4,, distinct from all the eigenvalues of A,,_; (and thus simple,
by (1.75)). Show that

\uj An 1 .X |2
1.76 E = Upn — A
( ) An 1 - A -

where a,, is the bottom right entry of A, and X = (am)? 11 e Cn g
the right column of A (minus the bottom entry). (Hint: Expand out the
eigenvalue equation A,u = Au into the C"~! and C components.) Note the
similarities between (1.76) and (1.74).

Observe that the function A — Z" ! % is a rational function
of A which is increasing away from the elgeilvalues of A,_1, where it has a
pole (except in the rare case when the inner product w;j_1(A,—1)* X vanishes,
in which case it can have a removable singularity). By graphing this function
one can see that the interlacing formula (1.75) can also be interpreted as a

manifestation of the intermediate value theorem.

The identity (1.76) suggests that under typical circumstances, an eigen-
value A of A,, can only get close to an eigenvalue \;(A,—1) if the associated
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inner product wj(A,—1)*X is small. This type of observation is useful to
achieve eigenvalue repulsion—to show that it is unlikely that the gap be-
tween two adjacent eigenvalues is small. We shall see examples of this in
later sections.

1.3.6. Singular values. The theory of eigenvalues of n x n Hermitian
matrices has an analogue in the theory of singular values of p x n non-
Hermitian matrices. We first begin with the counterpart to the spectral
theorem, namely the singular value decomposition.

Theorem 1.3.9 (Singular value decomposition). Let 0 < p < n, and let A
be a linear transformation from an n-dimensional complex Hilbert space U
to a p-dimensional complex Hilbert space V. (In particular, A could be an
p X n matriz with complex entries, viewed as a linear transformation from
C" to CP.) Then there exist non-negative real numbers

o1(A) 2"'ZUP(A) >0

(known as the singular values of A) and orthonormal sets ui(A), ..., uy(A) €
U and vi(A),...,vp(A) € V (known as singular vectors of A), such that

Auj = ojvj;  A'vj = ojuy
for all 1 < j < p, where we abbreviate u; = u;(A), ete.

Furthermore, Au = 0 whenever u is orthogonal to all ui(A),..., uy(A).

We adopt the convention that o;(A) = 0 for ¢ > p. The above theorem
only applies to matrices with at least as many rows as columns, but one
can also extend the definition to matrices with more columns than rows
by adopting the convention o;(A*) := 0;(A) (it is easy to check that this
extension is consistent on square matrices). All of the results below extend
(with minor modifications) to the case when there are more columns than
rows, but we have not displayed those extensions here in order to simplify
the notation.

Proof. We induct on p. The claim is vacuous for p = 0, so suppose that
p > 1 and that the claim has already been proven for p — 1.

We follow a similar strategy to the proof of Theorem 1.3.1. We may
assume that A is not identically zero, as the claim is obvious otherwise. The
function u ~ ||Aul|? is continuous on the unit sphere of U, so there exists
a unit vector u; which maximises this quantity. If we set o1 := ||Auq|| > 0,
one easily verifies that u; is a critical point of the map u + ||Au||? — o?||ul|?,
which then implies that A*Auy = U%ul. Thus, if we set vy := Auy /o1, then
Auy = o1v; and A*v; = oqpuy. This implies that A maps the orthogonal
complement uf of u; in U to the orthogonal complement vf of v1 in V.
By induction hypothesis, the restriction of A to ui (and vi) then admits
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a singular value decomposition with singular values o9 > --- > 0, > 0 and
singular vectors ua,...,u, € uf-, V2,...,Up € vf- with the stated properties.
By construction we see that o9,...,0, are less than or equal to o1. If we
now adjoin o1, u1,v; to the other singular values and vectors we obtain the
claim. O

Exercise 1.3.16. Show that the singular values o1(A4) > --- > 0,(A4) > 0
of a p x n matrix A are unique. If we have o1(A4) > --- > g,(A4) > 0, show
that the singular vectors are unique up to rotation by a complex phase.

By construction (and the above uniqueness claim) we see that o;(UAV)
= 0;(A) whenever A is a p x n matrix, U is a unitary p X p matrix, and V' is
a unitary n x n matrix. Thus the singular spectrum of a matrix is invariant
under left and right unitary transformations.

Exercise 1.3.17. If A is a p x n complex matrix for some 1 < p < n, show
that the augmented matrix

~ 0 A

= ( 0 O)

is a p+n x p+n Hermitian matrix whose eigenvalues consist of 01 (4), ...,
+0,(A), together with n — p copies of the eigenvalue zero. (This generalises
Exercise 2.3.17.) What is the relationship between the singular vectors of A
and the eigenvectors of A?

Exercise 1.3.18. If A is an n X n Hermitian matrix, show that the singular
values 01(A),...,0n(A) of A are simply the absolute values |A;(A)l,...,
[An(A)| of A, arranged in descending order. Show that the same claim
also holds when A is a normal matriz (that is, when A commutes with
its adjoint). What is the relationship between the singular vectors and
eigenvectors of A?

Remark 1.3.10. When A is not normal, the relationship between eigen-
values and singular values is more subtle. We will discuss this point in later
sections.

Exercise 1.3.19. If A is a p X n complex matrix for some 1 < p < n,
show that AA* has eigenvalues o1(A4)?,...,0,(A)?, and A*A has eigenval-
ues 01(A)?,...,0,(A)? together with n — p copies of the eigenvalue zero.
Based on this observation, give an alternate proof of the singular value de-
composition theorem using the spectral theorem for (positive semi-definite)
Hermitian matrices.

Exercise 1.3.20. Show that the rank of a p x n matrix is equal to the
number of non-zero singular values.
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Exercise 1.3.21. Let A be a p X n complex matrix for some 1 < p < n.
Establish the Courant-Fischer minimax formula
(1.77) oi(A) = sup inf |Av

dim(V)=i v€V;|v]=1

for all 1 < ¢ < p, where the supremum ranges over all subspaces of C™ of
dimension 1.

One can use the above exercises to deduce many inequalities about sin-
gular values from analogous ones about eigenvalues. We give some examples
below.

Exercise 1.3.22. Let A, B be p x n complex matrices for some 1 < p < n.
(i) Establish the Weyl inequality o;4j—1(A+B) < 0,(A)+0;(B) when-
ever 1 <¢,5,1+5—1<np.
(ii) Establish the Lidskii inequality
oiy(A+B)+ -+ 0y (A+ B) <0, (A) + - + 0, (A)

+01(B) + -+ ox(B)
whenever 1 <i; < ... <1 <p.

(iii) Show that for any 1 < k < p, the map A — o1(A) + --- + o (A)
defines a norm on the space CP*" of complex p X n matrices (this
norm is known as the k™" Ky Fan norm).

(iv) Establish the Weyl inequality |o;(A + B) — 0;(A)| < || B||op for all
1 <1< p.

(v) More generally, establish the ¢-Weilandt-Hoffman inequality
[(0i(A + B) — 0i(A))1<i<plleg < [|Bl|se for any 1 < g < oo, where

[Bllss == |[(03(B))1<i<plleg is the g-Schatten norm of B. (Note
that this is consistent with the previous definition of the Schatten
norms.)

(vi) Show that the g-Schatten norm is indeed a norm on CP*" for any
1<g<oc.
(vii) If A" is formed by removing one row from A, show that \;11(A) <
Xi(A) < Xi(A) for all 1 < < p.
(viii) If p < n and A’ is formed by removing one column from A, show
that A\iy1(A) < A(A) < N(A4) for all 1 < 4 < p and A\p(A') <
Ap(A). What changes when p = n?

Exercise 1.3.23. Let A be a p X n complex matrix for some 1 < p < n.
Observe that the linear transformation A : C™ — CP naturally induces a
linear transformation A" : AF C" — A* CP from k-forms on C" to k-forms
on CP. We give /\k C" the structure of a Hilbert space by declaring the basic
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forms e;; A... Aej for 1 <1y < --- < i, < n to be orthonormal. For any
1 < k < p, show that the operator norm of A" is equal to o1(A)...o(A).

Exercise 1.3.24. Let A be a p X n matrix for some 1 < p < n, let B be
a r X p matrix, and let C be a n X s matrix for some r,s > 1. Show that
0i(BA) < ||B|lopoi(A) and 0;(AC) < 0;(A)||Cl|op for any 1 <i < p.

Exercise 1.3.25. Let A = (a;j)1<i<p:1<j<n be a p x n matrix for some 1 <
p <m,letiy,...,ir € {1,...,p} be distinct, and let ji,...,jx € {1,...,n}
be distinct. Show that

@iyjy + o Qg < UI(A) e Uk(A)'
Using this, show that if ji,...,j, € {1,...,n} are distinct, then
(@i, Yimillez < 1Al o
for every 1 < g < oo0.
Exercise 1.3.26. Establish the Holder inequality
| tr(AB")| < [|All 54| Bl g

whenever A, B are p x n complex matrices and 1 < ¢, ¢’ < oo are such that
1/q+1/¢ =1.
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Random matrices
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2.1. Concentration of measure

Suppose we have a large number of scalar random variables Xi,..., X,,
which each have bounded size on average (e.g., their mean and variance could
be O(1)). What can one then say about their sum S, :== X; +---+ X,,? If
each individual summand X; varies in an interval of size O(1), then their sum
of course varies in an interval of size O(n). However, a remarkable phenom-
enon, known as concentration of measure, asserts that assuming a sufficient
amount of independence between the component variables X1, ..., X, this
sum sharply concentrates in a much narrower range, typically in an interval
of size O(y/n). This phenomenon is quantified by a variety of large devi-
ation inequalities that give upper bounds (often exponential in nature) on
the probability that such a combined random variable deviates significantly
from its mean. The same phenomenon applies not only to linear expressions
such as S, = X1 + -+ X,,, but more generally to non-linear combinations
F(Xy,...,X,) of such variables, provided that the non-linear function F' is
sufficiently regular (in particular, if it is Lipschitz, either separately in each
variable, or jointly in all variables).

The basic intuition here is that it is difficult for a large number of in-
dependent variables X1,..., X, to “work together” to simultaneously pull
a sum X + ---+ X, or a more general combination F(X,...,X,) too far
away from its mean. Independence here is the key; concentration of measure
results typically fail if the X; are too highly correlated with each other.

There are many applications of the concentration of measure phenome-
non, but we will focus on a specific application which is useful in the ran-
dom matrix theory topics we will be studying, namely on controlling the
behaviour of random n-dimensional vectors with independent components,
and in particular, on the distance between such random vectors and a given
subspace.

Once one has a sufficient amount of independence, the concentration
of measure tends to be sub-Gaussian in nature; thus the probability that
one is at least A\ standard deviations from the mean tends to drop off like
C exp(—c)?) for some C,¢ > 0. In particular, one is O(log'/?n) standard
deviations from the mean with high probability, and O(logl/ 2+ p) standard
deviations from the mean with overwhelming probability. Indeed, concen-
tration of measure is our primary tool for ensuring that various events hold
with overwhelming probability (other moment methods can give high prob-
ability, but have difficulty ensuring overwhelming probability).

This is only a brief introduction to the concentration of measure phe-
nomenon. A systematic study of this topic can be found in [Le2001].
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2.1.1. Linear combinations, and the moment method. We begin
with the simple setting of studying a sum S, := X; + --- + X,, of ran-
dom variables. As we shall see, these linear sums are particularly amenable
to the moment method, though to use the more powerful moments, we will
require more powerful independence assumptions (and, naturally, we will
need more moments to be finite or bounded). As such, we will take the op-
portunity to use this topic (large deviation inequalities for sums of random
variables) to give a tour of the moment method, which we will return to
when we consider the analogous questions for the bulk spectral distribution
of random matrices.

In this section we shall concern ourselves primarily with bounded ran-
dom variables; in the next section we describe the basic truncation method
that can allow us to extend from the bounded case to the unbounded case
(assuming suitable decay hypotheses).

The zeroth moment method (1.22) gives a crude upper bound when S
is non-zero,

(21) P(S, £0) < 3 P(X; £0)
=1

but in most cases this bound is worse than the trivial bound P(S,, # 0) < 1.
This bound, however, will be useful when performing the truncation trick,
which we will discuss below.

The first moment method is somewhat better, giving the bound

n
E|S,| <) E|X|
=1

which, when combined with Markov’s inequality (1.14), gives the rather
weak large deviation inequality

1 n
. > < - ;|-
(22) P(|Sa| > ) < A;Ew

As weak as this bound is, this bound is sometimes sharp. For instance, if
the X; are all equal to a single signed Bernoulli variable X € {—1,+1}, then
S, = nX. In particular, in this case we have |S,| = n, and so (2.2) is sharp
when A = n. The problem here is a complete lack of independence; the
X; are all simultaneously positive or simultaneously negative, causing huge
fluctuations in the value of S,,.

Informally, one can view (2.2) as the assertion that S, typically has size

S = O(ZI, |Xi).



58 2. Random matrices

The first moment method also shows that

n
ES, =) EX;
i=1
and so we can normalise out the means using the identity

n
Sn—ES, =Y X, - EX,.
i=1
Replacing the X; by X; — EX; (and S,, by S, — ES,,) we may thus assume
for simplicity that all the X; have mean zero.
Now we consider what the second moment method gives us. We square
S, and take expectations to obtain

n n
ElS.)* =) Y EXX].

i=1 j=1
If we assume that the X; are pairwise independent (in addition to having

mean zero), then EXZ-Y]- vanishes unless 7 = j, in which case this expectation
is equal to Var(X;). We thus have

(2.3) Var(S,) = ) Var(X;)
=1

which, when combined with Chebyshev’s inequality (1.26) (and the mean
zero normalisation), yields the large deviation inequality

1 n
(2.4) P(|Sa| > A) < 3 Y Var(X;).
i=1
Without the normalisation that the X; have mean zero, we obtain

1 n
(2.5) P(|S, — BSy| > A) < 15 Y Var(X)).
=1

Informally, this is the assertion that S,, typically has size S, = ES, +
O((327, Var(X;))'/?), if we have pairwise independence. Note also that
we do not need the full strength of the pairwise independence assumption;
the slightly weaker hypothesis of being pairwise uncorrelated’ would have
sufficed.

The inequality (2.5) is sharp in two ways. First, we cannot expect any
significant concentration in any range narrower than the standard deviation
O((327_, Var(X;))'/?), as this would likely contradict (2.3). Second, the
quadratic-type decay in A in (2.5) is sharp given the pairwise independence

!In other words, we only need to assume that the covariances Cov(X;,X;) = E(X; —
EX;)(X; —EXj) vanish for all distinct i, j.
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hypothesis. For instance, suppose that n = 2™—1, and that X; := (—1)%"Y,
where Y is drawn uniformly at random from the cube {0,1}", and ay, ..., a,
are an enumeration of the non-zero elements of {0,1}". Then a little Fourier
analysis shows that each X; for 1 < j < n has mean zero, variance 1, and
are pairwise independent in j; but S is equal to (n+1)I(Y = 0) — 1, which is
equal to n with probability 1/(n + 1); this is despite the standard deviation
of S being just v/n. This shows that (2.5) is essentially (i.e., up to constants)
sharp here when A = n.

Now we turn to higher moments. Let us assume that the X; are nor-
malised to have mean zero and variance at most 1, and are also almost surely
bounded in magnitude by some? K: |X;| < K. To simplify the exposition
very slightly we will assume that the X; are real-valued; the complex-valued
case is very analogous (and can also be deduced from the real-valued case)
and is left to the reader.

Let us also assume that the X7, ..., X,, are k-wise independent for some
even positive integer k. With this assumption, we can now estimate the k™
moment

ES.)F= > EX;,..X.

1<in,.in<n
To compute the expectation of the product, we can use the k-wise indepen-
dence, but we need to divide into cases (analogous to the i # j and i = j
cases in the second moment calculation above) depending on how various
indices are repeated. If one of the X;; only appear once, then the entire
expectation is zero (since X;, has mean zero), so we may assume that each
of the X;, appear at least twice. In particular, there are at most & /2 distinct
X which appear. If exactly k/2 such terms appear, then from the unit vari-
ance assumption we see that the expectation has magnitude at most 1; more
generally, if k/2 — r terms appear, then from the unit variance assumption
and the upper bound by K we see that the expectation has magnitude at

most K?7. This leads to the upper bound

k/2
E[S.|F <) KN,
r=0
where N, is the number of ways one can select integers i1, ..., i, in {1,...,n}
such that each i; appears at least twice, and such that exactly k/2—r integers
appear.

We are now faced with the purely combinatorial problem of estimating
N,. We will use a somewhat crude bound. There are (k/;‘_r) <nk/2=7/(k/2—

r)! ways to choose k/2 — r integers from {1,...,n}. Each of the integers i,

2Note that we must have K > 1 to be consistent with the unit variance hypothesis.
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has to come from one of these k/2 — r integers, leading to the crude bound
k/2—r

n k
N, < 1(k/2—1)

(k/2 —1)!
which after using a crude form n! > n"e™" of Stirling’s formula (see Section
1.2) gives

N, < (en)k/Q—r(k/z)k/Q-l-r’

and so b
2

K2k

S5l < (enb/2)* 3 0E)

If we make the mild assumption

(2.6) K% <n/k,

then from the geometric series formula we conclude that
E|S, ¥ < 2(enk/2)"/?

(say), which leads to the large deviation inequality

A

This should be compared with (2.2), (2.5). As k increases, the rate of decay
in the A parameter improves, but to compensate for this, the range that .S,
concentrates in grows slowly, to O(v/nk) rather than O(y/n).

k
(2.7) P(|S0] > M/7) §2< 6’“/2) .

Remark 2.1.1. Note how it was important here that & was even. Odd mo-
ments, such as ES3, can be estimated, but due to the lack of the absolute
value sign, these moments do not give much usable control on the distri-
bution of the S,. One could be more careful in the combinatorial counting
than was done here, but the net effect of such care is only to improve the

explicit constants such as y/e/2 appearing in the above bounds.

Now suppose that the Xi,...,X,, are not just k-wise independent for
any fixed k, but are in fact jointly independent. Then we can apply (2.7)
for any k obeying (2.6). We can optimise in k by setting v/nk to be a small
multiple of \, and conclude the Gaussian-type bound?

(2.8) P(|S,] > A\/n) < Cexp(—c)?)

for some absolute constants C, ¢ > 0, provided that || < ¢y/n/VK for some
small ¢. Thus we see that while control of each individual moment E|S,,|*
only gives polynomial decay in A, by using all the moments simultaneously
one can obtain square-exponential decay (i.e., sub-Gaussian type decay).

3Note that the bound (2.8) is trivial for |A| 3> \/n, so we may assume that X is small compared
to this quantity.
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By using Stirling’s formula (see Exercise 1.2.2) one can show that the
quadratic decay in (2.8) cannot be improved; see Exercise 2.1.2 below.

It was a little complicated to manage such large moments E|S,[F. A
slicker way to proceed (but one which exploits the joint independence and
commutativity more strongly) is to work instead with the ezponential mo-
ments Eexp(tSy), which can be viewed as a sort of generating function for
the power moments. A useful lemma in this regard is

Lemma 2.1.2 (Hoeffding’s lemma). Let X be a scalar variable taking values
in an interval [a,b]. Then for any t >0,

(2.9) Ee'® < e'®X (1+ O(#*Var(X) exp(O(t(b — a)))) .
In particular,
(2.10) Ee'® < e®X exp (O(#*(b— a)?)) .

Proof. It suffices to prove the first inequality, as the second then follows
using the bound Var(X) < (b— a)? and from various elementary estimates.

By subtracting the mean from X, a,b we may normalise E(X) = 0. By
dividing X, a, b (and multiplying ¢ to balance) we may assume that b—a = 1,
which implies that X = O(1). We then have the Taylor expansion

N =14+tX 4+ 0(t? X2 exp(O(t)))
which, on taking expectations, gives

Ee'* =14 O(t*Var(X) exp(O(t))
and the claim follows. O
Exercise 2.1.1. Show that the O(¢2(b—a)?) factor in (2.10) can be replaced

with #2(b — a)?/8, and that this is sharp. (Hint: Use Jensen’s inequality,
Exercise 1.1.8.)

We now have the fundamental Chernoff bound:

Theorem 2.1.3 (Chernoff inequality). Let Xy, ..., X,, be independent scalar
random variables with |X;| < K almost surely, with mean p; and variance

a2. Then for any X\ > 0, one has

(2.11) P(|S, — pt| > Ao) < Cmax(exp(—cA?), exp(—cAo/K))

for some absolute constants C,c > 0, where p = > iy and 0% =

2
Z?:1 o;-

Proof. By taking real and imaginary parts we may assume that the X; are
real. By subtracting off the mean (and adjusting K appropriately) we may
assume that p; = 0 (and so p = 0); dividing the X; (and o;) through by K
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we may assume that K = 1. By symmetry it then suffices to establish the
upper tail estimate

P(S, > Ao) < Cmax(exp(—cA?), exp(—cAo))
(with slightly different constants C,c).
To do this, we shall first compute the exponential moments

Eexp(tSy)

where 0 <t <1 is a real parameter to be optimised later. Expanding out
the exponential and using the independence hypothesis, we conclude that

Eexp(tS,) = H Eexp(tX;).
i=1

To compute Eexp(tX), we use the hypothesis that | X| < 1 and (2.9) to
obtain
Eexp(tX) < exp(O(t?0?)).
Thus we have
E exp(tS,) = exp(O(t*0?)),
and thus by Markov’s inequality (1.13)
P(S, > \o) < exp(O(t?0?) — tAo).

If we optimise this in ¢, subject to the constraint 0 < ¢ < 1, we obtain the
claim. 0

Informally, the Chernoff inequality asserts that S, is sharply concen-
trated in the range u + O(o). The bounds here are fairly sharp, at least
when A is not too large:

Exercise 2.1.2. Let 0 < p < 1/2 be fixed independently of n, and let
X1,..., X, beiid copies of a Bernoulli random variable that equals 1 with
probability p, thus yu; = p and 0? = p(1 — p), and so u = np and % =
np(1l — p). Using Stirling’s formula (Section 1.2), show that

P(|S, — il = Ao) > cexp(—C\?)

for some absolute constants C', ¢ > 0 and all A < co. What happens when A
is much larger than o?

Exercise 2.1.3. Show that the term exp(—cAo/K) in (2.11) can be replaced
with (AK/o)~*/K (which is superior when AK > o). (Hint: Allow t to
exceed 1.) Compare this with the results of Exercise 2.1.2.
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Exercise 2.1.4 (Hoeffding’s inequality). Let Xi,..., X, be independent
real variables, with X; taking values in an interval [a;,b;], and let S,, :=
X1+ -+ X,,. Show that one has

P(|S, — ES,| > Ao) < Cexp(—cA?)

for some absolute constants C, ¢ > 0, where 02 := > | |b; — a;]*.

Remark 2.1.4. As we can see, the exponential moment method is very
slick compared to the power moment method. Unfortunately, due to its
reliance on the identity eXtY = eXeY, this method relies very strongly on
commutativity of the underlying variables, and as such will not be as useful
when dealing with non-commutative random variables, and in particular,
with random matrices®. Nevertheless, we will still be able to apply the
Chernoff bound to good effect to various components of random matrices,

such as rows or columns of such matrices.

The full assumption of joint independence is not completely necessary
for Chernoff-type bounds to be present. It suffices to have a martingale
difference sequence, in which each X; can depend on the preceding variables
X1,...,X;—1, but which always has mean zero even when the preceding
variables are conditioned out. More precisely, we have Azuma’s inequality:

Theorem 2.1.5 (Azuma’s inequality). Let Xi,...,X, be a sequence of
scalar random variables with |X;| < 1 almost surely. Assume also that we
have® the martingale difference property

(2.12) E(X;|X1,...,Xi-1) =0

almost surely for all i = 1,...,n. Then for any A > 0, the sum S, :=
X1+ -+ X, obeys the large deviation inequality

(2.13) P(|Su| > Av/n) < Cexp(—cA?)

for some absolute constants C,c > 0.

A typical example of S, here is a dependent random walk, in which the
magnitude and probabilities of the i*" step are allowed to depend on the
outcome of the preceding ¢ — 1 steps, but where the mean of each step is
always fixed to be zero.

Proof. Again, we can reduce to the case when the X; are real, and it suffices
to establish the upper tail estimate

P(S, > A\/n) < Cexp(—c)?).

4See, however, Section 3.2 for a partial resolution of this issue.

SHere we assume the existence of a suitable disintegration in order to define the conditional
expectation, though in fact it is possible to state and prove Azuma’s inequality without this
disintegration.
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Note that |S,,| < n almost surely, so we may assume, without loss of gener-
ality, that A < /n.

Once again, we consider the exponential moment E exp(tS,) for some
parameter t > 0. We write S,, = Sp,_1 + X,,, so that

Eexp(tSy,) = Eexp(tS,—_1) exp(tX,,).

We do not have independence between S,_; and X,, so cannot split the
expectation as in the proof of Chernoff’s inequality. Nevertheless, we can use
conditional expectation as a substitute. We can rewrite the above expression
as

EE(exp(tSp—1) exp(tXn)| X1, ..., Xn_1).

The quantity S,,—1 is deterministic once we condition on Xi,..., X,_1, and
so we can pull it out of the conditional expectation:
E exp(tSp—1)E(exp(tXy)| X1, ..., Xn_1).
Applying (2.10) to the conditional expectation, we have
E(exp(tX,)|X1,...,Xn 1) < exp(O(t?))
and
E exp(tSy,) < exp(O(t*))E exp(tS,_1).
Iterating this argument gives
E exp(tS,) < exp(O(nt?))
and thus by Markov’s inequality (1.13),
P(S, > \/n) < exp(O(nt?) — tAv/n).
Optimising in t gives the claim. O

Exercise 2.1.5. Suppose we replace the hypothesis | X;| < 1 in Azuma’s
inequality with the more general hypothesis | X;| < ¢; for some scalars ¢; > 0.
Show that we still have (2.13), but with v/n replaced by (31, ¢Z)'/2.

Remark 2.1.6. The exponential moment method is also used frequently in
harmonic analysis to deal with lacunary exponential sums, or sums involv-
ing Radamacher functions (which are the analogue of lacunary exponential
sums for characteristic 2). Examples here include Khintchine’s inequality
(and the closely related Kahane’s inequality); see e.g. [Wo02003], [Kal985].
The exponential moment method also combines very well with log-Sobolev
inequalities, as we shall see below (basically because the logarithm inverts
the exponential), as well as with the closely related hypercontractivity in-
equalities.
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2.1.2. The truncation method. To summarise the discussion so far, we
have identified a number of large deviation inequalities to control a sum
Spn=X14+ -+ X,

(i) The zeroth moment method bound (2.1), which requires no moment
assumptions on the X; but is only useful when X; is usually zero,
and has no decay in A.

(ii) The first moment method bound (2.2), which only requires absolute
integrability on the X;, but has only a linear decay in A.

(iii) The second moment method bound (2.5), which requires second
moment and pairwise independence bounds on X;, and gives a qua-
dratic decay in A.

(iv) Higher moment bounds (2.7), which require boundedness and k-
wise independence, and give a k"™ power decay in A (or quadratic-
exponential decay, after optimising in k).

(v) Exponential moment bounds such as (2.11) or (2.13), which require
boundedness and joint independence (or martingale behaviour),
and give quadratic-exponential decay in .

We thus see that the bounds with the strongest decay in A require
strong boundedness and independence hypotheses. However, one can of-
ten partially extend these strong results from the case of bounded random
variables to that of unbounded random variables (provided one still has suf-
ficient control on the decay of these variables) by a simple but fundamental
trick, known as the truncation method. The basic idea here is to take each
random variable X; and split it as X; = X; <y + X; >, where N is a trun-
cation parameter to be optimised later (possibly in a manner depending on
n),

Xi,SN = XZI(|XZ’ § N)
is the restriction of X; to the event that |X;| < N (thus X; <y vanishes
when Xj is too large), and

Xi,>N = XZI(‘XZ’ > N)

is the complementary event. One can similarly split S, = S, <y + Sp >N
where

Sn,gN = X1,§N +---+ Xn,gN
and

Sp>y=X1>N+ -+ XN
The idea is then to estimate the tail of S, <y and S, ~n by two different
means. With S, <, the point is that the variables X; <x have been made
bounded by fiat, and so the more powerful large deviation inequalities can
now be put into play. With S, -, in contrast, the underlying variables
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X >n are certainly not bounded, but they tend to have small zeroth and
first moments, and so the bounds based on those moment methods tend to
be powerful here®.

Let us begin with a simple application of this method.

Theorem 2.1.7 (Weak law of large numbers). Let X1, Xo, ... be iid scalar
random variables with X; = X for all i, where X 1is absolutely integrable.
Then Sy /n converges in probability to EX .

Proof. By subtracting EX from X we may assume, without loss of general-
ity, that X has mean zero. Our task is then to show that P(|S,| > en) = o(1)
for all fixed € > 0.

If X has finite variance, then the claim follows from (2.5). If X has
infinite variance, we cannot apply (2.5) directly, but we may perform the
truncation method as follows. Let N be a large parameter to be chosen
later, and split X; = X; <y + Xi>n, Spn = Sp<nv + Sp>ny (and X =
X<n + Xsn) as discussed above. The variable X<y is bounded and thus
has bounded variance; also, from the dominated convergence theorem we
see that |[EX<y| < e/4 (say) if N is large enough. From (2.5) we conclude
that

P(|Sn<n| > en/2) = o(1)
(where the rate of decay here depends on N and ¢). Meanwhile, to deal
with the tail X< we use (2.2) to conclude that
2
P(|Sn>n] 2 en/2) < —E|X>n|.

But by the dominated convergence theorem (or monotone convergence the-
orem), we may make E| X y| as small as we please (say, smaller than § > 0)
by taking N large enough. Summing, we conclude that

2
P(|Sh| 2 en) = =0 + o(1);
€
since 0 is arbitrary, we obtain the claim. ([

A more sophisticated variant of this argument” gives

Theorem 2.1.8 (Strong law of large numbers). Let X, Xo, ... be iid scalar
random variables with X; = X for all i, where X is absolutely integrable.
Then Sy /n converges almost surely to EX.

6Readers who are familiar with harmonic analysis may recognise this type of “divide and
conquer argument” as an interpolation argument; see [Ta2010, §1.11].
"See [Ta2009, §1.4] for a more detailed discussion of this argument.
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Proof. We may assume, without loss of generality, that X is real, since the
complex case then follows by splitting into real and imaginary parts. By
splitting X into positive and negative parts, we may furthermore assume
that X is non-negative®. In particular, S, is now non-decreasing in n.

Next, we apply a sparsification trick. Let 0 < ¢ < 1. Suppose that we
knew that, almost surely, S, /n, converged to EX for n = n,, of the form
N := [(1 + €)™] for some integer m. Then, for all other values of n, we
see that asymptotically, S, /n can only fluctuate by a multiplicative factor
of 1 + O(e), thanks to the monotone nature of S,. Because of this and
countable additivity, we see that it suffices to show that S,,, /n.,, converges
to EX. Actually, it will be enough to show that almost surely, one has
|Sn,, /nm — EX| < e for all but finitely many m.

Fix €. As before, we split X = X5 n,, + X<p,, and Sy, = Sp,..>N,, +
Shm,<Nm, but with the twist that we now allow N = N,, to depend on
m. Then for Ny, large enough we have |[EX<y, — EX| < ¢/2 (say), by
dominated convergence. Applying (2.5) as before, we see that

C
P(|Sn,, <Ny /M = BX| > €) < —E[X<n, [

m
for some C: depending only on ¢ (the exact value is not important here).
To handle the tail, we will not use the first moment bound (2.2) as done
previously, but now turn to the zeroth-moment bound (2.1) to obtain

P(Snm7>Nm # 0) S nmP(’X’ > Nm)7

summing, we conclude
C
P(|Sn,./nm — BX| > &) < —=E[ X<, |[* + P (X > Npn).
m

Applying the Borel-Cantelli lemma (Exercise 1.1.1), we see that we will be
done as long as we can choose IV, such that

oo

1

> —E|[Xp, |’
N,

m=1

and -
> nwP(|X] > Np)
m=1

are both finite. But this can be accomplished by setting NV, := n,, and
interchanging the sum and expectations (writing P(|X| > Ny,,) as EI(| X| >
Ny,)) and using the lacunary nature of the n,, (which, in particular, shows
that > . _xnm = O(X) and Y _ynt = O(X7!) for any X >

0). O

80f course, by doing so, we can no longer normalise X to have mean zero, but for us the
non-negativity will be more convenient than the zero mean property.
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To give another illustration of the truncation method, we extend a ver-
sion of the Chernoff bound to the sub-Gaussian case.

Proposition 2.1.9. Let X;,...,X,, = X be iid copies of a sub-Gaussian
random variable X, thus X obeys a bound of the form

(2.14) P(|X| >t) < Cexp(—ct?)
for all t > 0 and some C,c > 0. Let S, := X1+ ---+ X,. Then for any
sufficiently large A (independent of n) we have

P(|S, —nEX| > An) < Cyexp(—can)

for some constants Ca,ca depending on A,C,c. Furthermore, ca grows
linearly in A as A — .

Proof. By subtracting the mean from X we may normalise EX = 0. We
perform a dyadic decomposition

[o.¢]
Xi=Xio+ Z Xim
m=1
where X; o := X;I(X; <1) and X, := X I(2m1 < X; < 2™). We similarly
split

Sn = Sn,O + i Sn,m
m=1

where Sy, = Z?:l Xim. Then by the union bound and the pigeonhole
principle we have

[e.e]
P(|Sy| > An) < > P <\5n,m\ > WAH)?@
m=0

(say). Each Xj,, is clearly bounded in magnitude by 2™; from the sub-
Gaussian hypothesis one can also verify that the mean and variance of X; ,,
are at most C’ exp(—c’2?™) for some C’,¢ > 0. If A is large enough, an
application of the Chernoff bound (2.11) (or more precisely, the refinement
in Exercise 2.1.3) then gives (after some computation)

P(|Snm| > 27" An) < C'27™ exp(—c An)
(say) for some C’, ¢ > 0, and the claim follows. O

Exercise 2.1.6. Show that the hypothesis that A is sufficiently large can
be replaced by the hypothesis that A > 0 is independent of n. Hint: There
are several approaches available. One can adapt the above proof; one can
modify the proof of the Chernoff inequality directly; or one can figure out a
way to deduce the small A case from the large A case.
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Exercise 2.1.7. Show that the sub-Gaussian hypothesis can be generalised
to a sub-exponential tail hypothesis

P(|X|>1t) < Cexp(—ct?)

provided that p > 1. Show that the result also extends to the case 0 < p < 1,
except with the exponent exp(—can) replaced by exp(—canP~¢) for some
e > 0. (I do not know if the € loss can be removed, but it is easy to see
that one cannot hope to do much better than this, just by considering the
probability that X (say) is already as large as An.)

2.1.3. Lipschitz combinations. In the preceding discussion, we had only

considered the linear combination Xi,...,X,, of independent variables
X1,...,Xn. Now we consider more general combinations F'(X), where we
write X = (X1,...,X,) for short. Of course, to get any non-trivial re-

sults we must make some regularity hypotheses on F. It turns out that
a particularly useful class of a regularity hypothesis here is a Lipschitz
hypothesis—that small variations in X lead to small variations in F(X).
A simple example of this is McDiarmid’s inequality:

Theorem 2.1.10 (McDiarmid’s inequality). Let X1, ..., X,, be independent
random variables taking values in ranges Ri,..., Ry, and let F': Ry X ... X
R,, — C be a function with the property that if one freezes all but the ith
coordinate of F(x1,...,xy) for some 1 < i < n, then F only fluctuates by
at most ¢; > 0, thus

|F (21, @i, Tiy Tig1s - - - Tn)

— F(x1,.. ., i1, g1, - xn)| <

for all zj € X;, o € X; for 1 <j <n. Then for any A > 0, one has

P(|F(X) — BF(X)] > Ao) < C exp(—cX?)

for some absolute constants C,c > 0, where 02 := Sy c?.

Proof. We may assume that F' is real. By symmetry, it suffices to show the
one-sided estimate
(2.15) P(F(X) - EF(X) > \o?) < Cexp(—c)?).

To compute this quantity, we again use the exponential moment method.
Let t > 0 be a parameter to be chosen later, and consider the exponential
moment

(2.16) Eexp(tF(X)).

To compute this, let us condition X1,...,X,,_1 to be fixed, and look at the
conditional expectation

E(exp(tF(X))| X1, . .., Xn_1).
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We can simplify this as
E(exp(tY)|X1,..., Xp—1) exp(tE(F(X)|X1,..., Xn-1))
where
Y =FX)-EFX)|X1,...,Xn-1)-
For Xq,...,X,_1 fixed, tY only fluctuates by at most tc, and has mean
zero. Applying (2.10), we conclude that

E(exp(tY)| X1, ..., Xn 1) < exp(O(t3c2)).

Integrating out the conditioning, we see that we have upper bounded (2.16)
by

exp(O(t2c2))E exp(t(E(F(X)| X1, ..., Xn 1))
We observe that (E(F(X)|X1,...,Xp—1) is a function F,,_1(X1,..., X,—1)
of X1,...,X,_1, where F},_; obeys the same hypotheses as F' (but for n —1
instead of n). We can then iterate the above computation n times and
eventually upper bound (2.16) by

exp(Y_ () exp(EF (X)),

i=1
which we rearrange as
Eexp(t(F(X) — EF(X))) < exp(O(£%02)),
and thus by Markov’s inequality (1.13)
P(F(X)—EF(X) > \o) < exp(O(t?0?) — tAo).
Optimising in ¢ then gives the claim. U

Exercise 2.1.8. Show that McDiarmid’s inequality implies Hoeffding’s in-
equality (Exercise 2.1.4).

Remark 2.1.11. One can view McDiarmid’s inequality as a tensorisation
of Hoeffding’s lemma, as it leverages the latter lemma for a single random
variable to establish an analogous result for n random variables. It is possible
to apply this tensorisation trick to random variables taking values in more
sophisticated metric spaces than an interval [a, b], leading to a class of con-
centration of measure inequalities known as transportation cost-information
inequalities, which will not be discussed here.

The most powerful concentration of measure results, though, do not
just exploit Lipschitz type behaviour in each individual variable, but joint
Lipschitz behaviour. Let us first give a classical instance of this, in the
special case when the X1, ..., X,, are Gaussian variables. A key property of
Gaussian variables is that any linear combination of independent Gaussians
is again an independent Gaussian:
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Exercise 2.1.9. Let Xi,...,X,, be independent real Gaussian variables
with X; = N(,ui,af)R, and let ¢q,...,c, be real constants. Show that
a1 X1+ -+ e, X, is a real Gaussian with mean Z?zl c;b; and variance
iy lei?a?.

Show that the same claims also hold with complex Gaussians and com-
plex constants c;.

Exercise 2.1.10 (Rotation invariance). Let X = (Xi,...,X,) be an R"-
valued random variable, where Xi,...,X,, = N(0,1)r are iid real Gaus-
sians. Show that for any orthogonal matrix U € O(n), UX = X.

Show that the same claim holds for complex Gaussians (so X is now
C"-valued), and with the orthogonal group O(n) replaced by the unitary
group U(n).

Theorem 2.1.12 (Gaussian concentration inequality for Lipschitz func-
tions). Let X1,...,X, = N(0,1)r be iid real Gaussian variables, and let
F :R"™ — R be a 1-Lipschitz function (i.e., |F(z) — F(y)| < |z — y| for all
x,y € R", where we use the Euclidean metric on R™). Then for any A one
has

P(|F(X) —~ BF(X)] > ) < Cexp(—cA?)

for some absolute constants C,c > 0.

Proof. We use the following elegant argument of Maurey and Pisier. By
subtracting a constant from F', we may normalise EF'(X) = 0. By symmetry
it then suffices to show the upper tail estimate

P(F(X) > )\) < Cexp(—c)?).

By smoothing F' slightly we may assume that F' is smooth, since the general
case then follows from a limiting argument. In particular, the Lipschitz
bound on F' now implies the gradient estimate

(2.17) IVF(x)] <1
for all z € R™.

Once again, we use the exponential moment method. It will suffice to
show that
Eexp(tF (X)) < exp(Ct?)
for some constant C > 0 and all £ > 0, as the claim follows from Markov’s
inequality (1.13) and optimisation in ¢ as in previous arguments.

To exploit the Lipschitz nature of F', we will need to introduce a second
copy of F(X). Let Y be an independent copy of X. Since EF(Y) = 0, we
see from Jensen’s inequality (Exercise 1.1.8) that

Eexp(—tF(Y)) > 1
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and thus (by independence of X and Y)
Eexp(tF (X)) < Eexp(t(F(X) — F(Y))).

It is tempting to use the fundamental theorem of calculus along a line seg-
ment,
d

F(X) - F(Y) = /01 SE((L= )Y +X) dr

to estimate F'(X)— F(Y), but it turns out for technical reasons to be better
to use a circular arc instead,

w/2
F(X)-F(Y)= / iF(Y cosf + X sin6) db.
0

de
The reason for this is that Xy := Y cosf + X sinf is another Gaussian
random variable equivalent to X, as is its derivative X} := —Y sin§+X cos 6

(by Exercise 2.1.9); furthermore, and crucially, these two random variables
are independent (by Exercise 2.1.10).

To exploit this, we first use Jensen’s inequality (Exercise 1.1.8) to bound
2 [7/? td
exp(t(F(X) — F(Y))) < = / exp <7T——F(X9)> df.
m™Jo 2 d9
Applying the chain rule and taking expectations, we have
2 [7/2 mt ,
Eexp(t(F(X) - F(Y))) < — Eexp EVF(XQ) - Xy ) db.
T Jo

Let us condition Xy to be fixed, then X = X; applying Exercise 2.1.9
and (2.17), we conclude that Z'VF(Xp) - X/ is normally distributed with
standard deviation at most %t As such we have

t
Eexp <%VF(X9) : Xé) < exp(Ct?)
for some absolute constant C; integrating out the conditioning on Xy we
obtain the claim. O
Exercise 2.1.11. Show that Theorem 2.1.12 is equivalent to the inequality
P(X € A)P(X ¢ Ay) < Cexp(—cA?)

holding for all A > 0 and all measurable sets A, where X = (X1,...,X,,) is
an R™-valued random variable with iid Gaussian components Xy, ..., X,
N(0,1)r, and Ay is the A\-neighbourhood of A.

Now we give a powerful concentration inequality of Talagrand, which we
will rely heavily on later in this text.
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Theorem 2.1.13 (Talagrand concentration inequality). Let K > 0, and let
X1,..., Xy be independent complex variables with | X;| < K for all 1 <i <
n. Let F : C" — R be a 1-Lipschitz convex function (where we identify C™
with R?™ for the purposes of defining “Lipschitz” and “convex”). Then for
any A one has

(2.18) P(|F(X) - MF(X)| > AK) < Cexp(—c\?)
and
(2.19) P(|F(X) —EF(X)| > AK) < Cexp(—c)\?)

for some absolute constants C,c > 0, where MF(X) is a median of F(X).

We now prove the theorem, following the remarkable argument of Tala-
grand [Ta1995].

By dividing through by K we may normalise K = 1. X now takes values
in the convex set 2" C C", where {2 is the unit disk in C. It will suffice to
establish the inequality

1
2.20 E d(X,A)?) < ————
for any convex set A in Q" and some absolute constant ¢ > 0, where d(X, A)
is the Euclidean distance between X and A. Indeed, if one obtains this
estimate, then one has

P(F(X) < 2)P(F(X) > y) < exp(—clz — y|?)

for any y > z (as can be seen by applying (2.20) to the convex set A :=
{z € Q" : F(2) < z}). Applying this inequality of one of z,y equal to the
median MF(X) of F(X) yields (2.18), which in turn implies that

EF(X)=MF(X)+ O(1),
which then gives (2.19).

We would like to establish (2.20) by induction on dimension n. In
the case when Xi,...,X,, are Bernoulli variables, this can be done, see
e.g., [Ta2010b, §1.5]. In the general case, it turns out that in order to
close the induction properly, one must strengthen (2.20) by replacing the
Euclidean distance d(X, A) by an essentially larger quantity, which I will
call the combinatorial distance d.(X,A) from X to A. For each vector
z=1(z1,...,2p) € C" and w = (wy,...,wy,) € {0,1}", we say that w sup-
ports z if z; is non-zero only when w; is non-zero. Define the combinatorial
support Ua(X) of A relative to X to be all the vectors in {0,1}" that sup-
port at least one vector in A — X. Define the combinatorial hull V4(X)
of A relative to X to be the convex hull of Us(X), and then define the
combinatorial distance d.(X, A) to be the distance between V4(X) and the
origin.
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Lemma 2.1.14 (Combinatorial distance controls Euclidean distance). Let
A be a convex subset of Q. Then d(X,A) < 2d.(X, A).

Proof. Suppose d.(X,A) < r. Then there exists a convex combination
t = (t1,...,ty) of elements w € Ux(X) C {0,1}"™ which has magnitude at
most 7. For each such w € Uy(X), we can find a vector z,, € X — A supported
by w. As A, X both lie in Q", every coefficient of z,, has magnitude at most 2,
and is thus bounded in magnitude by twice the corresponding coefficient of
w. If we then let z; be the convex combination of the z, indicated by t, then
the magnitude of each coefficient of z; is bounded by twice the corresponding
coefficient of ¢, and so |z| < 2r. On the other hand, as A is convex, z lies
in X — A, and so d(X, A) < 2r. The claim follows. O

Thus to show (2.20) it suffices (after a modification of the constant c)
to show that
1

(2.21) E exp(cd.(X, A)?) < PXCA)

We first verify the one-dimensional case. In this case, d.(X, A) equals
1 when X ¢ A, and 0 otherwise, and the claim follows from elementary
calculus (for ¢ small enough).

Now suppose that n > 1 and the claim has already been proven for n—1.
We write X = (X, X,,), and let Ax, = {2/ € Q"1 : (¢/,X,) € A} be a
slice of A. We also let B := {2/ € Q"1 : (2/,t) € A for some t € Q}. We
have the following basic inequality:

Lemma 2.1.15. For any 0 < A <1, we have

de(X,A)2 < (1 = N2+ Mdo(X', Ax,)2 4+ (1 = N)de(X', B)%
Proof. Observe that Ua(X) contains both Us,, (X') x {0} and Up(X') x
{1}, and so by convexity, V4(X) contains (At + (1 — A\)u,1 — A) whenever

t € Vay, (X') and u € Vp(X'). The claim then follows from Pythagoras’
theorem and the Cauchy-Schwarz inequality. O

Let us now freeze X, and consider the conditional expectation
E(exp(cdo(X, A)?)|X,).

Using the above lemma (with some A depending on X, to be chosen later),
we may bound the left-hand side of (2.21) by

e(1—)\)2 edo (X, 2 cde(X',B)2\1—
e (1-X) E((ed (X", Ax,,) ))\(ed (X',B) )1 )\’Xn)

)
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applying Holder’s inequality and the induction hypothesis (2.21), we can
bound this by

(122 1
P(X' € Ay, [X, P P(X' € B X,)i>

which we can rearrange as

1 c(1-X)2, -\
P(X' €B)° "
where r := P(X' € Ax,|X,)/P(X’' € B) (here we note that the event
X' € B is independent of X,,). Note that 0 < r < 1. We then apply the
elementary inequality

which can be verified by elementary calculus if ¢ is small enough (in fact one
can take ¢ = 1/4). We conclude that

E(exp(cda(X, A)2)[X,) < 5 <_P<X/6Axnwxn>>

P(X' e B) P(X' e B)
Taking expectations in n we conclude that
1 P(X € 4)
E d(X, AN < — (22 =V )
(eXp(C ( ) )))_P(XIGB)< P(XIEB)>

Using the inequality z(2 — z) < 1 with x := % we conclude (2.21) as

desired.

The above argument was elementary, but rather “magical” in nature.
Let us now give a somewhat different argument of Ledoux [Le1995], based
on log-Sobolev inequalities, which gives the upper tail bound

(2.22) P(F(X)—EF(X) > MAK) < Cexp(—c)A?),

but curiously does not give the lower tail bound®.

Once again we can normalise K = 1. By regularising ' we may assume
that F' is smooth. The first step is to establish the following log-Sobolev
inequality:

Lemma 2.1.16 (Log-Sobolev inequality). Let F' : C" — R be a smooth
convex function. Then

EF(X)e"™) < (Eef X)) (log EeP X)) + CEF X |V F(X))|?

for some absolute constant C (independent of n ).

9The situation is not symmetric, due to the convexity hypothesis on F.
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Remark 2.1.17. If one sets f := ef/? and normalises Ef(X)? = 1, this
inequality becomes

E|f(X)|*log |f(X)|* < 4CE|Vf(X)[?

which more closely resembles the classical log-Sobolev inequality (see
[Gr1975] or [Fe1969]). The constant C here can in fact be taken to be
2; see [Le1995].

Proof. We first establish the 1-dimensional case. If we let Y be an inde-
pendent copy of X, observe that the left-hand side can be rewritten as

LB((F(X) = F)(eF ) = ) + (BF (X)) (BeP ).

From Jensen’s inequality (Exercise 1.1.8), EF(X) < logEef ) so it will
suffice to show that

E((F(X) — F(Y))(eFX) — FM)Y)) < 2CEe X |V (X))

From convexity of ' (and hence of ef') and the bounded nature of X,Y, we
have

F(X) - F(Y) = O(VF(X)])
and
') _ YY) = O(|VE(X)]ef X))
when F(X) > F(Y), which leads to
(F(X) = F(Y) (") = e"0))) = 0(" M|V F(X)P)
in this case. Similarly, when F'(X) < F(Y) (swapping X and Y). The claim
follows.

To show the general case, we induct on n (keeping care to ensure that the
constant C' does not change in this induction process). Write X = (X', X,,),
where X’ := (X1,..., X,—-1). From induction hypothesis, we have

E(F(X)e"™|X,) < f(Xn)e! ) 4 CE(" |V F(X)?|Xn)

where V' is the n — 1-dimensional gradient and f(X,,) := log E(e¥)|X,,).
Taking expectations, we conclude that

(2.23) EF(X)e"X) < Ef(X,)e’ ) 4 RNV F(X)2.

From the convexity of F' and Holder’s inequality we see that f is also convex,
and Eef(Xn) = Eef(X), By the n = 1 case already established, we have

(2.24)  Ef(X,)ef &) < (B X)) (log Ee" X)) + CEef X 7(X,) 2.
Now, by the chain rule
S| (X)) P = e T B O F,, (X))
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where F, is the derivative of F' in the x,, direction (where (z1,...,x,) are
the usual coordinates for R™). Applying Cauchy-Schwarz, we conclude

ef(Xn)‘f/(Xn)‘Q < EeF(X)|Fxn(X)’2-
Inserting this into (2.23), (2.24) we close the induction. O

Now let F' be convex and 1-Lipschitz. Applying the above lemma to tF
for any ¢ > 0, we conclude that

EtF(X)etF(X) < (EetF(X))(log EetF(X)) + Ct2E6tF(X);
setting H(t) := Eef(X) | we can rewrite this as a differential inequality
tH'(t) < H(t)log H(t) + Ct*H(t)

which we can rewrite as

d 1
—(-logH <C.
(S log H(1) < C

From Taylor expansion we see that
1
" log H(t) - EF(X)
as t — 0, and thus
1
n logH(t) <EF(X)+Ct
for any ¢t > 0. In other words,
Ee'’'X) < exp(tEF(X) + Ct?).
By Markov’s inequality (1.13), we conclude that
P(F(X)—EF(X) > \) < exp(Ct? — t\);
optimising in ¢ gives (2.22).
Remark 2.1.18. The same argument, starting with Gross’s log-Sobolev in-
equality for the Gaussian measure, gives the upper tail component of The-
orem 2.1.12, with no convexity hypothesis on F'. The situation is now sym-
metric with respect to reflections F' — —F', and so one obtains the lower
tail component as well. The method of obtaining concentration inequalities
from log-Sobolev inequalities (or related inequalities, such as Poincaré-type
inequalities) by combining the latter with the exponential moment method

is known as Herbst’s argument, and can be used to establish a number of
other functional inequalities of interest.

We now close with a simple corollary of the Talagrand concentration
inequality, which will be extremely useful in the sequel.
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Corollary 2.1.19 (Distance between random vector and a subspace). Let
X1,..., X, be independent complex-valued random variables with mean zero
and variance 1, and bounded almost surely in magnitude by K. Let V be a
subspace of C™ of dimension d. Then for any A > 0, one has

P(|d(X,V) = Vn —d| > AK) < Cexp(—c)?)

for some absolute constants C,c > 0.

Informally, this corollary asserts that the distance between a random
vector X and an arbitrary subspace V is typically equal to \/n — dim(V') +
O(1).

Proof. The function z — d(z, V) is convex and 1-Lipschitz. From Theorem
2.1.13, one has
P(|d(X,V) — Md(X,V)| > AK) < Cexp(—c\?).
To finish the argument, it then suffices to show that
Md(X,V)=+vVn—d+ O(K).
We begin with a second moment calculation. Observe that

d(X,V)? = |x(X)|* = Z pij XiXj,

1<7,5<n

where 7 is the orthogonal projection matrix to the complement V= of V,
and p;; are the components of 7. Taking expectations, we obtain

(2.25) Ed(X,V)* = ipii =tr(r) =n—d
=1

where the latter follows by representing 7 in terms of an orthonormal basis
of V£, This is close to what we need, but to finish the task we need to
obtain some concentration of d(X,V)? around its mean. For this, we write

dX, V) -BdX, V)2 = Y pi(XX;—6;)
1<i,j<n
where 6;; is the Kronecker delta. The summands here are pairwise uncorre-
lated for 1 <i < j <n, and the ¢ > j cases can be combined with the i < j
cases by symmetry. They are also pairwise independent (and hence pairwise
uncorrelated) for 1 < i = j < n. Each summand also has a variance of
O(K?). We thus have the variance bound

Var(d(X,V))) = O(K> 3 [py) + O(K> 3 [pul’) = O(K>(n — d)),
1<i<j<n 1<i<n

where the latter bound comes from representing 7 in terms of an orthonormal
basis of V+. From this, (2.25), and Chebyshev’s inequality (1.26), we see



2.2. The central limit theorem 79

that the median of d(X,V)? is equal to n — d + O(y/K2%(n — d)), which
implies on taking square roots that the median of d(X, V') is vn — d+O(K),
as desired. g

2.2. The central limit theorem

Consider the sum S,, := X1+ --+X,, of iid real random variables X1, ..., X,
= X of finite mean p and variance o2 for some o > 0. Then the sum S,
has mean nu and variance no?, and so (by Chebyshev’s inequality (1.26))
we expect S, to usually have size nu + O(y/no). To put it another way, if
we consider the normalised sum

(2.26) Zp =2 L

then Z,, has been normalised to have mean zero and variance 1, and is thus
usually of size O(1).

In Section 2.1, we were able to establish various tail bounds on Z,,. For
instance, from Chebyshev’s inequality (1.26) one has

(2.27) P(|Zn| > A) <272,

and if the original distribution X was bounded or sub-Gaussian, we had the
much stronger Chernoff bound

(2.28) P(|Z,] > \) < Cexp(—c)?)

for some absolute constants C,c > 0; in other words, the Z,, are uniformly
sub-Gaussian.

Now we look at the distribution of Z,,. The fundamental central limit
theorem tells us the asymptotic behaviour of this distribution:

Theorem 2.2.1 (Central limit theorem). Let X1,...,X,, = X be iid real
random variables of finite mean p and variance o for some o > 0, and
let Z,, be the normalised sum (2.26). Then as n — o0, Z, converges in
distribution to the standard normal distribution N(0,1)R.

Exercise 2.2.1. Show that Z, does not converge in probability or in the
almost sure sense (in the latter case, we view X7, Xo,... as an infinite se-
quence of iid random variables). (Hint: The intuition here is that for two
very different values n; < ng of n, the quantities Z,,, and Z,, are almost
independent of each other, since the bulk of the sum S, is determined by
those X,, with n > n;. Now make this intuition precise.)

Exercise 2.2.2. Use Stirling’s formula (Section 1.2) to verify the central
limit theorem in the case when X is a Bernoulli distribution, taking the
values 0 and 1 only. (This is a variant of Exercise 1.2.2 or Exercise 2.1.2. It
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is easy to see that once one does this, one can rescale and handle any other
two-valued distribution also.)

Exercise 2.2.3. Use Exercise 2.1.9 to verify the central limit theorem in
the case when X is Gaussian.

Note we are only discussing the case of real iid random variables. The
case of complex random variables (or more generally, vector-valued random
variables) is a little bit more complicated, and will be discussed later in this
section.

The central limit theorem (and its variants, which we discuss below)
are extremely useful tools in random matrix theory, in particular, through
the control they give on random walks (which arise naturally from linear
functionals of random matrices). But the central limit theorem can also be
viewed as a “commutative” analogue of various spectral results in random
matrix theory (in particular, we shall see in later sections that the Wigner
semicircle law can be viewed in some sense as a “non-commutative” or “free”
version of the central limit theorem). Because of this, the techniques used to
prove the central limit theorem can often be adapted to be useful in random
matrix theory. Because of this, we shall use this section to dwell on several
different proofs of the central limit theorem, as this provides a convenient
way to showcase some of the basic methods that we will encounter again (in
a more sophisticated form) when dealing with random matrices.

2.2.1. Reductions. We first record some simple reductions one can make
regarding the proof of the central limit theorem. Firstly, we observe scale
invariance: if the central limit theorem holds for one random variable X,
then it is easy to see that it also holds for a X + b for any real a, b with a # 0.
Because of this, one can normalise to the case when X has mean y = 0 and
variance 02 = 1, in which case Z, simplifies to

X4+ X,
(2.29) A i Y
NG

The other reduction we can make is truncation: to prove the central
limit theorem for arbitrary random variables X of finite mean and variance,
it suffices to verify the theorem for bounded random variables. To see this,
we first need a basic linearity principle:

Exercise 2.2.4 (Linearity of convergence). Let V be a finite-dimensional
real or complex vector space, X,,Y, be sequences of V-valued random vari-
ables (not necessarily independent), and let X, Y be another pair of V-valued
random variables. Let ¢, d, be scalars converging to c, d, respectively.
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(i) If X,, converges in distribution to X, and Y;, converges in distri-
bution to Y, and at least one of X,Y is deterministic, show that
cnXn + dn Yy converges in distribution to ¢X + dY.

(ii) If X, converges in probability to X, and Y, converges in probability
to Y, show that ¢, X,, +d, Y, converges in probability to cX +dY.

(iii) If X,, converges almost surely to X, and Y,, converges almost surely
Y, show that ¢, X,, + d,,Y,, converges almost surely to cX + dY.

Show that the first part of the exercise can fail if X, Y are not deterministic.

Now suppose that we have established the central limit theorem for
bounded random variables, and want to extend to the unbounded case.
Let X be an unbounded random variable, which we can normalise to have
mean zero and unit variance. Let N = N,, > 0 be a truncation parameter
depending on n which, as usual, we shall optimise later, and split X =
X<n + X5y in the usual fashion (X<y = XI(|X| < N); Xon = XI(|X] >
N)). Thus we have S,, = S, <n + Sp,>n as usual.

Let p<n, 02 5 be the mean and variance of the bounded random variable
X<n. As we are assuming that the central limit theorem is already true in
the bounded case, we know that if we fix IV to be independent of n, then

Zn,<N = Sn<N Z <N
= Vno<n
converges in distribution to N(0,1)r. By a diagonalisation argument, we
conclude that there exists a sequence N,, going (slowly) to infinity with n,
such that Z, <y, still converges in distribution to N(0,1)g.

For such a sequence, we see from dominated convergence that o<y,

converges to o = 1. As a consequence of this and Exercise 2.2.4, we see that

Sn,<N, — NU<N,
Jn

converges in distribution to N(0,1)g.

Meanwhile, from dominated convergence again, oy, converges to 0.
From this and (2.27) we see that

Sn,>N, = NHSN,
Vn
converges in distribution to 0. Finally, from linearity of expectation we have
p<nN, +psn, = p = 0. Summing (using Exercise 2.2.4), we obtain the claim.

Remark 2.2.2. The truncation reduction is not needed for some proofs of
the central limit (notably the Fourier-analytic proof), but is very convenient
for some of the other proofs that we will give here, and will also be used at
several places in later sections.
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By applying the scaling reduction after the truncation reduction, we
observe that to prove the central limit theorem, it suffices to do so for
random variables X which are bounded and which have mean zero and unit
variance. (Why is it important to perform the reductions in this order?)

2.2.2. The Fourier method. We now give the standard Fourier-analytic
proof of the central limit theorem. Given any real random variable X, we
introduce the characteristic function Fx : R — C, defined by the formula

(2.30) Fx(t) == Ee'X.
Equivalently, F'x is the Fourier transform of the probability measure px.

Example 2.2.3. The signed Bernoulli distribution has characteristic func-
tion F'(t) = cos(t).

Exercise 2.2.5. Show that the normal distribution N(u,c?)r has charac-
teristic function F(t) = eitte=o"1"/2,

More generally, for a random variable X taking values in a real vector
space R, we define the characteristic function Fy : R* — C by

(2.31) Fx(t) := Ee't™X

where - denotes the Euclidean inner product on RY. One can similarly
define the characteristic function on complex vector spaces C¢ by using the
complex inner product

(21,-++,2d) - (w1,. .., wq) := Re(z1W01 + - -+ + 24W0q)

(or equivalently, by identifying C? with R?? in the usual manner.)

More generally'?, one can define the characteristic function on any finite
dimensional real or complex vector space V, by identifying V' with R? or
ce.

The characteristic function is clearly bounded in magnitude by 1, and
equals 1 at the origin. By the Lebesgue dominated convergence theorem,
F’x is continuous in t.

Exercise 2.2.6 (Riemann-Lebesgue lemma). Show that if X is an abso-
lutely continuous random variable taking values in R? or C¢, then Fx (t) — 0
as t — co. Show that the claim can fail when the absolute continuity hy-
pothesis is dropped.

108trictly speaking, one either has to select an inner product on V to do this, or else make
the characteristic function defined on the dual space V* instead of on V itself; see for instance
[Ta2010, §1.12]. But we will not need to care about this subtlety in our applications.
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Exercise 2.2.7. Show that the characteristic function Fx of a random
variable X taking values in R? or C¢ is in fact uniformly continuous on its
domain.

Let X be a real random variable. If we Taylor expand e?X and formally
interchange the series and expectation, we arrive at the heuristic identity

o (i)
(2.32) Fx(t)=)_ TEX’“

k=0
which thus interprets the characteristic function of a real random variable
X as a kind of generating function for the moments. One rigorous version
of this identity is as follows.

Exercise 2.2.8 (Taylor expansion of characteristic function). Let X be a
real random variable with finite k*" moment for some & > 1. Show that
Fx is k times continuously differentiable, and one has the partial Taylor

expansion
k

(it) o k
Fx(t)=)_ TEX] + o(|t")
§=0
where o([t|*) is a quantity that goes to zero as t — 0, times [t|*. In particular,
we have _
& TR X
forall 0 <j < k.

Exercise 2.2.9. Establish (2.32) in the case that X is sub-Gaussian, and
show that the series converges locally uniformly in ¢.

Note that the characteristic function depends only on the distribution
of X: if X =Y, then Fx = Fy. The converse statement is true also: if
Fx = Fy, then X =Y. This follows from a more general (and useful) fact,
known as Lévy’s continuity theorem.

Theorem 2.2.4 (Lévy continuity theorem, special case). Let V' be a finite-
dimensional real or complex vector space, and let X,, be a sequence of V -
valued random variables, and let X be an additional V -valued random vari-
able. Then the following statements are equivalent:

(i) Fx, converges pointwise to Fx.

(ii) X, converges in distribution to X.

Proof. Without loss of generality, we may take V = R,

The implication of (i) from (ii) is immediate from (2.31) and the defini-
tion of convergence in distribution (see Definition 1.1.29), since the function
x + % is bounded continuous.
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Now suppose that (i) holds, and we wish to show that (ii) holds. By
Exercise 1.1.25(iv), it suffices to show that

Ep(X,) = Ep(X)

whenever ¢ : V — R is a continuous, compactly supported function. By
approximating ¢ uniformly by Schwartz functions (e.g., using the Stone-
Weierstrass theorem, see [Ta2010]), it suffices to show this for Schwartz
functions . But then we have the Fourier inversion formula

P = [ pe

where
1

o(t) == 2n)i /Rd o(x)e ™ de

is a Schwartz function, and is, in particular, absolutely integrable (see e.g.
[Ta2010, §1.12]). From the Fubini-Tonelli theorem, we thus have

(2.33) E¢(X) = | 9(0Fx, () di

R
and similarly for X. The claim now follows from the Lebesgue dominated
convergence theorem. O

Remark 2.2.5. Setting X,, := Y for all n, we see, in particular, the previous
claim that Fx = Fy if and only if X =Y. It is instructive to use the above
proof as a guide to prove this claim directly.

Exercise 2.2.10 (Lévy’s continuity theorem, full version). Let V be a finite-
dimensional real or complex vector space, and let X,, be a sequence of V-
valued random variables. Suppose that Fx, converges pointwise to a limit
F. Show that the following are equivalent:

(i) F is continuous at 0.
i) X, is a tight sequence.
(i) ght seq
(iii) F is the characteristic function of a V-valued random variable X
(possibly after extending the sample space).
(iv) X, converges in distribution to some V-valued random variable X

(possibly after extending the sample space).

Hint: To get from (ii) to the other conclusions, use Prokhorov’s theorem
(see Exercise 1.1.25) and Theorem 2.2.4. To get back to (ii) from (i), use
(2.33) for a suitable Schwartz function ¢. The other implications are easy
once Theorem 2.2.4 is in hand.

Remark 2.2.6. Lévy’s continuity theorem is very similar in spirit to Weyl’s
criterion in equidistribution theory (see e.g. [KulNi2006)).
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Exercise 2.2.11 (Esséen concentration inequality). Let X be a random
variable taking values in R%. Then for any r > 0, € > 0, show that

(2.34) sup P(|X — x| <7) < C’dvard/ |Fx(t)| dt
zoERA teR4:|t|<e/r

for some constant Cy. depending only on d and . (Hint: Use (2.33) for a
suitable Schwartz function ¢.) The left-hand side of (2.34) is known as the
small ball probability of X at radius 7.

In Fourier analysis, we learn that the Fourier transform is a particularly
well-suited tool for studying convolutions. The probability theory analogue
of this fact is that characteristic functions are a particularly well-suited tool
for studying sums of independent random variables. More precisely, we have

Exercise 2.2.12 (Fourier identities). Let V be a finite-dimensional real or
complex vector space, and let X,Y be independent random variables taking
values in V. Then

(2.35) Fxiy(t) = Fx(t)Fy(t)
for all t € V. Also, for any scalar ¢, one has
Fox(t) = Fx(ct)
and more generally, for any linear transformation T : V' — V', one has
Frx(t) = Fx(T"t).

Remark 2.2.7. Note that this identity (2.35), combined with Exercise 2.2.5
and Remark 2.2.5, gives a quick alternate proof of Exercise 2.1.9.

In particular, in the normalised setting (2.29), we have the simple rela-
tionship

(2.36) Fy (t) = Fx(t/v/n)"
that describes the characteristic function of Z,, in terms of that of X.

We now have enough machinery to give a quick proof of the central limit
theorem:

Proof of Theorem 2.2.1. We may normalise X to have mean zero and
variance 1. By Exercise 2.2.8, we thus have
Fx(t)=1—1/2+o(|t|*)
for sufficiently small ¢, or equivalently
Fx(t) = exp(—t*/2 + o([t]*))
for sufficiently small t. Applying (2.36), we conclude that
Fz, (t) — exp(—t?/2)



86 2. Random matrices

as n — oo for any fixed t. But by Exercise 2.2.5, exp(—t?/2) is the charac-
teristic function of the normal distribution N (0, 1)g. The claim now follows
from the Lévy continuity theorem. O

Exercise 2.2.13 (Vector-valued central limit theorem). Let X = (X1, ..., Xy)
be a random variable taking values in R% with finite second moment. Define

the covariance matriz (X) to be the d x d matrix ¥ whose ij' entry is
the covariance E(X; — E(X;))(X; — E(X})).

(i) Show that the covariance matrix is positive semi-definite real sym-
metric.

(ii) Conversely, given any positive definite real symmetric d x d matrix
Y and p € RY, show that the normal distribution N(u,¥)ga, given
by the absolutely continuous measure

1
e
((2m)? det 33)1/2
has mean p and covariance matrix ¥, and has a characteristic func-
tion given by

—(@—p) B @—)/2 g

F(t) _ eiu-te—t~2t/2‘

How would one define the normal distribution N (i, X)ga if 3 de-
generated to be merely positive semi-definite instead of positive

definite?
(iii) If S, =X, +---+ X, is the sum of n iid copies of )?, show that
S”;\/?—?“ converges in distribution to N (0, X(X))ga-

Exercise 2.2.14 (Complex central limit theorem). Let X be a complex
random variable of mean p € C, whose real and imaginary parts have vari-
ance 02/2 and covariance 0. Let Xi,..., X, = X be iid copies of X. Show
that as n — oo, the normalised sums (2.26) converge in distribution to the
standard complex Gaussian N (0, 1)c.

Exercise 2.2.15 (Lindeberg central limit theorem). Let X, X,... be a
sequence of independent (but not necessarily identically distributed) real
random variables, normalised to have mean zero and variance one. Assume
the (strong) Lindeberg condition

- BN 2
i lim sup - Z E[X;5 n[2 = 0
where X~ n := X;I(|X;| > N) is the truncation of X; to large values. Show

that as n — oo, % converges in distribution to N(0,1)r. (Hint:

Modify the truncation argument.)
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A more sophisticated version of the Fourier-analytic method gives a more
quantitative form of the central limit theorem, namely the Berry-Esséen
theorem.

Theorem 2.2.8 (Berry-Esséen theorem). Let X have mean zero, unit vari-
ance, and finite third moment. Let Z, := (X1 + - - + X,)/\/n, where
X1,...,X,, are iid copies of X. Then we have

1
(2.37) P(Z,<a)=P(G<a)+0 (E(E]X]?’))
uniformly for all a € R, where G = N(0,1)r, and the implied constant is
absolute.

Proof. (Optional) Write ¢ := E|X|?/y/n; our task is to show that
P(Z, <a)=P(G<a)+0(e)

for all a. We may of course assume that ¢ < 1, as the claim is trivial
otherwise.

Let ¢ > 0 be a small absolute constant to be chosen later. Let n: R —
R be a non-negative Schwartz function with total mass 1 whose Fourier
transform is supported in [—c, |, and let ¢ : R — R be the smoothed out
version of 1(_ g}, defined as

o@) = | 1nle = o) dy
Observe that ¢ is decreasing from 1 to 0.
We claim that it suffices to show that
(2.38) Ep(Z, —a) =Ep(G — a) + Oy ()

for every a, where the subscript means that the implied constant depends
on 7. Indeed, suppose that (2.38) held. Define

(2.39) p:=sup|P(Z, <a)—-P(G < a),

thus our task is to show that p = O(¢).

Let a be arbitrary, and let K > 0 be a large absolute constant to be
chosen later. We write

P(Z, <a) <Ep(Z, —a— Ke)
+E(1—¢(Z,—a—Ke)I(Z, < a)
and thus by (2.38)
P(Z, < a) <Ep(G—a— Ke)
+E(1 —¢o(Zp —a— Ke))I(Z, < a)+ Oy(e).
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Meanwhile, from (2.39) and an integration by parts we see that
E(1-¢(Z,—a—Ke)I(Z, <a)=E(1 —p(G—a—Ke))I(G < a)
+0((1 - p(—Ke))p).
From the bounded density of G and the rapid decrease of n we have
Ep(G—a—Ke)+E(1—p(G—a—Ke)I(G < a)
=P(G <a)+ 0, k(e).
Putting all this together, we see that
P(Z, <a) <P(G <a)+Oyr(e) +O((1 — p(—Ke))p).
A similar argument gives a lower bound
P(Zn <a) 2 P(G <a) — Oyk(e) — O(p(Ke)p),
and so
[P(Z, < a) — P(G < a)] < Oy.x(e) + O((1 - p(~K2))p) + O (Ke)p).
Taking suprema over a, we obtain
p < Opr(e) + O((1 — p(—=Ke))p) + O(p(Ke)p).

If K is large enough (depending on ¢), we can make 1 — p(—Ke¢) and ¢(K¢)
small, and thus absorb the latter two terms on the right-hand side into the
left-hand side. This gives the desired bound p = O(e).

It remains to establish (2.38). Applying (2.33), it suffices to show that
(240) || #OFa, ) = Fo(t) dtl < OGe).

Now we estimate each of the various expressions. Standard Fourier-analytic
computations show that

@(t) = i(—oo,(z] (t)ﬁ(t/&)

and that )
I cooa(t) =0 .
(~o0a)(t) = O(1 7 |t|)
Since 7 was supported in [—c, ¢/, it suffices to show that
Fy (t) — Fg(t
lt|<c/e 1+ ||

From Taylor expansion we have
2
X =1+itX — EXZ +O(Jt]*)1 X %)

for any t; taking expectations and using the definition of € we have

Fx(t) =1—1*/2+ O(eV/nt])
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and, in particular,
Fx(t) = exp(~t*/2 + O(ev/nlt|*))
if [t| < ¢/E|X|? and c is small enough. Applying (2.36), we conclude that
Fy, (t) = exp(—t*/2 + O(e[t]*))

if [t| < ce. Meanwhile, from Exercise 2.2.5 we have Fg(t) = exp(—t?/2).
Elementary calculus then gives us

|Fz, (1) = Fa(t)] < O(clt] exp(—t*/4))

(say) if ¢ is small enough. Inserting this bound into (2.41) we obtain the
claim. g

Exercise 2.2.16. Show that the error terms here are sharp (up to constants)
when X is a signed Bernoulli random variable.

2.2.3. The moment method. The above Fourier-analytic proof of the
central limit theorem is one of the quickest (and slickest) proofs available
for this theorem, and is accordingly the “standard” proof given in probability
textbooks. However, it relies quite heavily on the Fourier-analytic identi-
ties in Exercise 2.2.12, which in turn are extremely dependent on both the
commutative nature of the situation (as it uses the identity eAT8 = e4eb)
and on the independence of the situation (as it uses identities of the form
E(e4eP) = (Ee?)(EeP)). When we turn to random matrix theory, we will
often lose (or be forced to modify) one or both of these properties, which
can make it much more difficult (though not always impossible!!) to apply
Fourier analysis. Because of this, it is also important to look for non-Fourier
based methods to prove results such as the central limit theorem. These
methods often lead to proofs that are lengthier and more technical than the
Fourier proofs, but also tend to be more robust, and in particular, can often
be extended to random matrix theory situations. Thus both the Fourier and
non-Fourier proofs will be of importance in this text.

The most elementary (but still remarkably effective) method available
in this regard is the moment method, which we have already used in Section
2.1. This method to understand the distribution of a random variable X
via its moments X*. In principle, this method is equivalent to the Fourier
method, through the identity (2.32); but in practice, the moment method
proofs tend to look somewhat different than the Fourier-analytic ones, and
it is often more apparent how to modify them to non-independent or non-
commutative settings.

113ee, in particular, [Ly2009] for a recent successful application of Fourier-analytic methods
to random matrix theory.
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We first need an analogue of the Lévy continuity theorem. Here we en-
counter a technical issue: whereas the Fourier phases x — e* were bounded,
the moment functions z — ¥ become unbounded at infinity. However, one
can deal with this issue as long as one has sufficient decay:

Theorem 2.2.9 (Carleman continuity theorem). Let X, be a sequence of
uniformly sub-Gaussian real random variables, and let X be another sub-
Gaussian random variable. Then the following statements are equivalent:

(i) For every k=0,1,2,..., EXF converges pointwise to EX*.

(ii) X,, converges in distribution to X .

Proof. We first show how (ii) implies (i). Let N > 0 be a truncation
parameter, and let ¢ : R — R be a smooth function that equals 1 on
[—1,1] and vanishes outside of [—2,2]. Then for any k, the convergence
in distribution implies that EX¥yp(X,/N) converges to EX¥o(X/N). On
the other hand, from the uniform sub-Gaussian hypothesis, one can make
EXE(1 — o(X,,/N)) and EX*(1 — ¢(X/N)) arbitrarily small for fixed k by
making N large enough. Summing, and then letting N go to infinity, we
obtain (i).

Conversely, suppose (i) is true. From the uniform sub-Gaussian hypoth-
esis, the X,, have (k + 1)* moment bounded by (Ck)*/2 for all k > 1 and
some C independent of k (see Exercise 1.1.4). From Taylor’s theorem with
remainder (and Stirling’s formula, Section 1.2) we conclude

koo
Fx, (0= 3 B + 002

=0
uniformly in ¢ and n. Similarly for X. Taking limits using (i) we see that

limsup |Fx, (t) — Fx(t)| = O((Ck)_k/2|t|k+1)-
n—oo

Then letting k — oo, keeping ¢ fixed, we see that Fx, (t) converges pointwise
to Fx(t) for each t, and the claim now follows from the Lévy continuity
theorem. O

Remark 2.2.10. One corollary of Theorem 2.2.9 is that the distribution
of a sub-Gaussian random variable is uniquely determined by its moments
(actually, this could already be deduced from Exercise 2.2.9 and Remark
2.2.5). The situation can fail for distributions with slower tails, for much
the same reason that a smooth function is not determined by its derivatives
at one point if that function is not analytic.

The Fourier inversion formula provides an easy way to recover the dis-
tribution from the characteristic function. Recovering a distribution from
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its moments is more difficult, and sometimes requires tools such as analytic
continuation; this problem is known as the inverse moment problem and will
not be discussed here.

To prove the central limit theorem, we know from the truncation method
that we may assume, without loss of generality, that X is bounded (and, in
particular, sub-Gaussian); we may also normalise X to have mean zero and
unit variance. From the Chernoff bound (2.28) we know that the Z,, are
uniformly sub-Gaussian; so by Theorem 2.2.9, it suffices to show that

EZ'¥ - EG*
for all k =0,1,2,..., where G = N(0, 1)Rr is a standard Gaussian variable.
The moments EG* are easy to compute:

Exercise 2.2.17. Let k be a natural number, and let G = N(0,1)r. Show

that EG* vanishes when k is odd, and equal to ﬁ;ﬂﬂ)' when k is even.
(Hint: This can either be done directly by using the Gamma function, or

by using Exercise 2.2.5 and Exercise 2.2.9.)

So now we need to compute EZF. Using (2.29) and linearity of expec-
tation, we can expand this as

EZf=n""? " EX,.. X

1<iy,. ik <n

ket

To understand this expression, let us first look at some small values of k.
(i) For k = 0, this expression is trivially 1.

(ii) For k = 1, this expression is trivially 0, thanks to the mean zero
hypothesis on X.

(iii) For k = 2, we can split this expression into the diagonal and off-
diagonal components:

nt Y EXT 40Tt ) E2XX
1<i<n 1<i<j<n

Each summand in the first sum is 1, as X has unit variance. Each
summand in the second sum is 0, as the X; have mean zero and
are independent. So the second moment EZ2 is 1.

(iv) For k = 3, we have a similar expansion
n2 T EXP 40T E3X]X; 4+ 3X,X]
1<i<n 1<i<j<n

+n?? YT B6X XX

1<i<j<k<n
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The summands in the latter two sums vanish because of the (joint)
independence and mean zero hypotheses. The summands in the
first sum need not vanish, but are O(1), so the first term is O(n~"/2),
which is asymptotically negligible, so the third moment EZ? goes
to 0.

(v) For k = 4, the expansion becomes quite complicated:
n? Y BEX!+n? ) BAXX; 4 6X7X7 +4X, X}
1<i<n 1<i<j<n
+n? Y EI2X)XXy 4 12X, X0 X + 12X, X, X7
1<i<j<k<n
+n? ) EUX XXX
1<i<j<k<i<n
Again, most terms vanish, except for the first sum, which is O(n=1)
and is asymptotically negligible, and the sum n =2 Zl§i<j§n E6XZ~2X32,
which by the independence and unit variance assumptions works

out to n7?6(%) = 3+ o(1). Thus the fourth moment EZ;} goes to
3 (as it should).

Now we tackle the general case. Ordering the indices 71,...,7 as j1 <

- < jm for some 1 < m < k, with each j,. occurring with multiplicity

a, > 1 and using elementary enumerative combinatorics, we see that EZﬁ
is the sum of all terms of the form

(2.42) n~k/? Y CharanBXI X0
1<ji<<jm<n

where 1 < m < k, ay,...,a,, are positive integers adding up to k, and
Ckay,....am 15 the multinomial coefficient

k!
arl...am!’

Ck.a1,....am ~—

The total number of such terms depends only on k. More precisely, it is
2F=1 (exercise!), though we will not need this fact.

As we already saw from the small k examples, most of the terms vanish,
and many of the other terms are negligible in the limit n — oo. Indeed,
if any of the a, are equal to 1, then every summand in (2.42) vanishes, by
joint independence and the mean zero hypothesis. Thus, we may restrict
attention to those expressions (2.42) for which all the a, are at least 2. Since
the a, sum up to k, we conclude that m is at most k/2.

On the other hand, the total number of summands in (2.42) is clearly

at most n™ (in fact it is (), and the summands are bounded (for fixed k)
since X is bounded. Thus, if m is strictly less than k/2, then the expression
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in (2.42) is O(n™*/2) and goes to zero as n — oco. So, asymptotically,
the only terms (2.42) which are still relevant are those for which m is equal
to k/2. This already shows that EZ* goes to zero when k is odd. When
k is even, the only surviving term in the limit is now when m = k/2 and
a] = --+ = @y = 2. But then by independence and unit variance, the
expectation in (2.42) is 1, and so this term is equal to

—k/2 (T __1 R 1
n <m>6k,2,...,2 (/2! 2572 +o(1),

and the main term is happily equal to the moment EGF as computed in
Exercise 2.2.17.

2.2.4. The Lindeberg swapping trick. The moment method proof of
the central limit theorem that we just gave consisted of four steps:

(i) (Truncation and normalisation step) A reduction to the case when
X was bounded with zero mean and unit variance.

(ii) (Inverse moment step) A reduction to a computation of asymptotic
moments lim,, o EZﬁ.

(iii) (Analytic step) Showing that most terms in the expansion of this
asymptotic moment were zero, or went to zero as n — oo.

(iv) (Algebraic step) Using enumerative combinatorics to compute the
remaining terms in the expansion.

In this particular case, the enumerative combinatorics was very classical
and easy; it was basically asking for the number of ways one can place k
balls in m boxes, so that the 7" box contains a, balls, and the answer is well
known to be given by the multinomial ﬁ By a small algebraic miracle,
this result matched up nicely with the computation of the moments of the
Gaussian N (0, 1)R.

However, when we apply the moment method to more advanced prob-
lems, the enumerative combinatorics can become more non-trivial, requiring
a fair amount of combinatorial and algebraic computation. The algebraic
miracle that occurs at the end of the argument can then seem like a very
fortunate but inexplicable coincidence, making the argument somehow un-
satisfying despite being rigorous.

In [Li1922], Lindeberg observed that there was a very simple way to
decouple the algebraic miracle from the analytic computations, so that all
relevant algebraic identities only need to be verified in the special case of
Gaussian random variables, in which everything is much easier to compute.
This Lindeberg swapping trick (or Lindeberg replacement trick) will be very
useful in the later theory of random matrices, so we pause to give it here in
the simple context of the central limit theorem.
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The basic idea is as follows. We repeat the truncation-and-normalisation
and inverse moment steps in the preceding argument. Thus, Xi,..., X,
are iid copies of a bounded real random variable X of mean zero and unit
variance, and we wish to show that EZ¥ — EG*, where G = N(0, )R,
where k£ > 0 is fixed.

Now let Y7,...,Y, be iid copies of the Gaussian itself: Yi,...,Y, =
N(0,1)r. Because the sum of independent Gaussians is again a Gaussian
(Exercise 2.1.9), we see that the random variable

Y+ 4+ Y
Wn::—1+\/ﬁ+ =

already has the same distribution as G: W,, = G. Thus, it suffices to show
that

EZY = EWF + o(1).

Now we perform the analysis part of the moment method argument again.
We can expand EZF into terms (2.42) as before, and discard all terms except
for the a; = --- = a,, = 2 term as being o(1). Similarly, we can expand
EW? into very similar terms (but with the X; replaced by Y;) and again
discard all but the a; = --- = q,, term.

But by hypothesis, the second moments of X and Y match: EX? =
EY? = 1. Thus, by joint independence, the a; = -+ = a,, = 2 term (2.42)
for X is exactly equal to that of Y. And the claim follows.

This is almost exactly the same proof as in the previous section, but
note that we did not need to compute the multinomial coefficient ¢z 4, . 4,5
nor did we need to verify the miracle that this coefficient matched (up to
normalising factors) to the moments of the Gaussian. Instead, we used the
much more mundane “miracle” that the sum of independent Gaussians was
again a Gaussian.

To put it another way, the Lindeberg replacement trick factors a univer-
sal limit theorem, such as the central limit theorem, into two components:

(i) a universality or invariance result, which shows that the distribu-
tion (or other statistics, such as moments) of some random variable
F(Xy,...,X,) is asymptotically unchanged in the limit n — oo if
each of the input variables X; are replaced by a Gaussian substitute
Y;; and

(ii) the Gaussian case, which computes the asymptotic distribution (or
other statistic) of F'(Y7,...,Y,) in the case when Yi,...,Y,, are all
Gaussians.

The former type of result tends to be entirely analytic in nature (basically,
one just needs to show that all error terms that show up when swapping X
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with Y add up to o(1)), while the latter type of result tends to be entirely
algebraic in nature (basically, one just needs to exploit the many pleasant
algebraic properties of Gaussians). This decoupling of the analysis and
algebra steps tends to simplify the argument both at a technical level and
at a conceptual level, as each step then becomes easier to understand than
the whole.

2.2.5. Individual swapping. In the above argument, we swapped all the
original input variables Xi,..., X, with Gaussians Yi,...,Y, en masse.
There is also a variant of the Lindeberg trick in which the swapping is
done individually. To illustrate the individual swapping method, let us use
it to show the following weak version of the Berry-Esséen theorem:

Theorem 2.2.11 (Berry-Esséen theorem, weak form). Let X have mean
zero, unit variance, and finite third moment, and let ¢ be smooth with uni-
formly bounded derivatives up to third order. Let Zy, := (X1+---+X,)/V/n,
where X1, ..., X, are iid copies of X. Then we have

L (BIX%) sup |¢"(2)))

(2.43) Ep(Zn) = Ep(G) + O(—= up

Bl

where G = N(0,1)R.

Proof. Let Y1,...,Y, and W, be in the previous section. As W,, = G, it
suffices to show that

Ep(Zy) — o(Wy) = o(1).

We telescope this (using linearity of expectation) as

n—1
Ep(Zn) — (W) = — Z Ep(Zn,i) — o(Zn,i+1)
1=0

where
X1+ +Xi+ Y+ 4+ Y,

vn

is a partially swapped version of Z,. So it will suffice to show that

Ep(Zni) = ¢(Zni+1) = O((E|XP) sup " (@)]/n*?)

Zni =

uniformly for 0 < i < n.
We can write Z,, ; = Spi+Yit1/v/n and Z,, i11 = Spi+ Xit1/v/n, where

(2.44) g Xt Xt Vit 4 Y,
’ n,i - \/ﬁ '
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To exploit this, we use Taylor expansion with remainder to write

©(Zn,i) = p(Sn,i) +30( i) H—l/\/_

1
+ 5" (Sni)Yia/n + O([Yin| 5’2 Sup!so"'( )N

and

Qp(Zn,H—l) = @(Sn z) +¢ ( z) z+1/\/7

+ 50" (Sna) X2af+ O( X[ sup | (2)]

where the implied constants depend on ¢ but not on n. Now, by construc-
tion, the moments of X;;; and Y;; match to second order, thus

E@(Zni) = ¢(Zn,it1) = O(E[Yip|? sup " ()| /n®/?)

+ O(E|Xi a1 |* sup | (x)|/n?/?),
zeR

and the claim follows!2. O

Remark 2.2.12. The above argument relied on Taylor expansion, and the
hypothesis that the moments of X and Y matched to second order. It is
not hard to see that if we assume more moments matching (e.g., EX? =
EY?3 = 3), and more smoothness on ¢, we see that we can improve the
Ln factor on the right-hand side. Thus we see that we expect swapping
methods to become more powerful when more moments are matching. This
is the guiding philosophy behind the four moment theorem [TaVu2009Db],
which (very) roughly speaking asserts that the spectral statistics of two
random matrices are asymptotically indistinguishable if their coefficients
have matching moments to fourth order. Unfortunately, due to reasons of
space, we will not be able to cover the four moment theorem in detail in this
text.

Theorem 2.2.11 is easily implied by Theorem 2.2.8 and an integration
by parts. In the reverse direction, let us see what Theorem 2.2.11 tells us
about the cumulative distribution function

P(Z, <a)
of Z,. For any € > 0, one can upper bound this expression by
E¢(Zy)

where ¢ is a smooth function equal to 1 on (—o0, a] that vanishes outside of
(—00,a + €], and has third derivative O(¢~3). By Theorem 2.2.11, we thus

12Note from Holder’s inequality that E|X |3 > 1.
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have

1
NLD
On the other hand, as G has a bounded probability density function, we
have

P(Z, < a) < Ep(G) + O(—=(E|X|*)e73).

Ep(G) =P(G < a) + O(e)

and so
1
vn

A very similar argument gives the matching lower bound, thus

P(Z, < a) <P(G < a)+0(e) + O(—=(E| X *)e7?).

P(Z, <a)=P(G <a)+0(e) + O(in(E|X|3)s—3).

Optimising in € we conclude that
1
NLD

Comparing this with Theorem 2.2.8 we see that the decay exponent in n
in the error term has degraded by a factor of 1/4. In our applications to
random matrices, this type of degradation is acceptable, and so the swapping
argument is a reasonable substitute for the Fourier-analytic one in this case.
Also, this method is quite robust, and in particular, extends well to higher
dimensions; we will return to this point in later sections, but see, for instance,
[TaVuKr2010, Appendix D] for an example of a multidimensional Berry-
Esséen theorem proven by this method.

(2.45) P(Z, < a) = P(G < a) + O(—(E|X|?))/4,

On the other hand, there is another method that can recover this loss
while still avoiding Fourier-analytic techniques; we turn to this topic next.

2.2.6. Stein’s method. Stein’s method, introduced by Charles Stein
[St1970], is a powerful method to show convergence in distribution to a
special distribution, such as the Gaussian. In several recent papers, this
method has been used to control several expressions of interest in random
matrix theory (e.g., the distribution of moments, or of the Stieltjes trans-
form.) We will not use Stein’s method in this text, but the method is of
independent interest nonetheless.

1 —a?/2
™

mal distribution N(0,1)r can be viewed as a solution to the ordinary dif-

ferential equation

The probability density function p(x) := of the standard nor-

3

(2.46) o (z) + zp(x) = 0.



98 2. Random matrices

One can take adjoints of this, and conclude (after an integration by parts)
that p obeys the integral identity

[ pla@)(#'@) 2 (a) de =0
R

for any continuously differentiable f with both f and f’ bounded (one can
relax these assumptions somewhat). To put it another way, if G = N(0, 1),
then we have

(2.47) Ef'(G)—Gf(G) =0

whenever f is continuously differentiable with f, f/ both bounded.

It turns out that the converse is true: if X is a real random variable
with the property that

Ef/(X) — Xf(X) =0

whenever f is continuously differentiable with f, f’ both bounded, then X is
Gaussian. In fact, more is true, in the spirit of Theorem 2.2.4 and Theorem
2.2.9:

Theorem 2.2.13 (Stein continuity theorem). Let X,, be a sequence of
real random variables with uniformly bounded second moment, and let G =
N(0,1). Then the following are equivalent:

(i) Ef'(X,) — Xnf(Xy) converges to zero whenever f : R — R is
continuously differentiable with f, f' both bounded.

(ii) X,, converges in distribution to G.

Proof. To show that (ii) implies (i), it is not difficult to use the uniform
bounded second moment hypothesis and a truncation argument to show
that Ef'(X,,) — X, f(X,) converges to Ef'(G) — Gf(G) when f is contin-
uously differentiable with f, f/ both bounded, and the claim then follows
from (2.47).

Now we establish the converse. It suffices to show that
Ep(Xn) — Ep(G) =0
whenever ¢ : R — R is a bounded continuous function. We may normalise

© to be bounded in magnitude by 1.

Trivially, the function ¢(-) — E@(G) has zero expectation when one sub-
stitutes G for the argument -; thus

(2.48) V2 (p(y) — Ep(G)) dy = 0.

1 o)
— (&
V 2 \/—oo
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Comparing this with (2.47), one may thus hope to find a representation of
the form

(2.49) p(z) — Ep(G) = f'(z) — 2f(z)
for some continuously differentiable f with f, f/ both bounded. This is a

simple ODE and can be easily solved (by the method of integrating factors)
to give a solution f, namely

(2.50) f) = e l? /w eV (p(y) — Bp(G)) dy.

(One could dub f the Stein transform of ¢, although this term does not
seem to be in widespread use.) By the fundamental theorem of calculus, f
is continuously differentiable and solves (2.49). Using (2.48), we may also
write f as

(2.51) f) = —e"/2 /00 eV (p(y) — Bp(G)) dy.

By completing the square, we see that eV /2 < e /2e—u(y—a), Inserting
this into (2.50) and using the bounded nature of ¢, we conclude that f(z) =
Oy,(1/|z]) for < —1; inserting it instead into (2.51), we have f(z) =
O,(1/|z]) for > 1. Finally, easy estimates give f(x) = O, (1) for |z| < 1.
Thus for all z we have .
F@) = Op({ 1y m)

which, when inserted back into (2.49), gives the boundedness of f’ (and also
of course gives the boundedness of f). In fact, if we rewrite (2.51) as

)= - /OOO e 2T (o + 5) — Bp(@)) ds,

we see on differentiation under the integral sign (and using the Lipschitz
nature of ) that f'(z) = Oy,(1/x) for x > 1; a similar manipulation (starting
from (2.50)) applies for < —1, and we in fact conclude that f/(z) =
OA%M) for all .

Applying (2.49) with = X, and taking expectations, we have
@(Xn) - ESD(G) = f,(Xn) - an(Xn)

By the hypothesis (i), the right-hand side goes to zero, hence the left-hand
side does also, and the claim follows. O

The above theorem gave only a qualitative result (convergence in distri-
bution), but the proof is quite quantitative, and can be used, in particular, to
give Berry-Esséen type results. To illustrate this, we begin with a strength-
ening of Theorem 2.2.11 that reduces the number of derivatives of ¢ that
need to be controlled:



100 2. Random matrices

Theorem 2.2.14 (Berry-Esséen theorem, less weak form). Let X have mean
zero, unit variance, and finite third moment, and let ¢ be smooth, bounded
in magnitude by 1, and Lipschitz. Let Z, := (X1 + - -+ X,,)/\/n, where
X1,..., X, are iid copies of X. Then we have

(2.52) Ep(Zn) = Ep(G) + O(Ln(Ele?’)(l + sup &' (x)]))

where G = N(0,1)R.

Proof. Set A:= 1+ sup,cg |¢'(z)].
Let f be the Stein transform (2.50) of ¢, then by (2.49) we have
E@(Zn) - EW(G) - Ef,(Zn) - an(Zn)'
We expand Z, f(Z,) = ﬁ Yoy Xif(Zy). For each i, we then split Z,, =
Zn;i + %XZ‘, where Zn;i = (Xl + -+ X1+ Xi—f—l + -+ Xn)/\/ﬁ (Cf
(2.44)). By the fundamental theorem of calculus, we have
1 t
EX;f(Zy) = EXif (Zny) + —=X72f (Zni + —=
F(Z0) = B, (Zu) + <= X2 (s + ==
where ¢ is uniformly distributed in [0,1] and independent of all of the

X1,...,X,. Now observe that X; and Z,; are independent, and X; has
mean zero, so the first term on the right-hand side vanishes. Thus

Xi)

1 « t
2. Ep(Z,) — E ==Y Ef'(Z,) — X2 f (Zni + —=X2).
253 Be(Z,) ~Bo(G) = [ B (Gn) - XEf (Bt 2K
Another application of independendence gives
Ef,(Zn;i) = EXiQf/(Zn;i)

so we may rewrite (2.53) as
%Z E(f/(Zn) - f,(Zn;i)) - Xiz(f/(Zn;i + %Xl) - f/(Zn;i))'
i=1

Recall from the proof of Theorem 2.2.13 that f(z) = O(1/(1 + |z|)) and
f'(z) = O(A/(1 + |z|)). By the product rule, this implies that zf(z) has
a Lipschitz constant of O(A). Applying (2.49) and the definition of A, we
conclude that f’ has a Lipschitz constant of O(A). Thus we can bound the
previous expression as

1 — 1
N E—O0A|X;| + AlX;]?
n; ﬁO(I |+ A|X4]?)

and the claim follows from Hélder’s inequality. ([l
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This improvement already partially restores the exponent in (2.45) from
1/4 to 1/2. But one can do better still by pushing the arguments further.
Let us illustrate this in the model case when the X; not only have bounded
third moment, but are in fact bounded:

Theorem 2.2.15 (Berry-Esséen theorem, bounded case). Let X have mean

zero, unit variance, and be bounded by O(1). Let Z, := (X1 +---+X,)//n,

where X1, ..., X, are id copies of X. Then we have
1

(2.54) P(Zn <) =P(G <)+ 0( 7

)
whenever a = O(1), where G = N(0,1)R.

Proof. Write ¢ := 1(_ 4], thus we seek to show that

1
E¢(Zn) — ¢(G) = 0(%)-
Let f be the Stein transform (2.50) of ¢. The function ¢ is not continuous,
but it is not difficult to see (e.g., by a limiting argument) that we still have
the estimates f(z) = O(1/(1+|z|)) and f'(z) = O(1) (in a weak sense), and
that x f has a Lipschitz norm of O(1) (here we use the hypothesis a = O(1)).
A similar limiting argument gives

E¢(Zn) - ¢(G) = Ef/(Zn) - an(Zn)

and by arguing as in the proof of Theorem 2.2.14, we can write the right-
hand side as

%ZE(f/(Zn) - f,(Zn;i)) - Xiz(f/(Zn;i + ’
i=1

NG
From (2.49), f’ is equal to ¢, plus a function with Lipschitz norm O(1).
Thus, we can write the above expression as

Xi) = f'(Zni)-

t
Vn
The ¢(Zp.;) terms cancel (due to the independence of X; and Z,,.;, and the
normalised mean and variance of X;), so we can simplify this as

LS BO(Z0) ~ 6(Zu) ~ X2 Lt + ~=X) ~ 0{Zui)) + O(1/ V).
=1

Bo(Z,) ~ 5 Y EXPO(Zys + =)
=1

and so we conclude that
t

T2 = B6(G) + 0(1/Vi).

1 n
LS EX2 oz, +
=1



102 2. Random matrices

Since t and X; are bounded, and ¢ is non-increasing, we have

A Zui + O(L/\/)) < $(Zos + %X» < 6(Zns — O(1/v/));

applying the second inequality and using independence to once again elimi-
nate the XZ»2 factor, we see that

% N E¢(Zui — O(1/v/n) = E¢(G) + O(1/v/n)
=1

which implies (by another appeal to the non-increasing nature of ¢ and the
bounded nature of X;) that

Eo(Z, — O(1/y/n)) > EG(G) + O(1/)
or, in other words, that
P(Z, <a+0(1/y/n)) > P(G < a)+ O(1/v/n).
Similarly, using the lower bound inequalities, one has
P(Z, < a—O(1/y/n)) < P(G < a) + O(1/y/).

Moving a up and down by O(1/4/n), and using the bounded density of G,
we obtain the claim. O

Actually, one can use Stein’s method to obtain the full Berry-Esséen
theorem, but the computations get somewhat technical, requiring an induc-
tion on n to deal with the contribution of the exceptionally large values of
Xi; see [BaHal1984].

2.2.7. Predecessor comparison. Suppose one had never heard of the
normal distribution, but one still suspected the existence of the central limit
theorem; thus, one thought that the sequence Z,, of normalised distributions
was converging in distribution to something, but was unsure what the limit
was. Could one still work out what that limit was?

Certainly in the case of Bernoulli distributions, one could work explicitly
using Stirling’s formula (see Exercise 2.2.2), and the Fourier-analytic method
would also eventually work. Let us now give a third way to (heuristically)
derive the normal distribution as the limit of the central limit theorem. The
idea is to compare Z,, with its predecessor Z,_1, using the recursive formula
Vn—1 1

/o —X

(normalising X,, to have mean zero and unit variance as usual; let us also
truncate X,, to be bounded, for simplicity). Let us hypothesise that Z,, and
Zn—1 are approximately the same distribution; let us also conjecture that
this distribution is absolutely continuous, given as p(x) dz for some smooth

(2.55) Zy =
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p(z). (If we secretly knew the central limit theorem, we would know that
p(z) is in fact \/%6_12/ 2 but let us pretend that we did not yet know this
fact.) Thus, for any test function ¢, we expect

(2.56) Ep(Z,) = Ep(Z,-1) =~ /ch(x)p(x) dx.

Now let us try to combine this with (2.55). We assume ¢ to be smooth, and
Taylor expand to third order:

o(Zn) = (%Zno + %Xngo' (%Z,”)
+ %ngp” (TZ > +O( ;/2)

Taking expectations, and using the independence of X,, and Z,_1, together
with the normalisations on X,,, we obtain

—1 1 vn—1
V) 4 e (M2 ) 4 0.
vn 2n vn n3/2
Up to errors of O - /2) one can approximate the second term here by

2" (Zy—1). We then insert (2.56) and are led to the heuristic equation

Ep(Z,) = Eg (

[ et dom [ o (L) o)+ o wlote) do+ 0.

Changing variables for the first term on the right-hand side, and integrating
by parts for the second term, we have

[ etapta) dom [ ot wflp( w\fﬁ)

+ o) (@) di + O(—7).

Since ¢ was an arbitrary test function, this suggests the heuristic equation
NLD ( NZD ) 1 1
T)~ )+ o= + O
p(z) T\ T 5P (2) + O(—75).
Taylor expansion gives
()
P x
vn—1 \WVn-1
which leads us to the heuristic ODE
Lp(z) =0

where L is the Ornstein-Uhlenbeck operator

Lp(z) = p(x) + xp(x) + p"(2).

B 1 1, 1
= p(z) + %P(ff) +g,, P (7) + O(m),
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Observe that Lp is the total derivative of zp(x) + p/(z); integrating from
infinity, we thus get

zp(z) + p'(x) =0

which is (2.46), and can be solved by standard ODE methods as p(x) =
ce~*/2 for some ¢; the requirement that probability density functions have

total mass 1 then gives the constant c as \/Lz_w’ as we knew it must.

The above argument was not rigorous, but one can make it so with
a significant amount of PDE machinery. If we view n (or more precisely,
logn) as a time parameter, and view ¢ as depending on time, the above
computations heuristically lead us eventually to the Fokker-Planck equation

Op(t,x) = Lp

for the Ornstein- Uhlenbeck process, which is a linear parabolic equation that
is fortunate enough that it can be solved exactly (indeed, it is not difficult to
transform this equation to the linear heat equation by some straightforward
changes of variable). Using the spectral theory of the Ornstein-Uhlenbeck
operator L, one can show that solutions to this equation starting from an ar-
bitrary probability distribution, are attracted to the Gaussian density func-
tion ﬁe‘mg/z, which as we saw is the steady state for this equation. The
stable nature of this attraction can eventually be used to make the above
heuristic analysis rigorous. However, this requires a substantial amount of
technical effort (e.g., developing the theory of Sobolev spaces associated
to L) and will not be attempted here. One can also proceed by relating
the Fokker-Planck equation to the associated stochastic process, namely the
Ornstein-Uhlenbeck process, but this requires one to first set up stochastic
calculus, which we will not do here!3. Stein’s method, discussed above, can
also be interpreted as a way of making the above computations rigorous (by
not working with the density function p directly, but instead testing the
random variable Z,, against various test functions ¢).

This argument does, however, highlight two ideas which we will see again
in later sections when studying random matrices. First, that it is profitable
to study the distribution of some random object Z,, by comparing it with its
predecessor Z,_1, which one presumes to have almost the same distribution.
Second, we see that it may potentially be helpful to approximate (in some
weak sense) a discrete process (such as the iteration of the scheme (2.55))
with a continuous evolution (in this case, a Fokker-Planck equation) which
can then be controlled using PDE methods.

13The various Taylor expansion calculations we have performed in this section, though, are
closely related to stochastic calculus tools such as Ito’s lemma.
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2.3. The operator norm of random matrices

Now that we have developed the basic probabilistic tools that we will need,
we now turn to the main subject of this text, namely the study of random
matrices. There are many random matrix models (aka matrix ensembles)
of interest—far too many to all be discussed here. We will thus focus on
just a few simple models. First of all, we shall restrict attention to square
matrices M = (&;5)1<i j<n, Where n is a (large) integer and the &;; are real or
complex random variables. (One can certainly study rectangular matrices
as well, but for simplicity we will only look at the square case.) Then, we
shall restrict to three main models:

(i) Iid matrix ensembles, in which the coefficients &;; are iid random
variables with a single distribution §;; = {. We will often normalise
& to have mean zero and unit variance. Examples of iid models in-
clude the Bernoulli ensemble (aka random sign matrices) in which
the &;; are signed Bernoulli variables, the real Gaussian matriz en-
semble in which &; = N(0,1)Rr, and the complex Gaussian matric
ensemble in which &; = N(0,1)c.

(i) Symmetric Wigner matrix ensembles, in which the upper tri-
angular coefficients &;;, j > ¢ are jointly independent and real, but
the lower triangular coefficients ;;, j < i are constrained to equal
their transposes: §;; = ;. Thus M by construction is always a
real symmetric matrix. Typically, the strictly upper triangular co-
efficients will be iid, as will the diagonal coefficients, but the two
classes of coefficients may have a different distribution. One ex-
ample here is the symmetric Bernoulli ensemble, in which both
the strictly upper triangular and the diagonal entries are signed
Bernoulli variables; another important example is the Gaussian
Orthogonal Ensemble (GOE), in which the upper triangular entries
have distribution N(0,1)r and the diagonal entries have distribu-
tion N(0,2)g. (We will explain the reason for this discrepancy
later.)

(iii) Hermitian Wigner matrix ensembles, in which the upper tri-
angular coefficients are jointly independent, with the diagonal en-
tries being real and the strictly upper triangular entries complex,
and the lower triangular coefficients &;;, j < ¢ are constrained to
equal their adjoints: &;; = §_ﬂ Thus M by construction is always
a Hermitian matrix. This class of ensembles contains the sym-
metric Wigner ensembles as a subclass. Another very important
example is the Gaussian Unitary Ensemble (GUE), in which all
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off-diagional entries have distribution N(0,1)c, but the diagonal
entries have distribution N(0,1)g.

Given a matrix ensemble M, there are many statistics of M that one may
wish to consider, e.g., the eigenvalues or singular values of M, the trace and
determinant, etc. In this section we will focus on a basic statistic, namely
the operator norm
(2.57) |Mllop :== sup |Mz|

zeC™:|z|=1
of the matrix M. This is an interesting quantity in its own right, but also
serves as a basic upper bound on many other quantities. (For instance,
| M|op is also the largest singular value o1(M) of M and thus dominates
the other singular values; similarly, all eigenvalues \;(M) of M clearly have
magnitude at most || M ||op.) Because of this, it is particularly important to
get good upper tail bounds,

P([|M]lop = A) <.,

on this quantity, for various thresholds A. (Lower tail bounds are also of
interest, of course; for instance, they give us confidence that the upper tail
bounds are sharp.) Also, as we shall see, the problem of upper bounding
|M||op can be viewed as a non-commutative analogue'# of upper bounding
the quantity |S,| studied in Section 2.1.

An n x n matrix consisting entirely of 1s has an operator norm of ex-
actly n, as can for instance be seen from the Cauchy-Schwarz inequality.
More generally, any matrix whose entries are all uniformly O(1) will have
an operator norm of O(n) (which can again be seen from Cauchy-Schwarz,
or alternatively from Schur’s test (see e.g. [Ta2010, §1.11]), or from a com-
putation of the Frobenius norm (see (2.63))). However, this argument does
not take advantage of possible cancellations in M. Indeed, from analogy
with concentration of measure, when the entries of the matrix M are inde-
pendent, bounded and have mean zero, we expect the operator norm to be
of size O(y/n) rather than O(n). We shall see shortly that this intuition is
indeed correct!®.

As mentioned before, there is an analogy here with the concentration of
measure'S phenomenon, and many of the tools used in the latter (e.g., the
moment method) will also appear here. Similarly, just as many of the tools

14The analogue of the central limit theorem studied in Section 2.2 is the Wigner semicircular
law, which will be studied in Section 2.4.

150ne can see, though, that the mean zero hypothesis is important; from the triangle in-
equality we see that if we add the all-ones matrix (for instance) to a random matrix with mean
zero, to obtain a random matrix whose coefficients all have mean 1, then at least one of the two
random matrices necessarily has operator norm at least n/2.

16Indeed, we will be able to use some of the concentration inequalities from Section 2.1
directly to help control ||M]|op and related quantities.
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from concentration of measure could be adapted to help prove the central
limit theorem, several of the tools seen here will be of use in deriving the
semicircular law in Section 2.4.

The most advanced knowledge we have on the operator norm is given
by the Tracy-Widom law, which not only tells us where the operator norm
is concentrated in (it turns out, for instance, that for a Wigner matrix
(with some additional technical assumptions), it is concentrated in the range
[2¢/n — O(n~1/6),2¢/n+ O(n=1/)]), but what its distribution in that range
is. While the methods in this section can eventually be pushed to establish
this result, this is far from trivial, and will only be briefly discussed here.
We will, however, discuss the Tracy-Widom law at several later points in
the text.

2.3.1. The epsilon net argument. The slickest way to control || M||op is
via the moment method. But let us defer using this method for the moment,
and work with a more “naive” way to control the operator norm, namely by
working with the definition (2.57). From that definition, we see that we can
view the upper tail event ||M||op > A as a union of many simpler events:

(2.58) P(|Mop > A) < P(\/ [Mz| > N)
zes
where S := {z € C?: |z| = 1} is the unit sphere in the complex space C*.

The point of doing this is that the event |Mz| > X is easier to control
than the event ||M||op > A, and can in fact be handled by the concentration
of measure estimates we already have. For instance:

Lemma 2.3.1. Suppose that the coefficients & of M are independent, have
mean zero, and are uniformly bounded in magnitude by 1. Let x be a unit
vector in C"™. Then for sufficiently large A (larger than some absolute con-
stant), one has

P(|Mz| > Ay/n) < Cexp(—cAn)

for some absolute constants C,c > 0.

Proof. Let X1,...,X, be the n rows of M, then the column vector Mz

has coefficients X; -z for ¢ = 1,...,n. If we let x1,...,x, be the coefficients

of z, so that » ., |zj|* =1, then X; - x is just > j=18ijrj. Applying stan-

dard concentration of measure results (e.g., Exercise 2.1.4, Exercise 2.1.5,

or Theorem 2.1.13), we see that each Xj - x is uniformly sub-Gaussian, thus
P(|X; 2| > \) < Cexp(—c)?)

for some absolute constants C,c > 0. In particular, we have

Eec\Xi-xP <C
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for some (slightly different) absolute constants C, ¢ > 0. Multiplying these
inequalities together for all i, we obtain

:Eec|Mx|2 <o

and the claim then follows from Markov’s inequality (1.14). O

Thus (with the hypotheses of Lemma 2.3.1), we see that for each in-
dividual unit vector z, we have |Mz| = O(y/n) with overwhelming proba-
bility. It is then tempting to apply the union bound and try to conclude
that ||M|lop = O(yv/n) with overwhelming probability also. However, we
encounter a difficulty: the unit sphere S is uncountable, and so we are tak-
ing the union over an uncountable number of events. Even though each
event occurs with exponentially small probability, the union could well be
everything.

Of course, it is extremely wasteful to apply the union bound to an un-
countable union. One can pass to a countable union just by working with
a countable dense subset of the unit sphere S instead of the sphere itself,
since the map z — |Mz| is continuous. Of course, this is still an infinite set
and so we still cannot usefully apply the union bound. However, the map
x — |Mx| is not just continuous; it is Lipschitz continuous, with a Lipschitz
constant of ||[M||op. Now, of course there is some circularity here because
| M||op is precisely the quantity we are trying to bound. Nevertheless, we
can use this stronger continuity to refine the countable dense subset further,
to a finite (but still quite dense) subset of S, at the slight cost of modifying
the threshold A\ by a constant factor. Namely:

Lemma 2.3.2. Let 3 be a maximal 1/2-net of the sphere S, i.e., a set of
points in S that are separated from each other by a distance of at least 1/2,
and which is mazximal with respect to set inclusion. Then for any n X n
matriz M with complex coefficients, and any A > 0, we have

P(|M[lop > A) < P(\/ [My| > A/2).
YyeY
Proof. By (2.57) (and compactness) we can find = € S such that
|Mz| = |[M||op-

This point = need not lie in ¥.. However, as ¥ is a maximal 1/2-net of S, we
know that x lies within 1/2 of some point y in ¥ (since otherwise we could
add x to ¥ and contradict maximality). Since |z — y| < 1/2, we have

[M(z —y)| < [M]lop/2.
By the triangle inequality we conclude that
[My| = [|M]|op/2.
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In particular, if | M||op > A, then |My| > /2 for some y € ¥, and the claim
follows. 0

Remark 2.3.3. Clearly, if one replaces the maximal 1/2-net here with a
maximal e-net for some other 0 < ¢ < 1 (defined in the obvious manner),
then we get the same conclusion, but with A\/2 replaced by A(1 — ¢).

Now that we have discretised the range of points y to be finite, the union
bound becomes viable again. We first make the following basic observation:

Lemma 2.3.4 (Volume packing argument). Let 0 < ¢ < 1, and let ¥ be
an e-net of the sphere S. Then 3 has cardinality at most (C/e)™ for some
absolute constant C > 0.

Proof. Consider the balls of radius £/2 centred around each point in ¥; by
hypothesis, these are disjoint. On the other hand, by the triangle inequality,
they are all contained in the ball of radius 3/2 centred at the origin. The
volume of the latter ball is at most (C'/e)™ the volume of any of the small
balls, and the claim follows. O

Exercise 2.3.1. Improve the bound (C/e)" to C"/e"~!. In the converse
direction, if ¥ is a mazimal e-net, show that ¥ has cardinality at least
c" /"1 for some absolute constant ¢ > 0.

And now we get an upper tail estimate:

Corollary 2.3.5 (Upper tail estimate for iid ensembles). Suppose that
the coefficients &; of M are independent, have mean zero, and uniformly
bounded in magnitude by 1. Then there exist absolute constants C,c > 0
such that

P(||M|lop > Avn) < Cexp(—cAn)
for all A > C. In particular, we have ||M|lop = O(y/n) with overwhelming
probability.

Proof. From Lemma 2.3.2 and the union bound, we have

P(|M[lop > AVi) < 3" P(My| > Avi/2)
yeD
where ¥ is a maximal 1/2-net of S. By Lemma 2.3.1, each of the probabilities
P(|My| > A\/n/2) is bounded by C exp(—cAn) if A is large enough. Mean-
while, from Lemma 2.3.4, ¥ has cardinality O(1)". If A is large enough,
the entropy loss'™ of O(1)" can be absorbed into the exponential gain of
exp(—cAn) by modifying c slightly, and the claim follows. O

17Roughly speaking, the entropy of a configuration is the logarithm of the number of possible
states that configuration can be in. When applying the union bound to control all possible
configurations at once, one often loses a factor proportional to the number of such states; this
factor is sometimes referred to as the entropy factor or entropy loss in one’s argument.
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Exercise 2.3.2. If ¥ is a maximal 1/4-net instead of a maximal 1/2-net,
establish the following variant

P([M[lop >3 <P(\/ [2"My| > 2/4)
T,YeER
of Lemma 2.3.2. Use this to provide an alternate proof of Corollary 2.3.5.

The above result was for matrices with independent entries, but it easily
extends to the Wigner case:

Corollary 2.3.6 (Upper tail estimate for Wigner ensembles). Suppose that
the coefficients & of M are independent for j > i, mean zero, and uniformly
bounded in magnitude by 1, and let &; = 5 for j < i. Then there exist
absolute constants C,c > 0 such that

P(||M|lop > Avn) < Cexp(—cAn)

for all A > C. In particular, we have ||M|lop = O(y/n) with overwhelming
probability.

Proof. From Corollary 2.3.5, the claim already holds for the upper-triangular
portion of M, as well as for the strict lower-triangular portion of M. The
claim then follows from the triangle inequality (adjusting the constants C, ¢
appropriately). O

Exercise 2.3.3. Generalise Corollary 2.3.5 and Corollary 2.3.6 to the case
where the coefficients §;; have uniform sub-Gaussian tails, rather than being
uniformly bounded in magnitude by 1.

Remark 2.3.7. What we have just seen is a simple example of an epsilon
net argument, which is useful when controlling a supremum of random vari-
ables sup,cg X, such as (2.57), where each individual random variable X,
is known to obey a large deviation inequality (in this case, Lemma 2.3.1).
The idea is to use metric arguments (e.g., the triangle inequality, see Lemma
2.3.2) to refine the set of parameters S to take the supremum over to an e-
net X = X, for some suitable €, and then apply the union bound. One takes
a loss based on the cardinality of the e-net (which is basically the covering
number of the original parameter space at scale €), but one can hope that
the bounds from the large deviation inequality are strong enough (and the
metric entropy bounds sufficiently accurate) to overcome this entropy loss.

There is of course the question of what scale € to use. In this simple
example, the scale ¢ = 1/2 sufficed. In other contexts, one has to choose
the scale ¢ more carefully. In more complicated examples with no natural
preferred scale, it often makes sense to take a large range of scales (e.g.,
e =27 forj=1,...,J)and chain them together by using telescoping series
such as X; = X, +Z;-7:1 X, Xz; (where x; is the nearest point in 3; to

Tj+1
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x for j=1,...,J, and x 41 is by convention) to estimate the supremum,
the point being that one can hope to exploit cancellations between adjacent
elements of the sequence X,,;. This is known as the method of chaining.
There is an even more powerful refinement of this method, known as the
method of generic chaining, which has a large number of applications; see
[Ta2005] for a beautiful and systematic treatment of the subject. However,
we will not use this method in this text.

2.3.2. A symmetrisation argument (optional). We pause here to
record an elegant symmetrisation argument that exploits convexity to allow
us to reduce, without loss of generality, to the symmetric case M = —M, al-
beit at the cost of losing a factor of 2. We will not use this type of argument
directly in this text, but it is often used elsewhere in the literature.

Let M be any random matrix with mean zero, and let M be an inde-
pendent copy of M. Then, conditioning on M, we have

E(M — M|M) = M.
As the operator norm M +— || M]||op is convex, we can then apply Jensen’s
inequality (Exercise 1.1.8) to conclude that
E(||M — M|lop|M) > || Mlop-
Undoing the conditioning over M, we conclude that
(2.59) E[M — M|lop > E|M||op.

Thus, to upper bound the expected operator norm of M, it suffices to upper
bound the expected operator norm of M — M. The point is that even if M
is not symmetric (M # —M), M — M is automatically symmetric.

One can modify (2.59) in a few ways, given some more hypotheses on M.
Suppose now that M = (&;)1<ij<n i @ matrix with independent entries,
thus M — M has coefficients &ij— éij where g}j is an independent copy of &;;.
Introduce a random sign matrix £ = (;5)1<i j<n Which is (jointly) indepen-
dent of M, M. Observe that as the distribution of &ij — é,-j is symmetric,
that

(&) — &ij) = (&5 — &ij)eijs
and thus

(M—M)=(M—-M)-E
where A - B = (aijbij)lgm‘gn is the Hadamard p?“Od’LLCt of A= (aij)lgi’jgn
and B = (bij)1<i,j<n. We conclude from (2.59) that

E|[M|op < E[(M — M) - Elop.
By the distributive law and the triangle inequality we have

I(M — M) - Ellop < |M - Ellop + [[M - Ellop.
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But as M - E = M - E, the quantities | M - E|lop and ||M - E||op have the
same expectation. We conclude the symmetrisation inequality

(2.60) El|M]lop < 2B[[M - E|op.

Thus, if one does not mind losing a factor of two, one has the freedom
to randomise the sign of each entry of M independently (assuming that the
entries were already independent). Thus, in proving Corollary 2.3.5, one
could have reduced to the case when the §;; were symmetric, though in this
case this would not have made the argument that much simpler.

Sometimes it is preferable to multiply the coefficients by a Gaussian
rather than by a random sign. Again, let M = (&;;)1<s,j<n have independent
entries with mean zero. Let G = (gij)1<i j<n be a real Gaussian matrix
independent of M, thus the g;; = N (0, 1)r are iid. We can split G = E-|G],
where FE = (sgn(gij))lgingn and |G’ = (]gij|)1§i7j§n. Note that E, M, ‘G’
are independent, and F is a random sign matrix. In particular, (2.60) holds.
We now use

Exercise 2.3.4. If g = N(0, 1)r, show that E|g| = \/g

From this exercise we see that

E(M-E-|G||M,E) = \/>M E

and hence by Jensen’s inequality (Exercise 1.1.8) again

2
E([|M - E-[Glllop|M, E) > \/;!M-EHop-

Undoing the conditional expectation in M, E and applying (2.60) we con-
clude the Gaussian symmetrisation inequality

(2.61) E[|M|lop < V27E[M - Gllop-

Thus, for instance, when proving Corollary 2.3.5, one could have inserted
a random Gaussian in front of each coefficient. This would have made the
proof of Lemma 2.3.1 marginally simpler (as one could compute directly with
Gaussians, and reduce the number of appeals to concentration of measure
results) but in this case the improvement is negligible. In other situations
though it can be quite helpful to have the additional random sign or random
Gaussian factor present. For instance, we have the following result of Latala
[La2005]:
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Theorem 2.3.8. Let M = (&;5)1<ij<n be a matriz with independent mean
zero entries, obeying the second moment bounds

n
sup Y Bl¢;)* < Kn,
1 jzl

n
sup » E|¢;|* < K?n,
J =1

and the fourth moment bound

z”: Zn: El¢;|! < K'n?

i=1 j=1

for some K > 0. Then E|M||op, = O(K+/n).

Proof (Sketch only). Using (2.61) one can replace &; by &; - gi; without
much penalty. One then runs the epsilon-net argument with an explicit
net, and uses concentration of measure results for Gaussians (such as The-
orem 2.1.12) to obtain the analogue of Lemma 2.3.1. The details are rather
intricate, and we refer the interested reader to [La2005]. ]

As a corollary of Theorem 2.3.8, we see that if we have an iid matrix (or
Wigner matrix) of mean zero whose entries have a fourth moment of O(1),
then the expected operator norm is O(y/n). The fourth moment hypothesis
is sharp. To see this, we make the trivial observation that the operator norm
of a matrix M = (&;;)1<i j<n bounds the magnitude of any of its coefficients,
thus

sup [&ij| < | M ]lop
1<i,j<n

or, equivalently, that

P(|Mlop <X <P( 1\ [&51 <N).

1<i,j<n
In the iid case &; = ¢, and setting A = Ay/n for some fixed A independent
of n, we thus have
2
(2.62) P([[M]lop < Avn) <P(¢] < AVn)".
With the fourth moment hypothesis, one has from dominated convergence
that
P(l¢] < Avn) 21— o0a(1/n?),

and so the right-hand side of (2.62) is asymptotically trivial. But with

weaker hypotheses than the fourth moment hypothesis, the rate of con-
vergence of P(|¢] < Ay/n) to 1 can be slower, and one can easily build
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examples for which the right-hand side of (2.62) is 04(1) for every A, which
forces || M||op to typically be much larger than /n on the average.

Remark 2.3.9. The symmetrisation inequalities remain valid with the op-
erator norm replaced by any other convex norm on the space of matrices.
The results are also just as valid for rectangular matrices as for square ones.

2.3.3. Concentration of measure. Consider a random matrix M of the
type considered in Corollary 2.3.5 (e.g., a random sign matrix). We now
know that the operator norm || M||op is of size O(y/n) with overwhelming
probability. But there is much more that can be said. For instance, by taking
advantage of the convexity and Lipschitz properties of || M ||op, we have the
following quick application of Talagrand’s inequality (Theorem 2.1.13):

Proposition 2.3.10. Let M be as in Corollary 2.3.5. Then for any X\ > 0,
one has

P(|[[M]lop = M|[M|lop| > A) < C exp(—cA?)

for some absolute constants C,c > 0, where M||M ||op is a median value for
| M||lop. The same result also holds with M||M||op replaced by the expectation
E|[|Mop-

Proof. We view || Mo, as a function F((&;5)1<ij<n) of the independent
complex variables &;;, thus F' is a function from C" to R. The convexity
of the operator norm tells us that F' is convex. The triangle inequality,
together with the elementary bound

(2.63) [Mlop < [[M ]|

(easily proven by Cauchy-Schwarz), where

(2.64) IMIlp = (DD I€s1H)'
i=1 j=1
is the Frobenius norm (also known as the Hilbert-Schmidt norm or 2-Schatten

norm), tells us that F' is Lipschitz with constant 1. The claim then follows
directly from Talagrand’s inequality (Theorem 2.1.13). O

Exercise 2.3.5. Establish a similar result for the matrices in Corollary
2.3.6.

From Corollary 2.3.5 we know that the median or expectation of || M ||op
is of size O(y/n); we now know that || M||op concentrates around this median
to width at most O(1). (This turns out to be non-optimal; the Tracy-Widom
law actually gives a concentration of O(n~'/%), under some additional as-
sumptions on M. Nevertheless, this level of concentration is already non-
trivial.)
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However, this argument does not tell us much about what the median
or expected value of ||M]|op actually is. For this, we will need to use other
methods, such as the moment method which we turn to next.

Remark 2.3.11. Talagrand’s inequality, as formulated in Theorem 2.1.13,
relies heavily on convexity. Because of this, we cannot apply this argument
directly to non-convex matrix statistics, such as singular values o;(M) other
than the largest singular value o1(M). Nevertheless, one can still use this
inequality to obtain good concentration results, by using the convexity of re-
lated quantities, such as the partial sums Ejzl 0j(M); see [Me2004]. Other
approaches include the use of alternate large deviation inequalities, such as
those arising from log-Sobolev inequalities (see e.g., [Gu2009]), or by us-
ing more abstract versions of Talagrand’s inequality (see [AIKrVu2002],
[GuZe2000)).

2.3.4. The moment method. We now bring the moment method to bear
on the problem, starting with the easy moments and working one’s way up
to the more sophisticated moments. It turns out that it is easier to work
first with the case when M is symmetric or Hermitian; we will discuss the
non-symmetric case near the end of this section.

The starting point for the moment method is the observation that for
symmetric or Hermitian M, the operator norm ||M||o, is equal to the ¢*°
norm

(265) M llop = max A

of the eigenvalues \i,..., A, € R of M. On the other hand, we have the
standard linear algebra identity

and more generally
tr(MF) =" Ak,
i=1
In particular, if k = 2,4, ... is an even integer, then tr(M*)!/¥ is just the ¢
norm of these eigenvalues, and we have the inequalities

k k k
(2.66) M |lop, < tr(MF) < nl|M]|g,.

To put this another way, knowledge of the k™ moment tr(A/*) controls the
operator norm up to a multiplicative factor of n'/*. Taking larger and larger

k, we should thus obtain more accurate control on the operator norm®®.

18This is also the philosophy underlying the power method in numerical linear algebra.
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Remark 2.3.12. In most cases, one expects the eigenvalues to be reason-
ably uniformly distributed, in which case the upper bound in (2.66) is closer
to the truth than the lower bound. One scenario in which this can be rigor-
ously established is if it is known that the eigenvalues of M all come with a
high multiplicity. This is often the case for matrices associated with group
actions (particularly those which are quasirandom in the sense of Gowers
[G02008]). However, this is usually not the case with most random matrix
ensembles, and we must instead proceed by increasing k as described above.

Let’s see how this method works in practice. The simplest case is that
of the second moment tr(M?), which in the Hermitian case works out to

n n
2 2
=D > l&lP = IIM|3-
i=1 j=1
Note that (2.63) is just the & = 2 case of the lower inequality in (2.66), at
least in the Hermitian case.

The expression ), Z?:l |fij|2 is easy to compute in practice. For
instance, for the symmetric Bernoulli ensemble, this expression is exactly
equal to n?. More generally, if we have a Wigner matrix in which all off-
diagonal entries have mean zero and unit variance, and the diagonal entries
have mean zero and bounded variance (this is the case for instance for GOE),
then the off-diagonal entries have mean 1, and by the law of large numbers'?
we see that this expression is almost surely asymptotic to n?.

From the weak law of large numbers, we see, in particular, that one has

(2.67) ZZ 16517 = (1+ o(1))n”

i=1 j=1

asymptotically almost surely.

Exercise 2.3.6. If the &; have uniformly sub-exponential tail, show that
we in fact have (2.67) with overwhelming probability.

Applying (2.66), we obtain the bounds

(2.68) (14 o(1)vn < [[M[lop < (1 +0(1))n

asymptotically almost surely. This is already enough to show that the me-
dian of || M||p is at least (140(1))/n, which complements (up to constants)
the upper bound of O(y/n) obtained from the epsilon net argument. But
the upper bound here is terrible; we will need to move to higher moments
to improve it.

19There is of course a dependence between the upper triangular and lower triangular entries,
but this is easy to deal with by folding the sum into twice the upper triangular portion (plus the
diagonal portion, which is lower order).
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Accordingly, we now turn to the fourth moment. For simplicity let us
assume that all entries §;; have zero mean and unit variance. To control
moments beyond the second moment, we will also assume that all entries
are bounded in magnitude by some K. We expand

4
tr(M”) = D GiniisGiziainin-
1<i1,42,13,24<n
To understand this expression, we take expectations:
4
Etr(M”") = > BliiSiisbisiaiir-
1<i1,i2,13,54<n
One can view this sum graphically, as a sum over length four cycles in the
vertex set {1,...,n}; note that the four edges {i1,i2}, {i2, 93}, {i3, 94}, {i4, 01}
are allowed to be degenerate if two adjacent &; are equal. The value of each
term

(269) Egiliz §i2i3§i3i4§i4i1
in this sum depends on what the cycle does.

First, there is the case when all of the four edges {i1, 42}, {i2,3}, {i3,74},
{i4,11} are distinct. Then the four factors & i,,...,&i,i, are independent;
since we are assuming them to have mean zero, the term (2.69) vanishes.
Indeed, the same argument shows that the only terms that do not vanish are
those in which each edge is repeated at least twice. A short combinatorial
case check then shows that, up to cyclic permutations of the iq,i9,13,%4
indices there are now only a few types of cycles in which the term (2.69)
does not automatically vanish:

(i) i1 = i3, but ig,i4 are distinct from each other and from ;.
(11) ’L'1 = ig and iQ == i4.

(iii) 43 = 9 = i3, but iy is distinct from ;.

(iV) ’il = ’ig = ’i3 = ’i4.

In the first case, the independence and unit variance assumptions tell us
that (2.69) is 1, and there are O(n3) such terms, so the total contribution
here to Etr(M*) is at most O(n®). In the second case, the unit variance
and bound by K tells us that the term is O(K?), and there are O(n?) such
terms, so the contribution here is O(n?K?). Similarly, the contribution of
the third type of cycle is O(n?), and the fourth type of cycle is O(nK?), so
we can put it all together to get

Etr(M*) < O(n?) + O(n*K?).
In particular, if we make the hypothesis K = O(y/n), then we have

Etr(M*) < 0(n?),
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and thus by Markov’s inequality (1.13) we see that for any e > 0, tr(M*) <
O-(n?) with probability at least 1 — . Applying (2.66), this leads to the
upper bound

1M]lop < O=(n**)
with probability at least 1 — €; a similar argument shows that for any fixed
€ > 0, one has

[1M]lop < 0?1

with high probability. This is better than the upper bound obtained from
the second moment method, but still non-optimal.

Exercise 2.3.7. If K = o(y/n), use the above argument to show that
(EIIMII5) " = (2% + o(1)v/n,

which in some sense improves upon (2.68) by a factor of 21/4_ In particular,
if K = O(1), conclude that the median of || M||op is at least (21/4 +o(1))/n.

Now let us take a quick look at the sixth moment, again with the running
assumption of a Wigner matrix in which all entries have mean zero, unit
variance, and bounded in magnitude by K. We have

Etr(MG) = Z thiz .- '§i5i6€i6i17
1<iy,...,ig<n
a sum over cycles of length 6 in {1,...,n}. Again, most of the summands
here vanish; the only ones which do not are those cycles in which each edge
occurs at least twice (so in particular, there are at most three distinct edges).

Classifying all the types of cycles that could occur here is somewhat
tedious, but it is clear that there are going to be O(1) different types of
cycles. But we can organise things by the multiplicity of each edge, leaving
us with four classes of cycles to deal with:

(i) Cycles in which there are three distinct edges, each occurring two
times.

(ii) Cycles in which there are two distinct edges, one occurring twice
and one occurring four times.

(iii) Cycles in which there are two distinct edges, each occurring three

times20.

(iv) Cycles in which a single edge occurs six times.
It is not hard to see that summands coming from the first type of cycle

give a contribution of 1, and there are O(n*) of these (because such cycles
span at most four vertices). Similarly, the second and third types of cycles

20 Actually, this case ends up being impossible, due to a “bridges of Konigsberg” type of
obstruction, but we will retain it for this discussion.



2.3. Operator norm 119

give a contribution of O(K?) per summand, and there are O(n?) summands;
finally, the fourth type of cycle gives a contribution of O(K*), with O(n?)
summands. Putting this together we see that

Etr(M°% < O(n') + O(n3K?) + O(n*K*);
so, in particular, if we assume K = O(y/n) as before, we have
Etr(M®%) < O(n%)
and if we then use (2.66) as before we see that
[M|lop < O0-(n/?)

with probability 1 — ¢, for any € > 0; so we are continuing to make progress
towards what we suspect (from the epsilon net argument) to be the correct
bound of n'/2.

Exercise 2.3.8. If K = o(y/n), use the above argument to show that
(BIM5,)"0 = (50 + o(1)V/n.

In particular, if K = O(1), conclude that the median of ||M]|op is at least
(5'/6 + 0(1))y/n. Thus this is a (slight) improvement over Exercise 2.3.7.

Let us now consider the general k™ moment computation under the
same hypotheses as before, with k an even integer, and make some modest
attempt to track the dependency of the constants on k. Again, we have

(2.70) Etr(M") = Y B, L,

1<i1,nyin <n
which is a sum over cycles of length k. Again, the only non-vanishing ex-
pectations are those for which each edge occurs twice; in particular, there
are at most k/2 edges, and thus at most k/2 4 1 vertices.

We divide the cycles into various classes, depending on which edges are
equal to each other. (More formally, a class is an equivalence relation ~
on a set of k labels, say {1,...,k} in which each equivalence class contains
at least two elements, and a cycle of k edges {i1,i2},..., {ir, 41} lies in the
class associated to ~ when we have that {i;,i;41} = {ij, 1541} iff j ~ j',
where we adopt the cyclic notation ig11 := i;.)

How many different classes could there be? We have to assign up to k/2
labels to k edges, so a crude upper bound here is (k/2).

Now consider a given class of cycle. It has j edges e1,...,e; for some
1 < j < k/2, with multiplicities a1, ..., aj, where ai,...,a; are at least 2
and add up to k. The j edges span at most j+ 1 vertices; indeed, in addition
to the first vertex i1, one can specify all the other vertices by looking at the
first appearance of each of the j edges eq,...,e; in the path from 41 to i,
and recording the final vertex of each such edge. From this, we see that the
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total number of cycles in this particular class is at most n/*!. On the other
hand, because each §;; has mean zero, unit variance, and is bounded by K,
the a'® moment of this coefficient is at most K*~2 for any a > 2. Thus each
summand in (2.70) coming from a cycle in this class has magnitude at most

Ka1—2 B .Kaj_2 — Ka1+~--+aj—2j — Kk_Qj.

Thus the total contribution of this class to (2.70) is n/T'K*=2/ which we
can upper bound by

max(n%H, n?K*2) = nF/2+ max(1, K /v/n)* 2.

Summing up over all classes, we obtain the (somewhat crude) bound

Etr(M*) < (k/2)Fn* 2 max(1, K/v/n)*2
and thus by (2.66),

Bl M %, < (k/2)n*/> max(1, K/y/n)*2
and so by Markov’s inequality (1.13) we have

P([Mllop > A) < A5 (k/2)F 0> max(1, K/v/n)2

for all A > 0. This, for instance, places the median of | M|, at

O(n**ky/nmax(1, K//n)).
We can optimise this in k by choosing k£ to be comparable to logn, and
so we obtain an upper bound of O(y/nlognmax(1, K//n)) for the me-
dian; indeed, a slight tweaking of the constants tells us that [[M|op, =
O(y/nlognmax(1, K/y/n)) with high probability.
The same argument works if the entries have at most unit variance rather
than unit variance, thus we have shown

Proposition 2.3.13 (Weak upper bound). Let M be a random Hermitian
matriz, with the upper triangular entries &, i < j being independent with
mean zero and variance at most 1, and bounded in magnitude by K. Then
| M |lop = O(y/nlognmax(1, K/\/n)) with high probability.

When K < y/n, this gives an upper bound of O(y/nlogn), which is still
off by a logarithmic factor from the expected bound of O(y/n). We will
remove this logarithmic loss later in this section.

2.3.5. Computing the moment to top order. Now let us consider the
case when K = o(y/n), and each entry has variance exactly 1. We have an
upper bound

Etr(MF) < (k/2)knk/2+1,
let us try to get a more precise answer here (as in Exercises 2.3.7, 2.3.8).
Recall that each class of cycles contributed a bound of n/t1K*=27 to this
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expression. If K = o(y/n), we see that such expressions are oy (n¥/2*1)
whenever j < k/2, where the ox() notation means that the decay rate as
n — oo can depend on k. So the total contribution of all such classes is
O (nk/2+1).

Now we consider the remaining classes with 7 = k/2. For such classes,
each equivalence class of edges contains exactly two representatives, thus
each edge is repeated exactly once. The contribution of each such cycle to
(2.70) is exactly 1, thanks to the unit variance and independence hypothe-
sis. Thus, the total contribution of these classes to Etr(M¥) is equal to a
purely combinatorial quantity, namely the number of cycles of length k£ on
{1,...,n} in which each edge is repeated exactly once, yielding k/2 unique
edges. We are thus faced with the enumerative combinatorics problem of
bounding this quantity as precisely as possible.

With k/2 edges, there are at most k/2+1 vertices traversed by the cycle.
If there are fewer than k/2 + 1 vertices traversed, then there are at most
Or(nF/?) = 0, (n*/?*1) cycles of this type, since one can specify such cycles
by identifying up to k/2 vertices in {1,...,n} and then matching those
coordinates with the k vertices of the cycle. So we set aside these cycles,
and only consider those cycles which traverse exactly k/241 vertices. Let us
call such cycles (i.e., cycles of length k with each edge repeated exactly once,
and traversing exactly k/2 + 1 vertices) non-crossing cycles of length k in
{1,...,n}. Our remaining task is then to count the number of non-crossing
cycles.

Example 2.3.14. Let a,b,c¢,d be distinct elements of {1,...,n}. Then
(i1,...,16) = (a,b,c,d, c,b) is a non-crossing cycle of length 6, as is (a, b, a,
¢,a,d). Any cyclic permutation of a non-crossing cycle is again a non-
crossing cycle.

Exercise 2.3.9. Show that a cycle of length k is non-crossing if and only
if there exists a tree?! in {1,...,n} of k/2 edges and k/2 + 1 vertices, such
that the cycle lies in the tree and traverses each edge in the tree exactly
twice.

Exercise 2.3.10. Let iq,...,14; be a cycle of length k. Arrange the integers
1,...,k around a circle. Whenever 1 < a < b < k are such that i, = i, with
no ¢ between a and b for which i, = i. = i3, draw a line segment between a
and b. Show that the cycle is non-crossing if and only if the number of line
segments is exactly k/2 — 1, and the line segments do not cross each other.
This may help explain the terminology “non-crossing”.

21In graph theory, a tree is a finite collection of vertices and (undirected) edges between
vertices, which do not contain any cycles.
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Now we can complete the count. If k is a positive even integer, define
a Dyck word?? of length k to be the number of words consisting of left and
right parentheses (, ) of length k, such that when one reads from left to
right, there are always at least as many left parentheses as right parentheses
(or in other words, the parentheses define a valid nesting). For instance, the
only Dyck word of length 2 is (), the two Dyck words of length 4 are (())
and ()(), and the five Dyck words of length 6 are

000, (DO, 00), (00), (O,

and so forth.

Lemma 2.3.15. The number of non-crossing cycles of length k in {1,...,n}
is equal to Cyjon(n —1)...(n — k/2), where Cy/y is the number of Dyck
words of length k. (The number Cy, 5 is also known as the (k/2)™ Catalan
number. )

Proof. We will give a bijective proof. Namely, we will find a way to store a
non-crossing cycle as a Dyck word, together with an (ordered) sequence of
k/2 + 1 distinct elements from {1,...,n}, in such a way that any such pair
of a Dyck word and ordered sequence generates exactly one non-crossing
cycle. This will clearly give the claim.

So, let us take a non-crossing cycle i1, ..., ix. We imagine traversing this
cycle from #; to 79, then from 49 to i3, and so forth until we finally return
to i1 from ;. On each leg of this journey, say from i; to 741, we either
use an edge that we have not seen before, or else we are using an edge for
the second time. Let us say that the leg from ¢; to i;41 is an innovative leg
if it is in the first category, and a returning leg otherwise. Thus there are
k/2 innovative legs and k/2 returning legs. Clearly, it is only the innovative
legs that can bring us to vertices that we have not seen before. Since we
have to visit k£/2 + 1 distinct vertices (including the vertex i; we start at),
we conclude that each innovative leg must take us to a new vertex. We
thus record, in order, each of the new vertices we visit, starting at ¢; and
adding another vertex for each innovative leg; this is an ordered sequence of
k/2 4 1 distinct elements of {1,...,n}. Next, traversing the cycle again, we
write a ( whenever we traverse an innovative leg, and a ) otherwise. This is
clearly a Dyck word. For instance, using the examples in Example 2.3.14,
the non-crossing cycle (a, b, ¢, d, ¢, b) gives us the ordered sequence (a, b, ¢, d)
and the Dyck word ((())), while (a, b, a, ¢, a,d) gives us the ordered sequence
(a,b, ¢, d) and the Dyck word ()()().

We have seen that every non-crossing cycle gives rise to an ordered
sequence and a Dyck word. A little thought shows that the cycle can be

22Dyck words are also closely related to Dyck paths in enumerative combinatorics.
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uniquely reconstructed from this ordered sequence and Dyck word (the key
point being that whenever one is performing a returning leg from a vertex
v, one is forced to return along the unique innovative leg that discovered v).
A slight variant of this thought also shows that every Dyck word of length k
and ordered sequence of k/2+1 distinct elements gives rise to a non-crossing
cycle. This gives the required bijection, and the claim follows. ([

Next, we recall the classical formula for the Catalan number:

Exercise 2.3.11. Establish the recurrence
n
Chy1 = Z CiCh—i
i=0

for any n > 1 (with the convention Cy = 1), and use this to deduce that

k!

(2.71) 2= TR

for all k =2,4,6,....

Exercise 2.3.12. Let k be a positive even integer. Given a string of k/2
left parentheses and k/2 right parentheses which is not a Dyck word, define
the reflection of this string by taking the first right parenthesis which does
not have a matching left parenthesis, and then reversing all the parentheses
after that right parenthesis. Thus, for instance, the reflection of ())(() is
())))(. Show that there is a bijection between non-Dyck words with k/2 left
parentheses and k/2 right parentheses, and arbitrary words with k/2 — 1
left parentheses and k/2 + 1 right parentheses. Use this to give an alternate
proof of (2.71).

Note that n(n —1)...(n — k/2) = (1 + o(1))n*/?*1. Putting all the
above computations together, we conclude

Theorem 2.3.16 (Moment computation). Let M be a real symmetric ran-
dom matriz, with the upper triangular elements &5, i < j jointly independent
with mean zero and variance one, and bounded in magnitude by o(y/n). Let
k be a positive even integer. Then we have

E tr(M*) = (Cyjz + ox(1))n"/**!
where Cy 5 is given by (2.71).

Remark 2.3.17. An inspection of the proof also shows that if we allow the
&ij to have variance at most one, rather than equal to one, we obtain the
upper bound

Etr(M") < (Cy/z + og(1))n*/ >,
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Exercise 2.3.13. Show that Theorem 2.3.16 also holds for Hermitian ran-
dom matrices. (Hint: The main point is that with non-crossing cycles,
each non-innovative leg goes in the reverse direction to the corresponding
innovative leg—why?)

Remark 2.3.18. Theorem 2.3.16 can be compared with the formula
ES* = (C 5 + ox(1))n"?

derived in Section 2.1, where S = X + - - - + X, is the sum of n iid random
variables of mean zero and variance one, and

k!
/ -
Chyz = 2k/2(J /2)1

Exercise 2.3.10 shows that C} /5 can be interpreted as the number of ways
to join k points on the circle by k/2 — 1 non-crossing chords. In a similar
vein, Cj, /o Can be interpreted as the number of ways to join k points on the
circle by k/2 chords which are allowed to cross each other (except at the
endpoints). Thus moments of Wigner-type matrices are in some sense the
“non-crossing” version of moments of sums of random variables. We will
discuss this phenomenon more when we turn to free probability in Section
2.5.

Combining Theorem 2.3.16 with (2.66) we obtain a lower bound
E|[ M5, > (Cryz + ox(1))n"/2.

In the bounded case K = O(1), we can combine this with Exercise 2.3.5 to

conclude that the median (or mean) of || M]||op is at least (C’;/k + 0x(1))v/n.

/2
On the other hand, from Stirling’s formula (Section 1.2) we see that C;;];
converges to 2 as k — oo. Taking k to be a slowly growing function of n, we

conclude

Proposition 2.3.19 (Lower Bai-Yin theorem). Let M be a real symmetric
random matriz, with the upper triangular elements &;;, i < j jointly indepen-
dent with mean zero and variance one, and bounded in magnitude by O(1).
Then the median (or mean) of | M ||op is at least (2 — o(1))y/n.

Remark 2.3.20. One can in fact obtain an exact asymptotic expansion of
the moments E tr(M*) as a polynomial in n, known as the genus expansion
of the moments. This expansion is, however, somewhat difficult to work
with from a combinatorial perspective (except at top order) and will not be
used here.
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2.3.6. Removing the logarithm. The upper bound in Proposition 2.3.13
loses a logarithm in comparison to the lower bound coming from Theorem
2.3.16. We now discuss how to remove this logarithm.

Suppose that we could eliminate the o (1) error in Theorem 2.3.16. Then
from (2.66) we would have

EHMHISp S Ck/gnk/2+1
and hence by Markov’s inequality (1.13),
P(|[M|lop > A) < /\_ka/2nk/2+1.

Applying this with A\ = (2 + &)/n for some fixed € > 0, and setting k to be
a large multiple of logn, we see that || M||op < (2+ O(e))y/n asymptotically
almost surely, which on selecting € to go to zero slowly in n gives in fact that
[ Mllop < (2 + o(1))y/n asymptotically almost surely, thus complementing
the lower bound in Proposition 2.3.19.

This argument was not rigorous because it did not address the og(1)
error. Without a more quantitative accounting of this error, one cannot set
k as large as logn without losing control of the error terms; and indeed, a
crude accounting of this nature will lose factors of k* which are unacceptable.
Nevertheless, by tightening the hypotheses a little bit and arguing more
carefully, we can get a good bound, for & in the region of interest:

Theorem 2.3.21 (Improved moment bound). Let M be a real symmetric
random matriz, with the upper triangular elements &, © < j jointly inde-
pendent with mean zero and variance one, and bounded in magnitude by
O(n%%9) (say). Let k be a positive even integer of size k = O(log®n) (say).
Then we have

E tr(M*) = Ck/an/2+1 I O(kO(l)ank/Q—l-O.QS)

where Cy, o is given by (2.71). In particular, from the trivial bound Cy,jo < 2k
(which is obvious from the Dyck words definition) one has
(2.72) Etr(MF) < (24 o(1))knk/2+1,

One can of course adjust the parameters n%* and log?n in the above
theorem, but we have tailored these parameters for our application to sim-
plify the exposition slightly.

Proof. We may assume n large, as the claim is vacuous for bounded n.

We again expand using (2.70), and discard all the cycles in which there
is an edge that only appears once. The contribution of the non-crossing
cycles was already computed in the previous section to be

Crjon(n —1)...(n—k/2),
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which can easily be computed (e.g., by taking logarithms, or using Stirling’s
formula) to be (C /o + 0(1))n*/2*1 So the only task is to show that the net
contribution of the remaining cycles is O(k:o(l)ank/ 2+0.98)

Consider one of these cycles (i1, ...,14); it has j distinct edges for some
1 < j <k/2 (with each edge repeated at least once).

We order the j distinct edges eq,...,e; by their first appearance in the
cycle. Let aq,...,a; be the multiplicities of these edges, thus the a1, ..., q;
are all at least 2 and add up to k. Observe from the moment hypotheses that
the moment E|¢;;|* is bounded by O(n%49)¢=2 for a > 2. Since aj+- - -+a; =
k, we conclude that the expression

E&iyiy - - Siria

in (2.70) has magnitude at most O(n%4%)*=2/and so the net contribution

of the cycles that are not non-crossing is bounded in magnitude by

k/2
(2.73) > OmNET N Ny,

7=1 al,y...,Qj5
where a1, ..., a; range over integers that are at least 2 and which add up to
k, and Ng, . q; is the number of cycles that are not non-crossing and have j
distinct edges with multiplicity a1, ..., a; (in order of appearance). It thus
suffices to show that (2.73) is O(kO(1)2kpk/2+0.98)

Next, we estimate Ny, o, for afixed ay,...,a;. Givenacycle (i1, .y i),

we traverse its k legs (which each traverse one of the edges eq,...,e;) one

at a time and classify them into various categories:

(i) High-multiplicity legs, which use an edge e; whose multiplicity a; is
larger than two.

(ii) Fresh legs, which use an edge e; with a; = 2 for the first time.

(iii) Return legs, which use an edge e; with a; = 2 that has already been
traversed by a previous fresh leg.

We also subdivide fresh legs into innovative legs, which take one to a
vertex one has not visited before, and non-innovative legs, which take one
to a vertex that one has visited before.

At any given point in time when traversing this cycle, we define an
available edge to be an edge e; of multiplicity a; = 2 that has already been
traversed by its fresh leg, but not by its return leg. Thus, at any given point
in time, one travels along either a high-multiplicity leg, a fresh leg (thus
creating a new available edge), or one returns along an available edge (thus
removing that edge from availability).
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Call a return leg starting from a vertex v forced if, at the time one is
performing that leg, there is only one available edge from v, and unforced
otherwise (i.e., there are two or more available edges to choose from).

We suppose that there are [ := #{1 < i < j : a; > 2} high-multiplicity
edges among the ey, ..., e;, leading to j — [ fresh legs and their j — [ return
leg counterparts. In particular, the total number of high-multiplicity legs is

(2.74) Y ai=k-2(-1).

a;>2
Since Y a;>2 @i = 31, we conclude the bound

(2.75) 1< k—2j.

We assume that there are m non-innovative legs among the j — [ fresh
legs, leaving j — | — m innovative legs. As the cycle is not non-crossing, we
either have j < k/2 or m > 0.

Similarly, we assume that there are r unforced return legs among the
j — I total return legs. We have an important estimate:

Lemma 2.3.22 (Not too many unforced return legs). We have

r<2(m+ Zai).

a;>2
In particular, from (2.74), (2.75), we have
r < O(k —2j) + O(m).

Proof. Let v be a vertex visited by the cycle which is not the initial vertex
i1. Then the very first arrival at v comes from a fresh leg, which immediately
becomes available. Each departure from v may create another available edge
from v, but each subsequent arrival at v will delete an available leg from
v, unless the arrival is along a non-innovative or high-multiplicity edge?3.
Finally, any returning leg that departs from v will also delete an available
edge from wv.

This has two consequences. First, if there are no non-innovative or high-
multiplicity edges arriving at v, then whenever one arrives at v, there is at
most one available edge from v, and so every return leg from v is forced (and
there will be only one such return leg). If, instead, there are non-innovative
or high-multiplicity edges arriving at v, then we see that the total number
of return legs from v is at most one plus the number of such edges. In
both cases, we conclude that the number of unforced return legs from v is
bounded by twice the number of non-innovative or high-multiplicity edges
arriving at v. Summing over v, one obtains the claim. O

23Note that one can loop from v to itself and create an available edge, but this is along a
non-innovative edge and so is not inconsistent with the previous statements.
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Now we return to the task of counting Nal,.,,@j, by recording various
data associated to any given cycle (i1, ...,ix) contributing to this number.
First, fix m,r. We record the initial vertex iy of the cycle, for which there are
n possibilities. Next, for each high-multiplicity edge e; (in increasing order
of i), we record all the a; locations in the cycle where this edge is used;
the total number of ways this can occur for each such edge can be bounded
above by k%, so the total entropy cost here is f2ai>2% = h=20-D_ We also
record the final endpoint of the first occurrence of the edge e; for each such
i; this list of I vertices in {1,...,n} has at most n' possibilities.

For each innovative leg, we record the final endpoint of that leg, leading
to an additional list of j — [ — m vertices with at most n/ =™ possibilities.

For each non-innovative leg, we record the position of that leg, leading
to a list of m numbers from {1,...,k}, which has at most £ possibilities.

For each unforced return leg, we record the position of the corresponding
fresh leg, leading to a list of » numbers from {1,...,k}, which has at most
k™ possibilities.

Finally, we record a Dyck-like word of length k, in which we place
a ( whenever the leg is innovative, and ) otherwise (the brackets need not
match here). The total entropy cost here can be bounded above by 2.

We now observe that all this data (together with I, m,r) can be used to
completely reconstruct the original cycle. Indeed, as one traverses the cycle,
the data already tells us which edges are high-multiplicity, which ones are
innovative, which ones are non-innovative, and which ones are return legs.
In all edges in which one could possibly visit a new vertex, the location of
that vertex has been recorded. For all unforced returns, the data tells us
which fresh leg to backtrack upon to return to. Finally, for forced returns,
there is only one available leg to backtrack to, and so one can reconstruct
the entire cycle from this data.

As a consequence, for fixed [, m and r, there are at most
nkk—Q(j—l)nlnj—l—mkmkrzk
contributions to Ny, ... q;; using (2.75), (2.3.22) we can bound this by

LO(k=25)+0(m)  j—m+1ok

Summing over the possible values of m,r (recalling that we either have
j < k/2 or m >0, and also that & = O(log®n)) we obtain

Nal,...,aj < kO(k—2j)+O(1)nmax(j+1,k/2)2k'
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The expression (2.73) can then be bounded by

k/2
ok Z O(n0.49)k—2jk,o(k-2j)+0(1)nmax(j+1,k/2) Z L
]:1 a1,...,a]-

When j is exactly k/2, then all the ai,...,a; must equal 2, and so the
contribution of this case simplifies to 28k9Mn*/2. For j < k/2, the numbers
a1 — 2,...,a; — 2 are non-negative and add up to k — 25, and so the total
number of possible values for these numbers (for fixed j) can be bounded
crudely by j*72 < k*=2 (for instance). Putting all this together, we can
bound (2.73) by

k/2—1
2k[k0(1)nk/2+ Z O(n0'49)k_2jko<k_2j)+0(1)nj+1kk_2j],
j=1

which simplifies by the geometric series formula (and the hypothesis k£ =
O(log®n)) to
O(QkkO(l)nk/Q-‘rO.QS)’

as required. ([l

We can use this to conclude the following matching upper bound to
Proposition 2.3.19, due to Bai and Yin [BaYil988|:

Theorem 2.3.23 (Weak Bai-Yin theorem, upper bound). Let M =
(&ij)1<ij<n be a real symmetric matriz whose entries all have the same dis-
tribution &, with mean zero, variance one, and fourth moment O(1). Then
for every e > 0 independent of n, one has | M ||op < (2+¢€)/n asymptotically
almost surely. In particular, | M|lop < (2 + o(1))y/n asymptotically almost
surely; as another consequence, the median of || M||op is at most (2+o(1))y/n.
(If € is bounded, we see, in particular, from Proposition 2.3.19 that the me-
dian is in fact equal to (2 + o(1))y/n.)

The fourth moment hypothesis is best possible, as seen in the discussion
after Theorem 2.3.8. We will discuss some generalisations and improvements
of this theorem in other directions below.

Proof. To obtain Theorem 2.3.23 from Theorem 2.3.21 we use the trunca-
tion method. We split each &;; as §;; <,,049 + &5 w049 in the usual manner,
and split M = M 040 + M-, ,,0.40 accordingly. We would like to apply The-
orem 2.3.21 to M;no,z;g, but unfortunately the truncation causes some slight
adjustment to the mean and variance of the &ij<no49. The variance is not
much of a problem; since §;; had variance 1, it is clear that &;; <040 has
variance at most 1, and it is easy to see that reducing the variance only
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serves to improve the bound (2.72). As for the mean, we use the mean zero
nature of &;; to write

Egij7én0.49 — _Egij,>n0'49'

To control the right-hand side, we use the trivial inequality [&;; <,0.40] <
n=3%0-49|¢,.|* and the bounded fourth moment hypothesis to conclude that

Efijéno‘zlg = O(n71'47).

Thus we can write Mc,,049 = Mcy049 + EMc 049, where Mc,049 is the
random matrix with coeflicients

gij,SnOAQ = gij,§n0~49 - Efij,§n0~49

and EM,0.40 is a matrix whose entries have magnitude O(n=%47). In par-
ticular, by Schur’s test this matrix has operator norm O(n~=%47), and so by
the triangle inequality

[ M ||op < HMSnO-‘*g llop + [|Ms0.49]|op + O(n_0'47)_

The error term O(n~%47)

to show that

is clearly negligible for n large, and it will suffice

(2.76) ||M§no.49||op < (2+¢/3)v/n
and
(2.77) 1Mo 019 op < g\/ﬁ

asymptotically almost surely.
We first show (2.76). We can now apply Theorem 2.3.21 to conclude
that )
E||Mc,00 %, < (2+ o(1))fn™/27!
for any k = O(log? n). In particular, we see from Markov’s inequality (1.13)
that (2.76) holds with probability at most

Setting k to be a large enough multiple of logn (depending on ¢), we thus
see that this event (2.76) indeed holds asymptotically almost surely?*.

Now we turn to (2.77). The idea here is to exploit the sparseness of the
matrix M- ,0.40. First let us dispose of the event that one of the entries &;;
has magnitude larger than §./n (which would certainly cause (2.77) to fail).
By the union bound, the probability of this event is at most

n?P (¢ = Svi).

24Indeed, one can ensure it happens with overwhelming probability, by letting k/logn grow
slowly to infinity.
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By the fourth moment bound on £ and dominated convergence, this expres-
sion goes to zero as n — co. Thus, asymptotically almost surely, all entries
are less than §./n.

Now let us see how many non-zero entries there are in M. ,040. By
Markov’s inequality (1.13) and the fourth moment hypothesis, each entry
has a probability O(n=**%49) = O(n=196) of being non-zero; by the first
moment method, we see that the expected number of entries is O(n%%4). As
this is much less than n, we expect it to be unlikely that any row or column
has more than one entry. Indeed, from the union bound and independence,
we see that the probability that any given row and column has at least two
non-zero entries is at most

n2 % O(n—1.96)2 — O(n—1.92)

and so by the union bound again, we see that with probability at least
1—0O(n™%%92) (and in particular, asymptotically almost surely), none of the
rows or columns have more than one non-zero entry. As the entries have
magnitude at most £+/n, the bound (2.77) now follows from Schur’s test,
and the claim follows. O

We can upgrade the asymptotic almost sure bound to almost sure bound-
edness:

Theorem 2.3.24 (Strong Bai-Yin theorem, upper bound). Let £ be a real
random variable with mean zero, variance 1, and finite fourth moment, and
for all 1 < @ < j, let &; be an iid sequence with distribution &, and set
&ji = &j. Let My := (&j)1<ij<n be the random matriz formed by the top
left n x n block. Then almost surely one has limsup,,_, o || Mp|lop/v/n < 2.

Exercise 2.3.14. By combining the above results with Proposition 2.3.19
and Exercise 2.3.5, show that with the hypotheses of Theorem 2.3.24 with
¢ bounded, one has limy, o0 || My |op/+v/7 = 2 almost surely?®.

Proof. We first give ourselves an epsilon of room (cf. [Ta2010, §2.7]). It
suffices to show that for each € > 0, one has

(2.78) limsup || My|lop/vVn < 2+¢
n—oo

almost surely.

Next, we perform dyadic sparsification (as was done in the proof of the
strong law of large numbers, Theorem 2.1.8). Observe that any minor of
a matrix has its operator norm bounded by that of the larger matrix, and
s0 || My, ||lop is increasing in n. Because of this, it will suffice to show (2.78)
almost surely for n restricted to a lacunary sequence, such as n = n,, :=

25The same claim is true without the boundedness hypothesis; we will see this in Section 2.4.



132 2. Random matrices

|(14¢€)™] for m =1,2,..., as the general case then follows by rounding n
upwards to the nearest n,, (and adjusting ¢ a little bit as necessary).

Once we sparsified, it is now safe to apply the Borel-Cantelli lemma
(Exercise 1.1.1), and it will suffice to show that

oo

S P (| Mo, llop = 2+ €)yitm) < .

m=1
To bound the probabilities P(||Mp,,|lop > (2+€)/Mm), we inspect the proof
of Theorem 2.3.23. Most of the contributions to this probability decay poly-
nomially in n,, (i.e., are of the form O(n,°) for some ¢ > 0) and so are
summable. The only contribution which can cause difficulty is the contribu-
tion of the event that one of the entries of M, exceeds %M in magnitude;
this event was bounded by

n2P(e] = S vim).

But if one sums over m using Fubini’s theorem and the geometric series
formula, we see that this expression is bounded by O.(E|¢|*), which is finite
by hypothesis, and the claim follows. (I

Now we discuss some variants and generalisations of the Bai-Yin result.

First, we note that the results stated above require the diagonal and
off-diagonal terms to have the same distribution. This is not the case for
important ensembles such as the Gaussian Orthogonal Ensemble (GOE), in
which the diagonal entries have twice as much variance as the off-diagonal
ones. But this can easily be handled by considering the diagonal separately.
For instance, consider a diagonal matrix D = diag(&i1, ..., &) where the
& = € are identically distributed with finite second moment. The operator
norm of this matrix is just sup;<;<,, |&il, and so by the union bound

P(||D]lop > ev/n) < nP([¢] > ev/n).

From the finite second moment and dominated convergence, the right-hand
side is 0.(1), and so we conclude that for every fixed € > 0, || D|op < ey/n
asymptotically almost surely; diagonalising, we conclude that ||Dllop =
o(y/n) asymptotically almost surely. Because of this and the triangle in-
equality, we can modify the diagonal by any amount with identical distribu-
tion and bounded second moment (a similar argument also works for non-
identical distributions if one has uniform control of some moment beyond
the second, such as the fourth moment) while only affecting all operator

norms by o(y/n).

Exercise 2.3.15. Modify this observation to extend the weak and strong
Bai-Yin theorems to the case where the diagonal entries are allowed to have
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different distribution than the off-diagonal terms, and need not be indepen-
dent of each other or of the off-diagonal terms, but have uniformly bounded
fourth moment.

Second, it is a routine matter to generalise the Bai-Yin result from real
symmetric matrices to Hermitian matrices, basically for the same reasons
that Exercise 2.3.13 works. We leave the details to the interested reader.

The Bai-Yin results also hold for iid random matrices, where &;; = £ has
mean zero, unit variance, and bounded fourth moment; this is a result of
Yin, Bai, and Krishnaiah [YiBaKr1988], building upon the earlier work of
Geman [Gel980]. Because of the lack of symmetry, the eigenvalues need
not be real, and the bounds (2.66) no longer apply. However, there is a
substitute, namely the bound

(2.79) IM1&, < te((MM)M2) < | M5,

valid for any n x n matrix M with complex entries and every even positive
integer k.

Exercise 2.3.16. Prove (2.79).

It is possible to adapt all of the above moment calculations for tr(M*) in
the symmetric or Hermitian cases to give analogous results for tr((M M*)¥/2)
in the non-symmetric cases; we do not give the details here, but mention
that the cycles now go back and forth along a bipartite graph with n vertices
in each class, rather than in the complete graph on n vertices, although this
ends up not affecting the enumerative combinatorics significantly. Another
way of viewing this is through the simple observation that the operator
norm of a non-symmetric matrix M is equal to the operator norm of the
augmented matrix

(2.80) M := (z\g Ag)

which is a 2n x 2n Hermitian matrix. Thus, one can to some extent identify
an n X n iid matrix M with a 2n x 2n Wigner-type matrix M, in which two
n x n blocks of that matrix are set to zero.

Exercise 2.3.17. If M has singular values o1, ...,0,, show that M has
eigenvalues +o01, ..., +0,. This suggests that the theory of the singular val-
ues of an iid matrix should resemble to some extent the theory of eigenvalues
of a Wigner matrix; we will see several examples of this phenomenon in later
sections.

When one assumes more moment conditions on ¢ than bounded fourth
moment, one can obtain substantially more precise asymptotics on tr(M*)
than given by results such as Theorem 2.3.21, particularly if one also assumes
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that the underlying random variable ¢ is symmetric (i.e., { = —§). At a
practical level, the advantage of symmetry is that it allows one to assume
that the high-multiplicity edges in a cycle are traversed an even number of
times; see the following exercise.

Exercise 2.3.18. Let X be a bounded real random variable. Show that X
is symmetric if and only if EX* = 0 for all positive odd integers k.

Next, extend the previous result to the case when X is sub-Gaussian
rather than bounded. (Hint: The slickest way to do this is via the charac-
teristic function e®* and analytic continuation; it is also instructive to find
a “real-variable” proof that avoids the use of this function.)

By using these methods, it is in fact possible to show that under various
hypotheses, ||M||op is concentrated in the range [2¢/n — O(n~1/),2\/n +
O(n~1/9)], and even to get a universal distribution for the normalised ex-
pression (|| M||op —2+v/n)n!/%, known as the Tracy-Widom law. See [S01999]
for details. There have also been a number of subsequent variants and refine-
ments of this result (as well as counterexamples when not enough moment
hypotheses are assumed); see?® [S02004, SoFy2005, Ru2007, Pe2006,
Vu2007, PeS02007, Pe2009, Kh2009, TaVu2009c].

2.4. The semicircular law

We can now turn attention to one of the centerpiece universality results in
random matrix theory, namely the Wigner semicircle law for Wigner ma-
trices. Recall from Section 2.3 that a Wigner Hermitian matriz ensemble is
a random matrix ensemble M, = (&;)1<i j<n of Hermitian matrices (thus
§ij = §_ﬂ, this includes real symmetric matrices as an important special
case), in which the upper-triangular entries &;;, ¢ > j are iid complex ran-
dom variables with mean zero and unit variance, and the diagonal entries
& are iid real variables, independent of the upper-triangular entries, with
bounded mean and variance. Particular special cases of interest include the
Gaussian Orthogonal Ensemble (GOE), the symmetric random sign matrices
(aka symmetric Bernoulli ensemble), and the Gaussian Unitary Ensemble
(GUE).

In Section 2.3 we saw that the operator norm of M,, was typically of size
O(4/n), so it is natural to work with the normalised matrix ﬁMn Accord-

ingly, given any n x n Hermitian matrix M, we can form the (normalised)

26Gimilar results for some non-independent distributions are also available, see e.g., the paper
[DeGi2007], which (like many of the other references cited above) builds upon the original work
of Tracy and Widom [TrWi2002] that handled special ensembles such as GOE and GUE.
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empirical spectral distribution (or ESD for short)

n

1

B, = 5 DO () v

J=1

of M,,, where A1 (M) < --- < \,(M,,) are the (necessarily real) eigenvalues
of M,,, counting multiplicity. The ESD is a probability measure, which can
be viewed as a distribution of the normalised eigenvalues of M,,.

When M, is a random matrix ensemble, then the ESD p L, is now a

random measure; i.e., a random variable?” taking values in the space Pr(R)
of probability measures on the real line.

Now we consider the behaviour of the ESD of a sequence of Hermitian
matrix ensembles M,, as n — co. Recall from Section 1.1 that for any se-
quence of random variables in a o-compact metrisable space, one can define
notions of convergence in probability and convergence almost surely. Spe-
cialising these definitions to the case of random probability measures on R,
and to deterministic limits, we see that a sequence of random ESDs u L,

converge in probability (resp. converge almost surely) to a deterministic limit
u € Pr(R) (which, confusingly enough, is a deterministic probability mea-
sure!) if, for every test function ¢ € C.(R), the quantities [ ¢ dpu 0,

converge in probability (resp. converge almost surely) to fR @ du.
Remark 2.4.1. As usual, convergence almost surely implies convergence
in probability, but not vice versa. In the special case of random probability

measures, there is an even weaker notion of convergence, namely conver-
gence in expectation, defined as follows. Given a random ESD p 1 ,, , one
v

can form its expectation Ep L, € Pr(R), defined via duality (the Riesz

representation theorem) as

dE =E d ;

this probability measure can be viewed as the law of a random eigenvalue
%)\,(Mn) drawn from a random matrix M,, from the ensemble. We then

say that the ESDs converge in expectation to a limit p € Pr(R) if Ep%Mn

converges in the vague topology to u, thus

E/@WL %/ww
R v M R

for all ¢ € C.(R).

27Thus, the distribution of p_1_ Az 1S a probability measure on probability measures!
= Mn
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In general, these notions of convergence are distinct from each other; but
in practice, one often finds in random matrix theory that these notions are
effectively equivalent to each other, thanks to the concentration of measure
phenomenon.

Exercise 2.4.1. Let M, be a sequence of n x n Hermitian matrix ensembles,
and let u be a continuous probability measure on R.

(i) Show that u L, converges almost surely to p if and only if

M%Mn(—oo, A) converges almost surely to u(—oo, A) for all A € R.

(ii) Show that pu L, converges in probability to u if and only if
M%Mn(—oo, A) converges in probability to u(—oo, A) for all A € R.

(iii) Show that 3, converges in expectation to p if and only if

Eu%Mn(—oo, A) converges to u(—oo, A) for all A € R.

We can now state the Wigner semicircular law.

Theorem 2.4.2 (Semicircular law). Let M,, be the top left n x n minors
of an infinite Wigner matriz (&) j>1. Then the ESDs M%Mn converge al-

most surely (and hence also in probability and in expectation) to the Wigner
semicircular distribution
1 1/2
(2.81) o = (4 - )Y da.
The semicircular law nicely complements the upper Bai-Yin theorem
(Theorem 2.3.24), which asserts that (in the case when the entries have finite
fourth moment, at least), the matrices ﬁMn almost surely have operator

norm at most 2+ o0(1). Note that the operator norm is the same thing as the
largest magnitude of the eigenvalues. Because the semicircular distribution
(2.81) is supported on the interval [—2, 2] with positive density on the interior
of this interval, Theorem 2.4.2 easily supplies the lower Bai-Yin theorem,
that the operator norm of %Mn is almost surely at least 2 —o(1), and thus
(in the finite fourth moment case) the norm is in fact equal to 2 + o(1).
Indeed, we have just shown that the semcircular law provides an alternate
proof of the lower Bai-Yin bound (Proposition 2.3.19).

As will become clearer in the Section 2.5, the semicircular law is the
non-commutative (or free probability) analogue of the central limit theorem,
with the semicircular distribution (2.81) taking on the role of the normal
distribution. Of course, there is a striking difference between the two distri-
butions, in that the former is compactly supported while the latter is merely
sub-Gaussian. One reason for this is that the concentration of measure phe-
nomenon is more powerful in the case of ESDs of Wigner matrices than it is
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for averages of iid variables; compare the concentration of measure results
in Section 2.3 with those in Section 2.1.

There are several ways to prove (or at least to heuristically justify) the
semicircular law. In this section we shall focus on the two most popular
methods, the moment method and the Stieltjes transform method, together
with a third (heuristic) method based on Dyson Brownian motion (see Sec-
tion 3.1). In Section 2.5 we shall study the free probability approach, and
in Section 2.6 we will study the determinantal processes method approach
(although this method is initially only restricted to highly symmetric en-
sembles, such as GUE).

2.4.1. Preliminary reductions. Before we begin any of the proofs of the
semicircular law, we make some simple observations which will reduce the
difficulty of the arguments in the sequel.

The first observation is that the Cauchy interlacing law (Exercise 1.3.14)
shows that the ESD of \/— M, is very stable in n. Indeed, we see from the

interlacing law that

n

for any threshold A and any n > m > 0.

Exercise 2.4.2. Using this observation, show that to establish the semicir-
cular law (in any of the three senses of convergence), it suffices to do so for
an arbitrary lacunary sequence ni,ng,... of n (thus n;yi/n; > c for some
¢ > 1 and all j).

The above lacunary reduction does not help one establish convergence
in probability or expectation, but will be useful?® when establishing almost
sure convergence, as it significantly reduces the inefficiency of the union
bound.

Next, we exploit the stability of the ESD with respect to perturbations,
by taking advantage of the Weilandt-Hoffmann inequality

(2.82) ZIAJ(/HB) = NP < IBE

for Hermitian matrices A, B, where ||B||r := (tr B%)'/2 is the Frobenius
norm (2.64) of B; see Exercise 1.3.6 or Exercise 1.3.4. We convert this
inequality into an inequality about ESDs:

28Note that a similar lacunary reduction was also used to prove the strong law of large
numbers, Theorem 2.1.8.
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Lemma 2.4.3. For any n x n Hermitian matrices A, B, any X\, and any
e > 0, we have

Mﬁ(AJrB)(_OO?)‘) St a(-00,Ate)+ 5 2HB||F

Ey

and stmilarly

1 2
M%(AJFB)(_OOM\) 2 11 () (=00, A =€) = 55| Bl

B

Proof. We just prove the first inequality, as the second is similar (and also
follows from the first, by reversing the sign of A, B).

Let \;(A + B) be the largest eigenvalue of A + B less than \\/n, and
let \;(A) be the largest eigenvalue of A less than (A +¢)y/n. Our task is to
show that 1

i <j+ -lIBlE-
If ¢ < j, then we are clearly done, so suppose that ¢ > j. Then we have
IM(A+ B) — N(A)] > ey/n for all j <1 <4, and hence

Y XA+ B) = XA = 2 — j)n.
j=1

The claim now follows from (2.82). O

This has the following corollary:

Exercise 2.4.3 (Stability of ESD laws w.r.t. small perturbations). Let M,
be a sequence of random Hermitian matrix ensembles such that p L, con-

verges almost surely to a limit pu. Let N,, be another sequence of Hermitian
random matrix ensembles such that #HNHHQF converges almost surely to
zero. Show that p_1_ (Mn+N,,) COnverges almost surely to pu.

\/?l n n

Show that the same claim holds if “almost surely” is replaced by “in
probability” or “in expectation” throughout.

Informally, this exercise allows us to discard any portion of the matrix
which is o(n) in the Frobenius norm(2.64). For instance, the diagonal entries
of M,, have a Frobenius norm of O(y/n) almost surely, by the strong law of
large numbers (Theorem 2.1.8). Hence, without loss of generality, we may
set the diagonal equal to zero for the purposes of the semicircular law.

One can also remove any component of M, that is of rank o(n):

Exercise 2.4.4 (Stability of ESD laws w.r.t. small rank perturbations).
Let M, be a sequence of random Hermitian matrix ensembles such that
I LM, converges almost surely to a limit u. Let N, be another sequence of

random matrix ensembles such that %rank(Nn) converges almost surely to
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zero. Show that L (M 4N converges almost surely to p. (Hint: Use the
Weyl inequalities instead of the Wielandt-Hoffman inequality.)

Show that the same claim holds if “almost surely” is replaced by “in
probability” or “in expectation” throughout.

In a similar vein, we may apply the truncation argument (much as was
done for the central limit theorem in Section 2.2) to reduce the semicircular
law to the bounded case:

Exercise 2.4.5. Show that in order to prove the semicircular law (in the al-
most sure sense), it suffices to do so under the additional hypothesis that the
random variables are bounded; similarly, for the convergence in probability
or in expectation senses.

Remark 2.4.4. These facts ultimately rely on the stability of eigenvalues
with respect to perturbations. This stability is automatic in the Hermitian
case, but for non-symmetric matrices, serious instabilities can occur due to
the presence of pseudospectrum. We will discuss this phenomenon more in
later sections (but see also [Ta2009b, §1.5]).

2.4.2. The moment method. We now prove the semicircular law via
the method of moments, which we have already used several times in the
previous sections. In order to use this method, it is convenient to use the
preceding reductions to assume that the coefficients are bounded, the diago-
nal vanishes, and that n ranges over a lacunary sequence. We will implicitly
assume these hypotheses throughout the rest of the section.

As we have already discussed the moment method extensively, much of
the argument here will be delegated to exercises. A full treatment of these
computations can be found in [BaSi2010].

The basic starting point is the observation that the moments of the ESD
I L, can be written as normalised traces of powers of M,:

(2.83) /R:ck iy, () = %tr(%Mn)k.

In particular, on taking expectations, we have
1 1
k k
z" dE z) =E—tr(—M,)".
[ 4" By, () = B2 u(=0,)

From concentration of measure for the operator norm of a random matrix
(Proposition 2.3.10), we see that the Eu L, are uniformly sub-Gaussian;
indeed, we have

Bty {2 > A} < Cem ™
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for A > C, where C,c are absolute (so the decay in fact improves quite
rapidly with n). From this and the Carleman continuity theorem (Theorem
2.2.9), we can now establish the circular law through computing the mean
and variance of moments:

Exercise 2.4.6. (i) Show that to prove convergence in expectation to
the semicircular law, it suffices to show that
1 1
(2.84) B (=M - /Rg;'f djise() + op(1)
for k = 1,2,..., where og(1) is an expression that goes to zero as

n — oo for fixed k (and fixed choice of coefficient distribution &).

(ii) Show that to prove convergence in probability to the semicircular
law, it suffices to show (2.84) together with the variance bound

(2.85) Var(% tr(%Mn)k) — o(1)
fork=1,2,....
(iii) Show that to prove almost sure convergence to the semicircular law,
it suffices to show (2.84) together with the variance bound
1
NG
for k = 1,2,... and some ¢; > 0. (Note here that it is useful to
restrict n to a lacunary sequence!)

(2.86) Var(% fr(— M )F) = Op(n=)

Ordinarily, computing second-moment quantities such as the left-hand
side of (2.85) is harder than computing first-moment quantities such as
(2.84). But one can obtain the required variance bounds from concentration
of measure:

Exercise 2.4.7. (i) When k is a positive even integer, use Talagrand’s
inequality (Theorem 2.1.13) and convexity of the Schatten norm
|Allgx = (tr(A*))Y/* to establish (2.86) (and hence (2.85)) for such
k.

(ii) For k odd, the formula ||A||gx = (tr(A¥))!/* still applies as long
as A is positive definite. Applying this observation, the Bai-Yin
theorem, and Talagrand’s inequality to the S* norms of ﬁMrﬁ-cIn
for a constant ¢ > 2, establish (2.86) (and hence (2.85)) when k is
odd also.

Remark 2.4.5. More generally, concentration of measure results (such as
Talagrand’s inequality, Theorem 2.1.13) can often be used to automatically
upgrade convergence in expectation to convergence in probability or almost
sure convergence. We will not attempt to formalise this principle here.
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It is not difficult to establish (2.86), (2.85) through the moment method
as well. Indeed, recall from Theorem 2.3.16 that we have the expected
moment
(2.87) E% tr(%Mn)k = Cija + on(1)
for all k£ =1,2,..., where the Catalan number C} 5 is zero when k is odd,
and is equal to

k!

(2.88) Crrz = G B Di0e/2)]

for k even.

Exercise 2.4.8. By modifying the proof of Theorem 2.3.16, show that
o1 k2 _ 2

(2.89) E’ﬁ tr(%Mn) |7 = Cljo +or(1)

and deduce (2.85). By refining the error analysis (e.g., using Theorem

2.3.21), also establish (2.86).

In view of the above computations, the establishment of the semicircular
law now reduces to computing the moments of the semicircular distribution:

Exercise 2.4.9. Show that for any k = 1,2,3,..., one has

/ :Ek d/’Lsc("E) = C’lc/2-
R

(Hint: Use a trigonometric substitution z = 2cosf, and then express the
integrand in terms of Fourier phases ¢™?.)

This concludes the proof of the semicircular law (for any of the three
modes of convergence).

Remark 2.4.6. In the spirit of the Lindeberg exchange method, observe
that Exercise (2.4.9) is unnecessary if one already knows that the semicir-
cular law holds for at least one ensemble of Wigner matrices (e.g., the GUE
ensemble). Indeed, Exercise 2.4.9 can be deduced from such a piece of knowl-
edge. In such a situation, it is not necessary to actually compute the main
term Cj /o on the right of (2.84); it would be sufficient to know that that
limit is universal, in that it does not depend on the underlying distribution.
In fact, it would even suffice to establish the slightly weaker statement

Bla(-Lum ' Bl tr (—= ! k+ (1)

—tr{ — =E—tr| — 0

whenever M,,, M/, are two ensembles of Wigner matrices arising from differ-
ent underlying distributions (but still normalised to have mean zero, unit

variance, and to be bounded (or at worst sub-Gaussian)). We will take
advantage of this perspective later in this section.
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Remark 2.4.7. The moment method also leads to good control on vari-
ous linear statistics 2?21 F();) of a Wigner matrix, and in particular, can
be used to establish a central limit theorem for such statistics under some
regularity conditions on F; see e.g. [Jo1982].

2.4.3. The Stieltjes transform method. The moment method was com-
putationally intensive, but straightforward. As noted in Remark 2.4.6, even
without doing much of the algebraic computation, it is clear that the mo-
ment method will show that some universal limit for Wigner matrices exists
(or, at least, that the differences between the distributions of two differ-
ent Wigner matrices converge to zero). But it is not easy to see from this
method why the limit should be given by the semicircular law, as opposed to
some other distribution (although one could eventually work this out from
an inverse moment computation).

When studying the central limit theorem, we were able to use the Fourier
method to control the distribution of random matrices in a cleaner way than
in the moment method. Analogues of this method for random matrices
exist, but require non-trivial formulae from non-commutative Fourier anal-
ysis, such as the Harish-Chandra integration formula (and also only work
for highly symmetric ensembles, such as GUE or GOE), and will not be
discussed in this text?.

We now turn to another method, the Stieltjes transform method, pio-
neered in [Pal1973|, developed further in [Bal1993, Ba1993b| and recently
pushed yet further in [ErScYa2008], which uses complex-analytic methods
rather than Fourier-analytic methods, and has turned out to be one of the
most powerful and accurate tools in dealing with the ESD of random Her-
mitian matrices. Whereas the moment method started from the identity
(2.83), the Stieltjes transform method proceeds from the identity

/ ! d (m)—ltr L]\4 —zI -
RT— 2 H M\ =5 N

for any complex z not in the support of LMy We refer to the expression

on the left-hand side as the Stieltjes transform3° of M, or of u LMy and
denote it by s, , a, or as s, for short. The expression (ﬁMn — 207 tis

Vo
the normalised resolvent of M, and plays an important role in the spectral
theory of that matrix. Indeed, in contrast to general-purpose methods such
as the moment method, the Stieltjes transform method draws heavily on the

29Gection 2.6, however, will contain some algebraic identities related in some ways to the
non-commutative Fourier-analytic approach.
30T his transform is also known as the Cauchy transform.
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specific linear-algebraic structure of this problem, and in particular, on the
rich structure of resolvents.

On the other hand, the Stieltjes transform can be viewed as a generating
function of the moments via the Taylor series expansion

1 1 1 1

= M2 — ...,
valid for z sufficiently large. This is somewhat (though not exactly) anal-
ogous to how the characteristic function Ee?X of a scalar random variable
can be viewed as a generating function of the moments EX*.

Now let us study the Stieltjes transform method more systematically.
Given any probability measure p on the real line, we can form its Stieltjes
transform

u2) = [ = o)

T —z
for any z outside of the support of y; in particular, the Stieltjes transform is
well-defined on the upper and lower half-planes in the complex plane. Even
without any further hypotheses on u other than it is a probability measure,
we can say a remarkable amount about how this transform behaves in z.
Applying conjugations we obtain the symmetry

(2.90) su(2) = su(2),

so we may as well restrict attention to z in the upper half-plane (say). Next,
from the trivial bound

T
x—z = |Im(2)]
one has the pointwise bound
1
(2.91) [su(z)] < .
! Im(z)]|

In a similar spirit, an easy application of dominated convergence gives the
asymptotic

(2.92) sulz) = H%ﬂ(l)

where 0,,(1) is an expression that, for any fixed p, goes to zero as z goes to
infinity non-tangentially in the sense that | Re(z)|/| Im(z)| is kept bounded,
where the rate of convergence is allowed to depend on p. From differentiation
under the integral sign (or an application of Morera’s theorem and Fubini’s
theorem) we see that s,(z2) is complex analytic on the upper and lower half-
planes; in particular, it is smooth away from the real axis. From the Cauchy
integral formula (or differentiation under the integral sign) we in fact get
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some bounds for higher derivatives of the Stieltjes transform away from this
axis:

(2.93) 55 =0 (et )

Informally, s, “behaves like a constant” at scales significantly less than the
distance |Im(z)| to the real axis; all the really interesting action here is going
on near that axis.

The imaginary part of the Stieltjes transform is particularly interesting.
Writing z = a + ib, we observe that
1 b

I = >
P — (x —a)? + b?

0

and so we see that
Im(s,(z)) >0
for z in the upper half-plane; thus s, is a complex-analytic map from the

upper half-plane to itself, a type of function known as a Herglotz function>.

One can also express the imaginary part of the Stieltjes transform as a
convolution
(2.94) Im(s,(a + b)) = mp * Py(a)
where P, is the Poisson kernel

1 b 1_ =z

P =———==-Pi(=).

b(r) =2 — )

As is well known, these kernels form a family of approximations to the iden-
tity, and thus p* P, converges in the vague topology to i (see e.g. [Ta2010,

§1.13]). Thus we see that
Ims, (- +1ib) — mp
as b — 0% in the vague topology, or equivalently (by (2.90)) that??
su(- +1b) — s, (- — ib)
omi —H
i

(2.95)

as b — 07. Thus we see that a probability measure p can be recovered in
terms of the limiting behaviour of the Stieltjes transform on the real axis.

A variant of the above machinery gives us a criterion for convergence:

Exercise 2.4.10 (Stieltjes continuity theorem). Let u, be a sequence of
random probability measures on the real line, and let i be a deterministic
probability measure.

31In fact, all complex-analytic maps from the upper half-plane to itself that obey the as-
ymptotic (2.92) are of this form; this is a special case of the Herglotz representation theorem,
which also gives a slightly more general description in the case when the asymptotic (2.92) is not
assumed. A good reference for this material and its consequences is [Ga2007].

32The limiting formula (2.95) is closely related to the Plemelj formula in potential theory.
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(i) pn converges almost surely to p in the vague topology if and only
if s, (2) converges almost surely to s,(z) for every z in the upper
half-plane.

(ii) pn converges in probability to p in the vague topology if and only
if s, (2) converges in probability to s,(z) for every z in the upper
half-plane.

(iii) p, converges in expectation to u in the vague topology if and only
if Es,,, () converges to s,(z) for every z in the upper half-plane.

(Hint: The “only if” parts are fairly easy. For the “if” parts, take a
test function ¢ € C.(R) and approximate [g ¢ du by [gé * Py du =
1Tm [ su(a + ib)¢(a) da. Then approximate this latter integral in turn
by a Riemann sum, using (2.93).)

Thus, to prove the semicircular law, it suffices to show that for each z
in the upper half-plane, the Stieltjes transform

1 1 -
Sn(z) = SHLM,L (Z) = Etl’ <%Mn — ZI)

vn

converges almost surely (and thus in probability and in expectation) to the
Stieltjes transform s, (2) of the semicircular law.

It is not difficult to compute the Stieltjes transform s, of the semicircu-
lar law, but let us hold off on that task for now, because we want to illustrate
how the Stieltjes transform method can be used to find the semicircular law,
even if one did not know this law in advance, by directly controlling s, (z).
We will fix z = a+ib to be a complex number not on the real line, and allow
all implied constants in the discussion below to depend on a and b (we will
focus here only on the behaviour as n — 00).

The main idea here is predecessor comparison: to compare the trans-
form s,(z) of the n x n matrix M, with the transform s,_1(z) of the top
left n — 1 x n— 1 minor M, _1, or of other minors. For instance, we have the
Cauchy interlacing law (Exercise 1.75), which asserts that the eigenvalues
AM(My—1),..., Ap—1(Mp—1) of M,,_1 intersperse that of A\;(M,), ..., An(My).
This implies that for a complex number a + ¢b with b > 0, the difference

n—1 b n b
Z (N (My—1)/V/m —a)? + 52 2 (Aj(Mn)/v/n — a)? + b2

J=1 Jj=1
is an alternating sum of evaluations of the function z — m. The total
variation of this function is O(1) (recall that we are suppressing dependence
of constants on a, b), and so the alternating sum above is O(1). Writing this
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in terms of the Stieltjes transform, we conclude that

vn
vn—1

Applying (2.93) to approximate sp_1( V/n (a 4+ ib)) by sp—1(a + ib), we

n—1

n(n — 1)sn_1< (a—l—z’b)) — nsu(a +ib) = O(1).

conclude that
1

(2.96) sp(a+1ib) = sp—1(a + ib) + O(n

).
So for fixed z = a + ib away from the real axis, the Stieltjes transform sy, (z)
is quite stable in n.

This stability has the following important consequence. Observe that
while the left-hand side of (2.96) depends on the n x n matrix M,, the
right-hand side depends only on the top left minor M,,_; of that matrix. In
particular, it is independent of the n'™ row and column of M,,. This implies
that this entire row and column has only a limited amount of influence on
the Stieltjes transform s, (a + ¢b): no matter what value one assigns to this
row and column (including possibly unbounded values, as long as one keeps
the matrix Hermitian of course), the transform s, (a + ib) can only move by
O(5).

n

By permuting the rows and columns, we obtain that in fact any row or
column of M, can influence sy (a + ib) by at most O(%) (This is closely
related to the observation in Exercise 2.4.4 that low rank perturbations do
not significantly affect the ESD.) On the other hand, the rows of (the upper
triangular portion of) M, are jointly independent. When M,, is a Wigner
random matrix, we can then apply a standard concentration of measure
result, such as McDiarmid’s inequality (Theorem 2.1.10) to conclude con-
centration of s, around its mean:

(2.97) P(|sn(a +ib) — Esy(a+ ib)| > A/v/n) < Ce™

for all A > 0 and some absolute constants C, ¢ > 0. (This is not necessarily
the strongest concentration result one can establish for the Stieltjes trans-
form, but it will certainly suffice for our discussion here.) In particular, we
see from the Borel-Cantelli lemma (Exercise 1.1.1) that for any fixed z away
from the real line, s, (z) — Es,(z) converges almost surely (and thus also in
probability) to zero. As a consequence, convergence of s, (z) in expectation
automatically implies convergence in probability or almost sure convergence.

However, while concentration of measure tells us that s, (z) is close to its
mean, it does not shed much light as to what this mean is. For this, we have
to go beyond the Cauchy interlacing formula and deal with the resolvent
( %Mn — zI,,)~! more directly. First, we observe from the linearity of trace
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(and of expectation) that

n

Be(e) = 3 (== 21) ]

i ji
where [A];; denotes the jj component of a matrix A. Because M, is a
Wigner matrix, it is easy to see on permuting the rows and columns that
all of the random variables [(ﬁMn — zI,)7Y;; have the same distribution.

Thus we may simplify the above formula as
1
NG
So now we have to compute the last entry of an inverse of a matrix. There
are of course a number of formulae for this, such as Cramer’s rule. But it

will be more convenient here to use a formula based instead on the Schur
complement:

(2.98) Es,(2) = E [( M, — zIn)_l]

nn

Exercise 2.4.11. Let A, be a n X n matrix, let A,_1 be the top left n —
1 x n — 1 minor, let ay,, be the bottom right entry of A,, let X € C*~!
be the right column of A, with the bottom right entry removed, and let
Y* € (C"1)* be the bottom row with the bottom right entry removed. In

other words,
(A X
An = ( Y* a,m> ’

Assume that A, and A,,_1 are both invertible. Show that
1
ann — Y*ASL X

Hint: Solve the equation A,v = e,, where e, is the n'" basis vector, usin
g

the method of Schur complements (or from first principles).)

The point of this identity is that it describes (part of) the inverse of A4,
in terms of the inverse of A,_1, which will eventually provide a non-trivial
recursive relationship between s,(z) and s,_1(z), which can then be played
off against (2.96) to solve for s,(z) in the asymptotic limit n — oo.

In our situation, the matrix ﬁMn — zI,, and its minor ﬁMn_l —zlh_1
are automatically invertible. Inserting the above formula into (2.98) (and
recalling that we normalised the diagonal of M, to vanish), we conclude
that

(2.09)  Es(z) = —E !

2 5 X (M1 — 2ln1) 71X —

where X € C"~! is the top right column of M, with the bottom entry &,,
removed.

B,
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One may be concerned that the denominator here could vanish. How-
ever, observe that z has imaginary part b if z = a+ib. Furthermore, from the

spectral theorem we see that the imaginary part of (ﬁMn_l — zIn_l)*l is

positive definite, and so X*(\%Mn_l — 2I,_1)7' X has non-negative imag-
inary part. As a consequence, the magnitude of the denominator here is
bounded below by [b|, and so its reciprocal is O(1) (compare with (2.91)).
So the reciprocal here is not going to cause any discontinuity, as we are

considering b is fixed and non-zero.
Now we need to understand the expression X*(ﬁMn_l —2I, 1) 1X.

We write this as X*RX, where R is the resolvent matrix R := (ﬁMn_l —
zIn_l)_l. The distribution of the random matrix R could conceivably be
quite complicated. However, the key point is that the vector X only involves
the entries of M, that do not lie in M,,_1, and so the random matrix R and
the vector X are independent. Because of this, we can use the randomness of
X to do most of the work in understanding the expression X*RX, without

having to know much about R at all.

To understand this, let us first condition R to be a deterministic matrix
R = (1ij)1<i j<n—1, and see what we can do with the expression X*RX.

First, observe that R will not be arbitrary; indeed, from the spectral the-
orem we see that R will have operator norm at most O(1). Meanwhile, from
the Chernoff inequality (Theorem 2.1.3) or Hoeffding inequality (Exercise
2.1.4) we know that X has magnitude O(y/n) with overwhelming proba-
bility. So we know that X*RX has magnitude O(n) with overwhelming
probability.

Furthermore, we can use concentration of measure as follows. Given
any positive semi-definite matrix A of operator norm O(1), the expression
(X*AX)Y/? = ||AY2X| is a Lipschitz function of X with operator norm
O(1). Applying Talagrand’s inequality (Theorem 2.1.13) we see that this
expression concentrates around its median:

P(|(X*AX)/? - M(X*AX)V?| > \) < Ce™N

for any A > 0. On the other hand, ||A/2X| = O(||X||) has magnitude
O(y/n) with overwhelming probability, so the median M(X*AX)'/2 must
be O(y/n). Squaring, we conclude that

P(|X*AX - MX*AX| > A\v/n) < Ce™N

(possibly after adjusting the absolute constants C,c). As usual, we may
replace the median with the expectation:

P(|X*AX — EX*AX| > Av/n) < Ce .
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This was for positive-definite matrices, but one can easily use the trian-
gle inequality to generalise to self-adjoint matrices, and then to arbitrary
matrices, of operator norm 1, and conclude that

(2.100) P(|X*RX — EX*RX| > A\/n) < Ce™V

for any deterministic matrix R of operator norm O(1).

But what is the expectation EX*RX? This can be expressed in com-
ponents as

n—1n—1

i=1 j=1
where &;,, are the entries of X, and r;; are the entries of R. But the &,
are iid with mean zero and variance one, so the standard second moment
computation shows that this expectation is nothing more than the trace

of R. We have thus shown the concentration of the measure result
(2.101) P(|X*RX — tr(R)| > A\/n) < Ce™V
for any deterministic matrix R of operator norm O(1), and any A > 0.
Informally, X*RX is typically tr(R) + O(y/n).

The bound (2.101) was proven for deterministic matrices, but by using
conditional expectation it also applies for any random matrix R, so long

as that matrix is independent of X. In particular, we may apply it to our
specific matrix of interest

1 —1
R:=|—=M,_1—zI,— .
(ﬁ 1 1)

The trace of this matrix is essentially just the Stieltjes transform s,_1(2) at
z. Actually, due to the normalisation factor being slightly off, we actually

have
tr(R) = n%sn_l <\/%z> ,

but by using the smoothness (2.93) of the Stieltjes transform, together with
the stability property (2.96) we can simplify this as

tr(R) = n(sn(z) + o(1)).
In particular, from (2.101) and (2.97), we see that

X*RX =n(Esp(z) +0(1))
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with overwhelming probability. Putting this back into (2.99), and recalling
that the denominator is bounded away from zero, we have the remarkable
self-consistent equation

1
2+ Esp(2)

Note how this equation came by playing off two ways in which the spectral
properties of a matrix M, interacted with that of its minor M,,_1; first, via
the Cauchy interlacing inequality, and second, via the Schur complement
formula.

(2.102) Esn(z) = +o(1).

This equation already describes the behaviour of Es,(z) quite well, but
we will content ourselves with understanding the limiting behaviour as n —
oo. From (2.93) and Fubini’s theorem we know that the function Es, is
locally uniformly equicontinuous and locally uniformly bounded away from
the real line. Applying the Arzeld-Ascoli theorem, we thus conclude that on
a subsequence at least, Es,, converges locally uniformly to a limit s. This
will be a Herglotz function (i.e., an analytic function mapping the upper
half-plane to the upper half-plane), and taking limits in (2.102) (observing
that the imaginary part of the denominator here is bounded away from zero)
we end up with the exact equation

1
24 s(z)
We can of course solve this by the quadratic formula, obtaining
(2) = zEV22-4 2
o 2 StV 4
To figure out what branch of the square root one has to use here, we use
(2.92), which easily implies®® that

—1+0(1)
W =—
as z goes to infinity non-tangentially away from the real line. Also, we know
that s has to be complex analytic (and in particular, continuous) away from
the real line. From this and basic complex analysis, we conclude that

—z+ V224
2

(2.103) s(z) =

(2.104) s(z) =

where /22 — 4 is the branch of the square root with a branch cut at [—2, 2]
and which equals z at infinity.

As there is only one possible subsequence limit of the Es,,, we conclude
that Es,, converges locally uniformly (and thus pointwise) to the function

33To justify this, one has to make the error term in (2.92) uniform in m, but this can be
accomplished without difficulty using the Bai-Yin theorem (for instance).
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(2.104), and thus (by the concentration of measure of s,(z)) we see that for
each z, s,(z) converges almost surely (and in probability) to s(z).

Exercise 2.4.12. Find a direct proof (starting from (2.102), (2.92), and
the smoothness of Es,(z)) that Es,(z) = s(z) + o(1) for any fixed z, that
avoids using the Arzeld-Ascoli theorem. (The basic point here is that one
has to solve the approximate equation (2.102), using some robust version of
the quadratic formula. The fact that Es, is a Herglotz function will help
eliminate various unwanted possibilities, such as one coming from the wrong
branch of the square root.)

To finish computing the limiting ESD of Wigner matrices, we have to
figure out what probability measure s comes from; but this is easily read off
from (2.104) and (2.95):
s(-+ib) —s(-—ib) 1

1/2

as b — 0. Thus the semicircular law is the only possible measure which has
Stieltjes transform s, and indeed a simple application of the Cauchy integral
formula and (2.105) shows us that s is indeed the Stieltjes transform of jigc.

(2.105)

Putting all this together, we have completed the Stieltjes transform proof
of the semicircular law.

Remark 2.4.8. In order to simplify the above exposition, we opted for a
qualitative analysis of the semicircular law here, ignoring such questions as
the rate of convergence to this law. However, an inspection of the above
arguments reveals that it is easy to make all of the above analysis quite
quantitative, with quite reasonable control on all terms®*. In particular,
it is not hard to use the above analysis to show that for [Im(z)| > n™¢
for some small absolute constant ¢ > 0, one has s,(z) = s(z) + O(n™°)
with overwhelming probability. Combining this with a suitably quantitative
version of the Stieltjes continuity theorem, this in turn gives a polynomial

rate of convergence of the ESDs u L, to the semicircular law pig, in that
one has
K, (700, 0) = pise(—00,4) +0(n™)
with overwhelming probability for all A € R.
A variant of this quantitative analysis can in fact get very good control

. . o(1) . .
on this ESD down to quite fine scales, namely to scales M, which is

only just a little bit larger than the mean spacing O(1/n) of the normalised
eigenvalues (recall that we have n normalised eigenvalues, constrained to lie

340ne has to use Exercise 2.4.12 instead of the Arzeld-Ascoli theorem if one wants everything
to be quantitative.
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in the interval [-2—0(1),24-0(1)] by the Bai-Yin theorem). This was accom-
plished by Erdés, Schlein, and Yau [ErScYa2008]3° by using an additional
observation, namely that the eigenvectors of a random matrix are very likely
to be delocalised in the sense that their /2 energy is dispersed more or less
evenly across its coefficients. Such delocalization has since proven to be
a fundamentally important ingredient in the fine-scale spectral analysis of
Wigner matrices, which is beyond the scope of this text.

2.4.4. Dyson Brownian motion and the Stieltjes transform (op-
tional). In this section we explore how the Stieltjes transform interacts
with the Dyson Brownian motion (which is presented in detail in Section
3.1). We let n be a large number, and let M, (¢) be a Wiener process
of Hermitian random matrices, with associated eigenvalues A1 (t),..., A, (1),
Stieltjes transforms

(2.106) s(t, z) = E > A;

n j=1 J(t)/\/ﬁ -z
and spectral measures
1 n
(2107) /.L(t, Z) = E Z 6z\j(t)/\/ﬁ‘
j=1

We now study how s, p evolve in time in the asymptotic limit n — oo. Our
computation will be only heuristic in nature.

Recall from Section 3.1 that the eigenvalues A\; = \;(t) undergo the
Dyson Brownian motion

(2.108) d\i=dB;+)
JFi

Applying (2.106) and Taylor expansion (dropping all terms of higher order
than dt, using the Ito heuristic dB; = O(dt'/?)), we conclude that

Ai — )\

|dB;|?
ds=- n3/22)\/\/ﬁ—z n2z)\/\/ﬁ—z

1 dt
2 2 (Ni = ) (Ai/vn = 2)*

1<i j<n:ij

For z away from the real line, the term n% Yoy % is of size O(dt/n)
and can heuristically be ignored in the limit n — oco. Dropping this term,

35Strictly speaking, this paper assumed additional regularity hypotheses on the distribution
&, but these conditions can be removed with the assistance of Talagrand’s inequality, Theorem
2.1.13.
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and then taking expectations to remove the Brownian motion term dB;, we
are led to

dt
Bls=-Blm 2 oo

1<i,j<n:i#j

Performing the 7 summation using (2.106) we obtain

B s(\j/y/m)dt
Eds = —E= l;n O Jo/n = o)

where we adopt the convention that for real =, s(z) is the average of s(z+10)
and s(z — ¢0). Using (2.107), this becomes

(2.109) Es; = _E/R% dy(z)

where the t subscript denotes differentiation in ¢. From (2.95) we heuristi-
cally have

s(x +£140) = s(x) £ mip(x)

(heuristically treating p as a function rather than a measure) and on squar-
ing one obtains

s(x £i0)? = (s(x)? — m2u?(z)) + 2mis(2) p(x).

From this the Cauchy integral formula around a slit in the real axis (using
the bound (2.91) to ignore the contributions near infinity) we thus have

o [ 2
)= [ 2 aufa)

and thus on differentiation in z, we have

2s(x)
255, (2 :/ ———— du(x).
0= | 20 dutw)
Comparing this with (2.109), we obtain
Es; + Ess, = 0.

From concentration of measure, we expect s to concentrate around its mean
5 := Es, and similarly s, should concentrate around 5. In the limit n — oo,
the expected Stieltjes transform s should thus obey the (complex) Burgers’
equation

(2.110) s; + 85, =0.

To illustrate how this equation works in practice, let us give an informal
derivation of the semicircular law. We consider the case when the Wiener
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process starts from M (0) = 0, thus M; = tG for a GUE matrix G. As
such, we have the scaling symmetry

s(t,z) = %SGUE (%)

where sgy g is the asymptotic Stieltjes transform for GUE (which we secretly
know to be given by (2.104), but let us pretend that we did not yet know
this fact). Inserting this self-similar ansatz into (2.110) and setting ¢t = 1,
we conclude that
1 L, /
—§SGUE — §szUE + ssqur = 0;

multiplying by two and integrating, we conclude that
ZSQUE + S%UE =C

for some constant C. But from the asymptotic (2.92) we see that C' must
equal —1. But then the above equation can be rearranged into (2.103), and
so by repeating the arguments at the end of the previous section we can
deduce the formula (2.104), which then gives the semicircular law by (2.95).

As is well known in PDE, one can solve Burgers’ equation more generally
by the method of characteristics. For reasons that will become clearer in
Section 2.5, we now solve this equation by a slightly different (but ultimately
equivalent) method. The idea is that rather than think of s = s(¢,2) as a
function of z for fixed ¢, we think3® of z = z(¢, s) as a function of s for fixed
t. Note from (2.92) that we expect to be able to invert the relationship
between s and z as long as z is large (and s is small).

To exploit this change of perspective, we think of s, z,t as all varying
by infinitesimal amounts ds, dz, dt, respectively. Using (2.110) and the total
derivative formula ds = sydt + s,dz, we see that

ds = —ss,dt + s,dz.
If we hold s fixed (i.e., ds = 0), so that z is now just a function of ¢, and
cancel out the s, factor, we conclude that
dz
— =s.
dt
Integrating this, we see that
(2.111) z(t,s) = z(0,s) + ts.
This, in principle, gives a way to compute s(¢,z) from s(0,z). First, we
invert the relationship s = s(0,2) to z = 2(0, s); then we add ts to z(0, s);
then we invert again to recover s(t, z).

36This trick is sometimes known as the hodograph transform, especially if one views s as
“velocity” and z as “position”.
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Since M; = My++/tG, where G is a GUE matrix independent of My, we
have thus given a formula to describe the Stieltjes transform of My + v/tG
in terms of the Stieltjes transform of My. This formula is a special case of a
more general formula of Voiculescu for free convolution, with the operation
of inverting the Stieltjes transform essentially being the famous R-transform
of Voiculescu; we will discuss this more in the next section.

2.5. Free probability

In the foundations of modern probability, as laid out by Kolmogorov (and
briefly reviewed in Section 1.1), the basic objects of study are constructed
in the following order:

(i) First, one selects a sample space €2, whose elements w represent all
the possible states that one’s stochastic system could be in.

(ii) Then, one selects a o-algebra B of events E (modeled by subsets of
), and assigns each of these events a probability P(F) € [0, 1] in
a countably additive manner, so that the entire sample space has
probability 1.

(iii) Finally, one builds (commutative) algebras of random variables X
(such as complex-valued random variables, modeled by measurable
functions from 2 to C), and (assuming suitable integrability or
moment conditions) one can assign expectations EX to each such
random variable.

In measure theory, the underlying measure space {2 plays a prominent
foundational role, with the measurable sets and measurable functions (the
analogues of the events and the random variables) always being viewed as
somehow being attached to that space. In probability theory, in contrast, it
is the events and their probabilities that are viewed as being fundamental,
with the sample space () being abstracted away as much as possible, and with
the random variables and expectations being viewed as derived concepts. See
Section 1.1 for further discussion of this philosophy.

However, it is possible to take the abstraction process one step further,
and view the algebra of random variables and their expectations as being the
foundational concept, and ignoring both the presence of the original sample
space, the algebra of events, or the probability measure.

There are two reasons for wanting to shed (or abstract®’ away) these
previously foundational structures. First, it allows one to more easily take
certain types of limits, such as the large n limit n — oo when considering

37This theme of using abstraction to facilitate the taking of the large n limit also shows up in
the application of ergodic theory to combinatorics via the correspondence principle; see [Ta2009,
§2.10] for further discussion.
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n X n random matrices, because quantities built from the algebra of random
variables and their expectations, such as the normalised moments of random
matrices tend to be quite stable in the large n limit (as we have seen in
previous sections), even as the sample space and event space varies with n.

Second, this abstract formalism allows one to generalise the classical,
commutative theory of probability to the more general theory of non-commu-
tative probability, which does not have a classical underlying sample space or
event space, but is instead built upon a (possibly) non-commutative algebra
of random variables (or “observables”) and their expectations (or “traces”).
This more general formalism not only encompasses classical probability, but
also spectral theory (with matrices or operators taking the role of random
variables, and the trace taking the role of expectation), random matrix the-
ory (which can be viewed as a natural blend of classical probability and spec-
tral theory), and quantum mechanics (with physical observables taking the
role of random variables, and their expected value on a given quantum state
being the expectation). It is also part of a more general “non-commutative
way of thinking”3® (of which non-commutative geometry and quantum me-
chanics are the most prominent examples), in which a space is understood
primarily in terms of the ring or algebra of functions (or function-like ob-
jects, such as sections of bundles) placed on top of that space, and then the
space itself is largely abstracted away in order to allow the algebraic struc-
tures to become less commutative. In short, the idea is to make algebra the
foundation of the theory, as opposed to other possible choices of foundations
such as sets, measures, categories, etc.

It turns out that non-commutative probability can be modeled using op-
erator algebras such as C*-algebras, von Neumann algebras, or algebras of
bounded operators on a Hilbert space, with the latter being accomplished via
the Gelfand-Naimark-Segal construction. We will discuss some of these mod-
els here, but just as probability theory seeks to abstract away its measure-
theoretic models, the philosophy of non-commutative probability is also to
downplay these operator algebraic models once some foundational issues are
settled.

When one generalises the set of structures in one’s theory, for instance
from the commutative setting to the non-commutative setting, the notion
of what it means for a structure to be “universal”, “free”, or “independent”

38Note that this foundational preference is to some extent a metamathematical one rather
than a mathematical one; in many cases it is possible to rewrite the theory in a mathematically
equivalent form so that some other mathematical structure becomes designated as the founda-
tional one, much as probability theory can be equivalently formulated as the measure theory of
probability measures. However, this does not negate the fact that a different choice of foundations
can lead to a different way of thinking about the subject, and thus to ask a different set of ques-
tions and to discover a different set of proofs and solutions. Thus it is often of value to understand
multiple foundational perspectives at once, to get a truly stereoscopic view of the subject.
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can change. The most familiar example of this comes from group theory. If
one restricts attention to the category of abelian groups, then the “freest”
object one can generate from two generators e, f is the free abelian group of
commutative words e f™ with n,m € Z, which is isomorphic to the group
Z?. If however one generalises to the non-commutative setting of arbitrary
groups, then the “freest” object that can now be generated from two gener-
ators e, f is the free group Fo of non-commutative words e™ f1 .. ek f
with ni,m1,...,nk, mg € Z, which is a significantly larger extension of the
free abelian group Z2.

Similarly, when generalising classical probability theory to non-commu-
tative probability theory, the notion of what it means for two or more ran-
dom variables to be independent changes. In the classical (commutative)
setting, two (bounded, real-valued) random variables X,Y are independent
if one has

Ef(X)g(Y) =0

whenever f,g : R — R are well-behaved functions (such as polynomials)
such that all of Ef(X), Eg(Y) vanish. In the non-commutative setting, one
can generalise the above definition to two commuting bounded self-adjoint
variables; this concept is useful, for instance, in quantum probability, which
is an abstraction of the theory of observables in quantum mechanics. But
for two (bounded, self-adjoint) non-commutative random variables X, Y, the
notion of classical independence no longer applies. As a substitute, one can
instead consider the notion of being freely independent (or free for short),
which means that

Efi(X)g1(Y)... fr(X)ge(Y) =0
whenever f1,91,..., fr, g : R — R are well-behaved functions such that all
of Ef1 (X), Egl(Y), ey Efk (X), Egk(Y) vanish.

The concept of free independence was introduced by Voiculescu, and its
study is now known as the subject of free probability. We will not attempt
a systematic survey of this subject here; for this, we refer the reader to
the surveys of Speicher [Sp] and of Biane [Bi2003]. Instead, we shall just
discuss a small number of topics in this area to give the flavour of the subject
only.

The significance of free probability to random matrix theory lies in the
fundamental observation that random matrices which have independent en-
tries in the classical sense, also tend to be independent® in the free prob-
ability sense, in the large n limit n — oco. Because of this, many tedious
computations in random matrix theory, particularly those of an algebraic

39This is only possible because of the highly non-commutative nature of these matrices; as
we shall see, it is not possible for non-trivial commuting independent random variables to be freely
independent.



158 2. Random matrices

or enumerative combinatorial nature, can be done more quickly and sys-
tematically by using the framework of free probability, which by design is
optimised for algebraic tasks rather than analytical ones.

Much as free groups are in some sense “maximally non-commutative”,
freely independent random variables are about as far from being commuting
as possible. For instance, if X,Y are freely independent and of expectation
zero, then EXY XY vanishes, but EX XYY instead factors as (EX?)(EY?2).
As a consequence, the behaviour of freely independent random variables
can be quite different from the behaviour of their classically independent
commuting counterparts. Nevertheless, there is a remarkably strong analogy
between the two types of independence, in that results which are true in
the classically independent case often have an interesting analogue in the
freely independent setting. For instance, the central limit theorem (Section
2.2) for averages of classically independent random variables which, roughly
speaking, asserts that such averages become Gaussian in the large n limit,
has an analogue for averages of freely independent variables, the free central
limit theorem which, roughly speaking, asserts that such averages become
semicircular in the large n limit. One can then use this theorem to provide
yet another proof of Wigner’s semicircle law (Section 2.4).

Another important (and closely related) analogy is that while the dis-
tribution of sums of independent commutative random variables can be
quickly computed via the characteristic function (i.e., the Fourier transform
of the distribution), the distribution of sums of freely independent non-
commutative random variables can be quickly computed using the Stieltjes
transform instead (or with closely related objects, such as the R-transform
of Voiculescu). This is strongly reminiscent of the appearance of the Stieltjes
transform in random matrix theory, and indeed we will see many parallels
between the use of the Stieltjes transform here and in Section 2.4.

As mentioned earlier, free probability is an excellent tool for computing
various expressions of interest in random matrix theory, such as asymptotic
values of normalised moments in the large n limit n — oo. Nevertheless,
as it only covers the asymptotic regime in which n is sent to infinity while
holding all other parameters fixed, there are some aspects of random matrix
theory to which the tools of free probability are not sufficient by themselves
to resolve (although it can be possible to combine free probability theory
with other tools to then answer these questions). For instance, questions
regarding the rate of convergence of normalised moments as n — oo are not
directly answered by free probability, though if free probability is combined
with tools such as concentration of measure (Section 2.1), then such rate
information can often be recovered. For similar reasons, free probability lets
one understand the behaviour of k" moments as n — oo for fized k, but



2.5. Free probability 159

has more difficulty dealing with the situation in which k is allowed to grow
slowly in n (e.g., & = O(logn)). Because of this, free probability methods
are effective at controlling the bulk of the spectrum of a random matrix, but
have more difficulty with the edges of that spectrum as well as with fine-scale
structure of the spectrum, although one can sometimes use free probability
methods to understand operator norms (as studied in Section 2.3). Finally,
free probability methods are most effective when dealing with matrices that
are Hermitian with bounded operator norm, largely because the spectral
theory of bounded self-adjoint operators in the infinite-dimensional setting
of the large n limit is non-pathological’. For non-self-adjoint operators, free
probability needs to be augmented with additional tools, most notably by
bounds on least singular values, in order to recover the required stability for
the various spectral data of random matrices to behave continuously with
respect to the large n limit. We will return this latter point in Section 2.7.

2.5.1. Abstract probability theory. We will now slowly build up the
foundations of non-commutative probability theory, which seeks to capture
the abstract algebra of random variables and their expectations. The impa-
tient reader who wants to move directly on to free probability theory may
largely jump straight to the final definition at the end of this section, but it
can be instructive to work with these foundations for a while to gain some
intuition on how to handle non-commutative probability spaces.

To motivate the formalism of abstract (non-commutative) probability
theory, let us first discuss the three key examples of non-commutative prob-
ability spaces, and then abstract away all features that are not shared in
common by all three examples.

Example 2.5.1 (Random scalar variables). We begin with classical prob-
ability theory—the study of scalar random variables. In order to use the
powerful tools of complex analysis (such as the Stieltjes transform), it is
very convenient to allow our random variables to be complex valued. In
order to meaningfully take expectations, we would like to require all of our
random variables to also be absolutely integrable. But this requirement is
not sufficient by itself to get good algebraic structure, because the product
of two absolutely integrable random variables need not be absolutely inte-
grable. As we want to have as much algebraic structure as possible, we will
therefore restrict attention further, to the collection L™~ := 72, L¥(Q) of
random variables with all moments finite. This class is closed under multi-
plication, and all elements in this class have a finite trace (or expectation).
One can of course restrict further, to the space L> = L>°(2) of (essentially)
bounded variables, but by doing so one loses important examples of random

40This is ultimately due to the stable nature of eigenvalues in the self-adjoint setting; see
[Ta2010b, §1.5] for discussion.
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variables, most notably Gaussians, so we will work instead*! with the space
L.

The space L°°~ of complex-valued random variables with all moments
finite now becomes an algebra over the complex numbers C; i.e., it is a vector
space over C that is also equipped with a bilinear multiplication operation
-1 L7 x L~ — L°°~ that obeys the associative and distributive laws. It
is also commutative, but we will suppress this property, as it is not shared
by the other two examples we will be discussing. The deterministic scalar 1
then plays the role of the multiplicative unit in this algebra.

In addition to the usual algebraic operations, one can also take the
complex conjugate or adjoint X* = X of a complex-valued random variable
X. This operation * : L™~ — L°~ interacts well with the other algebraic
operations: it is in fact an anti-automorphism on L°°~, which means that
it preserves addition (X 4 Y')* = X* + Y, reverses multiplication (XY)* =
Y*X*, is anti-homogeneous ((¢X)* = ¢X* for ¢ € C), and it is invertible.
In fact, it is its own inverse ((X*)* = X)), and is thus an involution.

This package of properties can be summarised succinctly by stating that
the space L~ of bounded complex-valued random variables is a (unital)
x-algebra.

The expectation operator E can now be viewed as a map E : L=~ — C.
It obeys some obvious properties, such as being linear (i.e., E is a linear
functional on L°). In fact, it is *-linear, which means that it is linear and
also that E(X*) = EX for all X. We also clearly have E1 = 1. We will
remark on some additional properties of expectation later.

Example 2.5.2 (Deterministic matrix variables). A second key example is
that of (finite-dimensional) spectral theory—the theory of n x n complex-
valued matrices X € M, (C). (One can also consider infinite-dimensional
spectral theory, of course, but for simplicity we only consider the finite-
dimensional case in order to avoid having to deal with technicalities such
as unbounded operators.) Like the space L>~ considered in the previous
example, M, (C) is a *-algebra, where the multiplication operation is of
course given by matrix multiplication, the identity is the matrix identity
1 = I,,, and the involution X — X* is given by the matrix adjoint operation.
On the other hand, as is well known, this *-algebra is not commutative (for
n > 2).

The analogue of the expectation operation here is the normalised trace
7(X) := Ltr X. Thus 7 : M,,(C) — C is a *-linear functional on M, (C)

=q
that maps 1 to 1. The analogy between expectation and normalised trace is

41This will cost us some analytic structure—in particular, L~ will not be a Banach space,
in contrast to L°°—but as our focus is on the algebraic structure, this will be an acceptable price

to pay.
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particularly evident when comparing the moment method for scalar random
variables (based on computation of the moments EX*) with the moment
method in spectral theory (based on a computation of the moments 7(X*)).

Example 2.5.3 (Random matrix variables). Random matriz theory com-
bines classical probability theory with finite-dimensional spectral theory,
with the random variables of interest now being the random matrices X €
L>*~ ® M, (C), all of whose entries have all moments finite. It is not hard
to see that this is also a x-algebra with identity 1 = I,,, which again will be
non-commutative for n > 2. The normalised trace 7 here is given by

1
7(X):=E—trX,
n

thus one takes both the normalised matrix trace and the probabilistic expec-
tation, in order to arrive at a deterministic scalar (i.e., a complex number).
As before, we see that 7 : L™~ ® M,(C) — C is a *-linear functional that
maps 1 to 1. As we saw in Section 2.3, the moment method for random
matrices is based on a computation of the moments 7(X*) = E% tr X*.

Let us now simultaneously abstract the above three examples, but re-
serving the right to impose some additional axioms as needed:

Definition 2.5.4 (Non-commutative probability space, preliminary defini-
tion). A non-commutative probability space (or more accurately, a potentially
non-commutative probability space) (A, 7) will consist of a (potentially non-
commutative) x-algebra A of (potentially non-commutative) random vari-
ables (or observables) with identity 1, together with a trace 7 : A — C,
which is a x-linear functional that maps 1 to 1. This trace will be required
to obey a number of additional axioms which we will specify later in this
section.

This definition is not yet complete, because we have not fully decided
on what axioms to enforce for these spaces, but for now let us just say
that the three examples (L%~ E), (M,(C), 2 tr), (L~ ® M,(C),E tr)
given above will obey these axioms and serve as model examples of non-
commutative probability spaces. We mention that the requirement 7(1) = 1
can be viewed as an abstraction of Kolmogorov’s axiom that the sample
space has probability 1.

To motivate the remaining axioms, let us try seeing how some basic
concepts from the model examples carry over to the abstract setting.

First, we recall that every scalar random variable X € L°~ has a prob-
ability distribution px, which is a probability measure on the complex plane
C; if X is self-adjoint (i.e., real-valued), so that X = X*, then this distribu-
tion is supported on the real line R. The condition that X lie in L°°~ ensures
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that this measure is rapidly decreasing, in the sense that [ [2|* dux (z) < oo
for all k. The measure ux is related to the moments 7(X*) = EX* by the
formula

(2.112) T(X*) = /Czk dux(2)

for k=0,1,2,.... In fact, one has the more general formula
(2.113) (XX :/Czkfl dpx(z)

for k,1=0,1,2,....

Similarly, every deterministic matrix X € M,,(C) has an empirical spec-
tral distribution pux = % S d (X)), Which is a probability measure on the
complex plane C. Again, if X is self-adjoint, then distribution is supported
on the real line R. This measure is related to the moments 7(X*) = %tr XF
by the same formula (2.112) as in the case of scalar random variables. Be-
cause n is finite, this measure is finitely supported (and in particular, is
rapidly decreasing). As for (2.113), the spectral theorem tells us that this
formula holds when X is normal (i.e., XX* = X*X) and in particular, if
X is self-adjoint (of course, in this case (2.113) collapses to (2.112)), but is
not true in general. Note that this subtlety does not appear in the case of
scalar random variables because in this commutative setting, all elements
are automatically normal.

Finally, for random matrices X € L*~ ® M, (C), we can form the ez-
pected empirical spectral distribution ux = E% Yoy dx,(x)» Which is again
a rapidly decreasing probability measure on C, which is supported on R if
X is self-adjoint. This measure is again related to the moments 7(X*) =
E1l tr X* by the formula (2.112), and also by (2.113) if X is normal.

Now let us see whether we can set up such a spectral measure px for an
element X in an abstract non-commutative probability space (A, 7). From
the above examples, it is natural to try to define this measure through the
formula (2.112), or equivalently (by linearity) through the formula

(2.114) H(P(X)) = /C P2) dpx(2)

whenever P : C — C is a polynomial with complex coefficients (note that
one can define P(X) without difficulty as A is a *-algebra). In the normal
case, one may hope to work with the more general formula

(2.115) r(P(X, X)) = /C P(2,%) dux(2)

whenever P : C x C — C is a polynomial of two complex variables (note
that P(X, X™*) can be defined unambiguously precisely when X is normal).



2.5. Free probability 163

It is tempting to apply the Riesz representation theorem to (2.114) to
define the desired measure px, perhaps after first using the Weierstrass
approximation theorem to pass from polynomials to continuous functions.
However, there are multiple technical issues with this idea:

(i) In order for the polynomials to be dense in the continuous func-
tions in the uniform topology on the support of px, one needs the
intended support o(X) of px to be on the real line R, or else one
needs to work with the formula (2.115) rather than (2.114). Also,
one also needs the intended support o(X) to be bounded for the
Weierstrass approximation theorem to apply directly.

(ii) In order for the Riesz representation theorem to apply, the func-
tional P +— 7(P(X, X™*)) (or P — 7(P(X))) needs to be continuous
in the uniform topology, thus one must be able to obtain a bound?*?
of the form |7(P(X, X*))| < Csup,c,(x) | P(2,%)| for some (prefer-
ably compact) set o(X).

(iii) In order to get a probability measure rather than a signed measure,
one also needs some non-negativity: 7(P(X, X*)) needs to be non-
negative whenever P(z,Z) > 0 for z in the intended support o(X).

To resolve the non-negativity issue, we impose an additional axiom on
the non-commutative probability space (A, 7):

Axiom 2.5.5 (Non-negativity). For any X € A, we have 7(X*X) > 0.
(Note that X* X 1is self-adjoint, and so its trace 7(X*X) is necessarily a real
number. )

In the language of von Neumann algebras, this axiom (together with the
normalisation 7(1) = 1) is essentially asserting that 7 is a state. Note that
this axiom is obeyed by all three model examples, and is also consistent with
(2.115). It is the non-commutative analogue of the Kolmogorov axiom that
all events have non-negative probability.

With this axiom, we can now define a positive semi-definite inner product
(s)r2(r) on A by the formula

<X, Y>L2(‘r) = T(X*Y)

This obeys the usual axioms of an inner product, except that it is only
positive semi-definite rather than positive definite. One can impose positive
definiteness by adding an axiom that the trace 7 is faithful, which means
that 7(X*X) = 0 if and only if X = 0. However, we will not need the
faithfulness axiom here.

42To get a probability measure, one in fact needs to have C' = 1.
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Without faithfulness, A is a semi-definite inner product space with semi-
norm

1X I 22(r) = ((X, X) p2n) /2 = T(X*X)Y2.
In particular, we have the Cauchy-Schwarz inequality
(XY ) o)l < X N2 1Y [ 22¢r)-
This leads to an important monotonicity:

Exercise 2.5.1 (Monotonicity). Let X be a self-adjoint element of a non-
commutative probability space (A, 7). Show that we have the monotonicity
relationships

|T(X2k_1)’1/(2k_1) < |T(X2k)’1/(2k) < ’T(X2k+2)|1/(2k+2)
for any k£ > 0.

As a consequence, we can define the spectral radius p(X) of a self-adjoint
element X by the formula

(2.116) p(X) := lim |7(X2k)|1/(2R),
k—o0

in which case we obtain the inequality

(2.117) (X8| < p(X)

for any k£ =0,1,2,.... We then say that a self-adjoint element is bounded if
its spectral radius is finite.

Example 2.5.6. In the case of random variables, the spectral radius is the
essential supremum || X ||z, while for deterministic matrices, the spectral
radius is the operator norm || X ||op. For random matrices, the spectral radius
is the essential supremum ||||X ||op|/ 7= of the operator norm.

Guided by the model examples, we expect that a bounded self-adjoint
element X should have a spectral measure px supported on the interval
[—p(X), p(X)]. But how do we show this? It turns out that one can proceed
by tapping the power of complex analysis, and introducing the Stieltjes
transform

(2.118) sx(z) =17((X —2)™)

for complex numbers z. Now, this transform need not be defined for all z
at present, because we do not know that X — z is invertible in A. However,
we can avoid this problem by working formally. Indeed, we have the formal
Neumann series expansion
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which leads to the formal Laurent series expansion

o0 k
(2.119) sx(z)=—> TZ(,‘:;).

k=0
If X is bounded self-adjoint, then from (2.117) we see that this formal series
actually converges in the region |z| > p(X). We will thus define the Stieltjes
transform sx(z) on the region |z| > p(X) by this series expansion (2.119),
and then extend to as much of the complex plane as we can by analytic

continuation?3.

We now push the domain of definition of sx(z) into the disk {|z| <
p(X)}. We need some preliminary lemmas.

Exercise 2.5.2. Let X be bounded self-adjoint. For any real number R,
show that p(R? + X?2) = R? + p(X)2. (Hint: Use (2.116), (2.117)).

Exercise 2.5.3. Let X be bounded normal. Show that
7(XF)] < T((X*X)M)2 < p(X*X)k/2,

Now let R be a large positive real number. The idea is to rewrite the
(formal) Stieltjes transform 7((X — 2z)~!) using the formal identity

(2.120) (X —2) ' = (X +iR) — (z+iR))™}

and take Neumann series again to arrive at the formal expansion

oo

(X +iR)*
(2.121) sx(z) = —kzow-

From the previous two exercises we see that
(X +iR)")| < (R* + p(X)})*?,

and so the above Laurent series converges for |z + iR| > (R? 4 p(X)?)1/2.

Exercise 2.5.4. Give a rigorous proof that the two series (2.119), (2.121)
agree for z large enough.

We have thus extended sx (z) analytically to the region {z : |z + iR| >
(R? + p(X)?)Y/2}. Letting R — oo, we obtain an extension of sy (z) to the
upper half-plane {z : Im(z) > 0}. A similar argument (shifting by —iR
instead of +iR) gives an extension to the lower half-plane, thus defining
sx(z) analytically everywhere except on the interval [—p(X), p(X)].

43There could in principle be some topological obstructions to this continuation, but we will
soon see that the only place where singularities can occur is on the real interval [—p(X), p(X)],
and so no topological obstructions will appear. One can also work with the original definition
(2.118) of the Stieltjes transform, but this requires imposing some additional analytic axioms
on the non-commutative probability space, such as requiring that A be a C*-algebra or a von
Neumann algebra, and we will avoid discussing these topics here as they are not the main focus
of free probability theory.
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On the other hand, it is not possible to analytically extend sx(z) to the
region {z : |z| > p(X) — e} for any 0 < € < p(X). Indeed, if this were the
case, then from the Cauchy integral formula (applied at infinity), we would
have the identity

T(X*) = —L, sx(2)2" dz
21 |z\:R
for any R > p(X) — &, which when combined with (2.116) implies that
p(X) < R for all such R, which is absurd. Thus the spectral radius p(X)
can also be interpreted as the radius of the smallest ball centred at the origin
outside of which the Stieltjes transform can be analytically continued.

Now that we have the Stieltjes transform everywhere outside of
[—p(X), p(X)], we can use it to derive an important bound (which will soon
be superceded by (2.114), but will play a key role in the proof of that stronger
statement):

Proposition 2.5.7 (Boundedness). Let X be bounded self-adjoint, and let
P :C — C be a polynomial. Then

IT(P(X))] < sup |P(x)].
x€[—p(X),p(X)]

Proof (Sketch). We can of course assume that P is non-constant, as the
claim is obvious otherwise. From Exercise 2.5.3 (replacing P with PP,
where P is the polynomial whose coefficients are the complex conjugate of
that of P) we may reduce to the case when P has real coefficients, so that
P(X) is self-adjoint. Since X is bounded, it is not difficult (using (2.116),
(2.117)) to show that P(X) is bounded also (Exercise!).

As P(X) is bounded self-adjoint, it has a Stieltjes transform defined
outside of [—p(P(X)), p(P(X))], which for large z is given by the formula

o0 T k
(2.122) spx)(2) = —Z%.
k=0

By the previous discussion, to establish the proposition it will suffice to show
that the Stieltjes transform can be continued to the domain

Q:=C\[- sup |P(x)], sup  [P(z)]].
2€[=p(X).p(X)] 2€[=p(X).p(X)]

For this, we observe the partial fractions decomposition

T P~
Pw)—z C:I%:Z w—(
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of (P(w) — 2)~! into linear combinations of (w — ¢)~!, at least when the
roots of P — z are simple. Thus, formally, at least, we have the identity

1
spoo(z) = > prrey X (C)-
¢:P(Q)==

One can verify this identity is consistent with (2.122) for z sufficiently large.
(Exercise! Hint: First do the case when X is a scalar, then expand in Taylor
series and compare coefficients, then use the agreement of the Taylor series
to do the general case.)

If z is in the domain €, then all the roots ¢ of P(¢) = z lie outside
the interval [—p(X), p(X)]. So we can use the above formula as a definition
of sp(x)(2), at least for those z € Q for which the roots of P — 2z are
simple; but there are only finitely many exceptional z (arising from zeroes
of P’) and one can check (Exercise! Hint: use the analytic nature of sx
and the residue theorem to rewrite parts of sp(x)(z) as a contour integral.)
that the singularities here are removable. It is easy to see (Exercise!) that
sp(x) is holomorphic outside of these removable singularities, and the claim
follows. ]

Exercise 2.5.5. Fill in the steps marked (Exercise!) in the above proof.

From Proposition 2.5.7 and the Weierstrass approzimation theorem (see
e.g. [Ta2010, §1.10]), we see that the linear functional P — 7(P(X)) can be
uniquely extended to a bounded linear functional on C([—p(X), p(X)]), with
an operator norm 1. Applying the Riesz representation theorem (see e.g.
[Ta2010, §1.10]), we thus can find a unique Radon measure (or equivalently,
Borel measure) ux on [—p(X), p(X)] of total variation 1 obeying the identity
(2.114) for all P. In particular, setting P = 1 see that px has total mass
1; since it also has total variation 1, it must be a probability measure. We
have thus shown the fundamental

Theorem 2.5.8 (Spectral theorem for bounded self-adjoint elements). Let
X be a bounded self-adjoint element of a non-commutative probability space
(A,7). Then there exists a unique Borel probability measure ux on
[—p(X), p(X)] (known as the spectral measure of X ) such that (2.114) holds
for all polynomials P : C — C.

Remark 2.5.9. If one assumes some completeness properties of the non-
commutative probability space, such as that A is a C*-algebra or a von
Neumann algebra, one can use this theorem to meaningfully define F(X)
for other functions F : [—p(X), p(X)] — C than polynomials; specifically,
one can do this for continuous functions F' if A is a C*-algebra, and for
L>*(ux) functions F' if A is a von Neumann algebra. Thus, for instance,
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we can start define absolute values |X|, or square roots |X|'/2, etc. Such
an assignment F' — F(X) is known as a functional calculus; it can be used,
for instance, to go back and make rigorous sense of the formula (2.118). A
functional calculus is a very convenient tool to have in operator algebra the-
ory, and for that reason one often completes a non-commutative probability
space into a C*-algebra or von Neumann algebra, much as how it is often
convenient to complete the rationals and work instead with the reals. How-
ever, we will proceed here instead by working with a (possibly incomplete)
non-commutative probability space, and working primarily with formal ex-
pressions (e.g., formal power series in z) without trying to evaluate such
expressions in some completed space. We can get away with this because we
will be working exclusively in situations in which the spectrum of a random
variable can be reconstructed exactly from its moments (which is, in partic-
ular, true in the case of bounded random variables). For unbounded random
variables, one must usually instead use the full power of functional analy-
sis and work with the spectral theory of unbounded operators on Hilbert
spaces.

Exercise 2.5.6. Let X be a bounded self-adjoint element of a non-commuta-
tive probability space, and let pux be the spectral measure of X. Establish

the formula )

sx(z) :/ dpx ()
[—p(X),p(X)] T — Z

for all z € C\[-p(X), p(X)]. Conclude that the support** of the spectral
measure fx must contain at least one of the two points —p(X), p(X).

Exercise 2.5.7. Let X be a bounded self-adjoint element of a non-commuta-
tive probability space with faithful trace. Show that p(X) = 0 if and only
if X =0.

Remark 2.5.10. It is possible to also obtain a spectral theorem for bounded
normal elements along the lines of the above theorem (with px now sup-
ported in a disk rather than in an interval, and with (2.114) replaced by
(2.115)), but this is somewhat more complicated to show (basically, one
needs to extend the self-adjoint spectral theorem to a pair of commuting
self-adjoint elements, which is a little tricky to show by complex-analytic
methods, as one has to use several complex variables).

The spectral theorem more or less completely describes the behaviour
of a single (bounded self-adjoint) element X in a non-commutative proba-
bility space. As remarked above, it can also be extended to study multiple
commuting self-adjoint elements. However, when one deals with multiple
non-commuting elements, the spectral theorem becomes inadequate (and

44The support of a measure is the intersection of all the closed sets of full measure.
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indeed, it appears that in general there is no usable substitute for this the-
orem). However, we can begin making a little bit of headway if we assume
as a final (optional) axiom a very weak form of commutativity in the trace:

Axiom 2.5.11 (Trace). For any two elements X,Y, we have 7(XY) =
T(YX).

Note that this axiom is obeyed by all three of our model examples. From
this axiom, we can cyclically permute products in a trace, e.g., 7(XY Z) =
T(YZX) = 71(ZXY). However, we cannot take non-cyclic permutations;
for instance, 7(XY Z) and 7(XZY) are distinct in general. This axiom is
a trivial consequence of the commutative nature of the complex numbers
in the classical setting, but can play a more non-trivial role in the non-
commutative setting. It is, however possible, to develop a large part of
free probability without this axiom, if one is willing instead to work in the
category of von Neumann algebras. Thus, we shall leave it as an optional
axiom:

Definition 2.5.12 (Non-commutative probability space, final definition).
A non-commutative probability space (A, T) consists of a x-algebra A4 with
identity 1, together with a *-linear functional 7 : A — C, that maps 1 to 1
and obeys the non-negativity axiom. If 7 obeys the trace axiom, we say that
the non-commutative probability space is tracial. If 7 obeys the faithfulness
axiom, we say that the non-commutative probability space is faithful.

From this new axiom and the Cauchy-Schwarz inequality we can now
get control on products of several non-commuting elements:

Exercise 2.5.8. Let X1,..., X be bounded self-adjoint elements of a tra-
cial non-commutative probability space (A, 7). Show that

(XL XY < p(X)™ L p(X) ™

for any non-negative integers myq,...,my. (Hint: Induct on k, and use
Cauchy-Schwarz to split up the product as evenly as possible, using cyclic
permutations to reduce the complexity of the resulting expressions.)

Exercise 2.5.9. Let A N L*®(7) be those elements X in a tracial non-
commutative probability space (A,7) whose real and imaginary parts
Re(X) := XZX*, Im(X) := XElX are bounded and self-adjoint; we refer to
such elements simply as bounded elements. Show that this is a sub-x-algebra

of A.

This allows one to perform the following Gelfand-Naimark-Segal (GNS)
construction. Recall that AN L (7) has a positive semi-definite inner prod-
uct () r2(r)- We can perform the Hilbert space completion of this inner
product space (quotienting out by the elements of zero norm), leading to
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a complex Hilbert space L?(7) into which AN L% (7) can be mapped as a
dense subspace by an isometry®® 1 : AN L>®(7) — L2(7).

The space AN L>(7) acts on itself by multiplication, and thus also acts
on the dense subspace t(AN L>(7)) of L?(7). We would like to extend this
action to all of L2(7), but this requires an additional estimate:

Lemma 2.5.13. Let (A, 7) be a tracial non-commutative probability space.
If X, Y € AN L*>®(7) with X self-adjoint, then

[ XY [ z2(r) < p(X)Y ]| L2(7)-

Proof. Squaring and cyclically permuting, it will suffice to show that
7(Y*X?Y) < p(X)?7(Y*Y).

Let € > 0 be arbitrary. By Weierstrass approximation, we can find a
polynomial P with real coefficients such that 2% + P(z)? = p(X)? + O(e) on
the interval [—p(X), p(X)]. By Proposition 2.5.7, we can thus write X2 +
P(X)? = p(X)? + E where E is self-adjoint with p(E) = O(¢). Multiplying
on the left by Y* and on the right by Y and taking traces, we obtain

T(Y*X2Y) + 7(Y*P(X)?Y) < p(X)?7(Y*Y) + 7(Y*EY).

By non-negativity, 7(Y*P(X)?Y) > 0. By Exercise 2.5.8, we have 7(Y*EY)
= Oy (e). Sending ¢ — 0 we obtain the claim. O

As a consequence, we see that the self-adjoint elements X of AN L*(7)
act in a bounded manner on all of L?(7), and so on taking real and imaginary
parts, we see that the same is true for the non-self-adjoint elements too.
Thus we can associate to each X € L*(7) a bounded linear transformation
X € B(L?(7)) on the Hilbert space L*(7).

Exercise 2.5.10 (Gelfand-Naimark theorem). Show that the map X + X
is a *-isomorphism from AN L>(7) to a *-subalgebra of B(L?(7)), and that
one has the representation

7(X) = (e, Xe)

for any X € L*°(7), where e is the unit vector e := ¢(1).

Remark 2.5.14. The Gelfand-Naimark theorem required the tracial hy-
pothesis only to deal with the error F in the proof of Lemma 2.5.13. One
can also establish this theorem without this hypothesis, by assuming instead
that the non-commutative space is a C*-algebra; this provides a continuous
functional calculus, so that we can replace P in the proof of Lemma 2.5.13

45This isometry is injective when A is faithful, but will have a non-trivial kernel otherwise.
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by a continuous function and dispense with F altogether. This formula-
tion of the Gelfand-Naimark theorem is the one which is usually seen in the
literature.

The Gelfand-Naimark theorem identifies AN L°°(7) with a *-subalgebra
of B(L?(7)). The closure of this *-subalgebra in the weak operator topol-
ogy?% is then a wvon Neumann algebra, which we denote as L>®(7). As a
consequence, we see that non-commutative probability spaces are closely re-
lated to von Neumann algebras (equipped with a tracial state 7). However,
we refrain from identifying the former completely with the latter, in order
to allow ourselves the freedom to work with such spaces as L°°~, which is
almost but not quite a von Neumann algebra. Instead, we use the looser
(and more algebraic) definition in Definition 2.5.12.

2.5.2. Limits of non-commutative random variables. One benefit of
working in an abstract setting is that it becomes easier to take certain types
of limits. For instance, it is intuitively obvious that the cyclic groups Z/NZ
are “converging’ in some sense to the integer group Z. This convergence can
be formalised by selecting a distinguished generator e of all groups involved
(1 mod N in the case of Z/NZ, and 1 in the case of the integers Z), and
noting that the set of relations involving this generator in Z/NZ (i.e., the
relations ne = 0 when n is divisible by NN) converge in a pointwise sense
to the set of relations involving this generator in Z (i.e., the empty set).
Here, to see the convergence, we viewed a group abstractly via the relations
between its generators, rather than on a concrete realisation of a group as
(say) residue classes modulo N.

We can similarly define convergence of random variables in non-commu-
tative probability spaces as follows.

Definition 2.5.15 (Convergence). Let (A, 7,) be a sequence of non-com-
mutative probability spaces, and let (A, 7o) be an additional non-commu-

tative space. For each n, let X, 1,..., X, be a sequence of random vari-
ables in A, and let X 1,..., X« 1 be a sequence of random variables in
Aso. We say that X,,1,...,X, converges in the sense of moments to
Xools -+ Xook if we have
Tn(th e Xnﬂ'm) — Too(Xoo,il e Xoo,im)
as n— oo for any sequence iy, ...,4, €{1,...,k}. Wesay that X,, 1,..., X«
converge in the sense of x-moments to Xoo1,..., Xoop if Xp1,..., Xpk,
NETRE .,X;;k converges in the sense of moments to Xoo1,..., Xoopk,
NETRRRED. Gy

46The weak operator topology on the space B(H) of bounded operators on a Hilbert space
is the weakest topology for which the coefficient maps T' — (T'w,v) g are continuous for each
u,v € H.
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If X1,..., X}y (viewed as a constant k-tuple in n) converges in the sense
of moments (resp. *-moments) to Yi,...,Ys, we say that Xi,..., X} and
Y1, ..., Y, have matching joint moments (resp. matching joint x-moments).

Example 2.5.16. If X,,,Y,, converge in the sense of moments to X, Yoo,
then we have, for instance, that

Tn(XnYEX) = 7o (X oo YE X o)

as n — oo for each k, while if they converge in the stronger sense of *-
moments, then we obtain more limits, such as

Tn(XnYFX) = 1o (X YEXY).

Note, however, that no uniformity in k is assumed for this convergence; in
particular, if k varies in n (e.g., if K = O(logn)), there is now no guarantee
that one still has convergence.

Remark 2.5.17. When the underlying objects X, i,...,X,; and
X1, ..., X} are self-adjoint, then there is no distinction between convergence
in moments and convergence in *-moments. However, for non-self-adjoint
variables, the latter type of convergence is far stronger, and the former type
is usually too weak to be of much use, even in the commutative setting. For
instance, let X be a classical random variable drawn uniformly at random
from the unit circle {z € C: |z| = 1}. Then the constant sequence X,, = X
has all the same moments as the zero random variable 0, and thus converges
in the sense of moments to zero, but does not converge in the *-moment
sense to zero.

It is also clear that if we require that A, be generated by X 1,. .., Xoo i
in the x-algebraic sense (i.e., every element of A is a polynomial combi-
nation of Xoo1,..., Xk and their adjoints), then a limit in the sense of
x-moments, if it exists, is unique up to matching joint *-moments.

For a sequence X, of a single, uniformly bounded, self-adjoint element,
convergence in moments is equivalent to convergence in distribution:

Exercise 2.5.11. Let X,, € A, be a sequence of self-adjoint elements in
non-commutative probability spaces (A, 7,,) with p(X,,) uniformly bounded,
and let X, € A, be another bounded self-adjoint element in a non-
commutative probability space (Auxo, Too). Show that X,, converges in mo-
ments to X if and only if the spectral measure px, converges in the vague

topology to ux., .

Thus, for instance, one can rephrase the Wigner semicircular law (in the
convergence in expectation formulation) as the assertion that a sequence
M, € L>*~ ® M,(C) of Wigner random matrices with (say) sub-Gaussian
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entries of mean zero and variance one, when viewed as elements of the
non-commutative probability space (L>®~ ® Mn(C),E% tr), will converge
to any bounded self-adjoint element w of a non-commutative probability
space with spectral measure given by the semicircular distribution pg. :=
%(4 — xQ)i/ ? dz. Such elements are known as semicircular elements. Here

are some easy examples of semicircular elements:

(i) A classical real random variable v drawn using the probability mea-
sure figc.

(ii) The identity function z — z in the Lebesgue space L*°(dpusc), en-
dowed with the trace 7(f) := [g f dptsc.

(iii) The function @ 2 cos 6 in the Lebesgue space L°°([0, 7], 2 sin? 6 df).

Here is a more interesting example of a semicircular element:

Exercise 2.5.12. Let (A, 7) be the non-commutative space consisting of
bounded operators B(¢£2(IN)) on the natural numbers with trace 7(X) :=
(eq, X€0>g2(N), where e, e1, ... is the standard basis of 2(N). Let U : e,,
en+1 be the right shift on £2(IN). Show that U+U* is a semicircular operator.
(Hint: One way to proceed here is to use Fourier analysis to identify £2(IN)
with the space of odd functions 6 — f(0) on R/27Z, with U being the
operator that maps sin(nf) to sin((n + 1)6); show that U 4+ U* is then the
operation of multiplication by 2 cos §.) One can also interpret U as a creation
operator in a Fock space, but we will not do so here.

Exercise 2.5.13. With the notation of the previous exercise, show that
7((U 4 U*)¥) is zero for odd k, and is equal to the Catalan number Ch/2
from Section 2.3 when k is even. Note that this provides a (very) slightly
different proof of the semicircular law from that given from the moment
method in Section 2.4.

Because we are working in such an abstract setting with so few axioms,
limits exist in abundance:

Exercise 2.5.14. For each n, let X,,1,..., X, be bounded self-adjoint el-
ements of a tracial non-commutative space (A, 7,). Suppose that the spec-
tral radii p(Xn1),...,p(Xnx) are uniformly bounded in n. Show that there
exists a subsequence n; and bounded self-adjoint elements Xi,..., X} of
a tracial non-commutative space (A, 7) such that K1y ,an,k- converge
in moments to Xy,..., Xy as j — oo. (Hint: Use the Bolzano-Weierstrass
theorem and the Arzela-Ascoli diagonalisation trick to obtain a subsequence
in which each of the joint moments of X, 1,..., Xy, x converge as j — oo.
Use these moments to build a non-commutative probability space.)
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2.5.3. Free independence. We now come to the fundamental concept in
free probability theory, namely that of free independence.

Definition 2.5.18 (Free independence). A collection X7, ..., X} of random
variables in a non-commutative probability space (A, 7) is freely independent
(or free for short) if one has

T((P(Xiy) = 7(P1(Xiy))) - - (Pn(Xiy, ) = 7(Pn (X)) = 0

whenever Py, ..., P, are polynomials and i1,...,4, € {1,...,k} are indices
with no two adjacent i; equal.

A sequence X, 1,..., X, of random variables in a non-commutative
probability space (A, 7,) is asymptotically freely independent (or asymptot-
ically free for short) if one has

Ta((P1(Xni) = 7(P1(Xnir))) - - (P Xnsig) = 7(Pin (X)) = 0

as n — oo whenever Pp,..., P, are polynomials and iy,...,%, € {1,...,k}
are indices with no two adjacent ¢; equal.

Remark 2.5.19. The above example describes freeness of collections of
random variables A. One can more generally define freeness of collections
of subalgebras of A, which in some sense is the more natural concept from a
category-theoretic perspective, but we will not need this concept here. See
e.g., [Bi2003] for more discussion.

Thus, for instance, if X,Y are freely independent, then 7(P(X)Q(Y)
R(X)S(Y)) will vanish for any polynomials P, @, R, S for which 7(P(X)),
T(Q(Y)), 7(R(X)),7(S(Y)) all vanish. This is in contrast to classical in-
dependence of classical (commutative) random variables, which would only
assert that 7(P(X)Q(Y)) = 0 whenever 7(P(X)),7(Q(Y)) both vanish.

To contrast free independence with classical independence, suppose that
7(X)=7(Y)=0. If X,Y were freely independent, then 7(XY XY) = 0. If
instead X,Y were commuting and classically independent, then we would
instead have 7(XYXY) = 7(X?Y?) = 7(X?)7(Y?), which would almost
certainly be non-zero.

For a trivial example of free independence, X and Y automatically are
freely independent if at least one of X, Y is constant (i.e., a multiple of the
identity 1). In the commutative setting, this is basically the only way one
can have free independence:

Exercise 2.5.15. Suppose that X,Y are freely independent elements of a
faithful non-commutative probability space which also commute. Show that
at least one of X,Y is equal to a scalar. (Hint: First normalise X, Y to have
trace zero, and consider 7(XY XY').)
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A less trivial example of free independence comes from the free group,
which provides a clue as to the original motivation of this concept:

Exercise 2.5.16. Let Fsy be the free group on two generators g1, go. Let
A = B(f%(F5)) be the non-commutative probability space of bounded linear
operators on the Hilbert space £2(F3), with trace 7(X) := (Xeq, eg), where
eo is the Kronecker delta function at the identity. Let Uy,Us € A be the
shift operators

Uif(g) == f(g19);  U2f(g) := f(g29)
for f € £?(F3) and g € Fy. Show that Uy, Uy are freely independent.

For classically independent commuting random variables X,Y, knowl-
edge of the individual moments 7(X*), 7(Y"*) gave complete information on
the joint moments: 7(X*Y!) = 7(X*)7(Y"!). The same fact is true for freely
independent random variables, though the situation is more complicated.
We begin with a simple case: computing 7(XY') in terms of the moments
of X,Y. From free independence we have

T(X —7(X)(Y —7(Y)) =0.
Expanding this using the linear nature of trace, one soon sees that
(2.123) 7(XY) =7(X)7(Y).

So far, this is just the same as with the classically independent case. Next,
we consider a slightly more complicated moment, 7(XY X). If we split
Y=7Y)+ (Y —7(Y)), we can write this as

(XY X) =7(Y)7(X?) + 7(X(Y —7(Y))X).

In the classically independent case, we can conclude the latter term would
vanish. We cannot immediately say that in the freely independent case,
because only one of the factors has mean zero. But from (2.123) we know
that 7(X (Y —7(Y)) = 7((Y —7(Y")) X ) = 0. Because of this, we can expand

(XY =7(Y))X) = 7((X = 7(X))(Y —7(¥))(X — 7(X)))
and now free independence does ensure that this term vanishes, and so
(2.124) (XY X) =7(Y)7(X?).

So again we have not yet deviated from the classically independent case.
But now let us look at 7(XY XY). We split the second X into 7(X) and
X — 7(X). Using (2.123) to control the former term, we have

T(XYXY) = 7(X)*r(Y?) + 7(XY (X — 7(X))Y).
From (2.124) we have 7(Y (X — 7(X))Y) = 0, so we have
T(XYXY) =7(X)?1(Y?) + 7((X — 7(X))Y (X — 7(X))Y).



176 2. Random matrices

Now we split Y into 7(Y) and Y — 7(Y). Free independence eliminates all
terms except

T(XYXY) =7(X)*r(Y?) +7((X — 7(X)T(Y)(X — 7(X))7(Y))
which simplifies to
F(XYXY) = 7(X)27(Y2) + 7(X2)7(Y)? — 7(X)27r(Y)?
which differs from the classical independence prediction of 7(X?)7(Y?).

This process can be continued:

Exercise 2.5.17. Let Xy,..., Xj be freely independent. Show that any
joint moment of Xj,..., X} can be expressed as a polynomial combination
of the individual moments 7(X7) of the X;. (Hint: Induct on the complexity
of the moment.)

The product measure construction allows us to generate classically in-
dependent random variables at will (after extending the underlying sample
space): see Exercise 1.1.20. There is an analogous construction, called the
amalgamated free product, that allows one to generate families of freely in-
dependent random variables, each of which has a specified distribution. Let
us give an illustrative special case of this construction:

Lemma 2.5.20 (Free products). For each 1 < i < k, let (A;, ) be a
non-commutative probability space. Then there exists a non-commutative
probability space (A, T) which contain embedded copies of each of the (A;, ),
such that whenever X; € A; fori = 1,...,k, then X1,..., X} are freely
independent.

Proof (Sketch). Recall that each A; can be given an inner product (, ) r2(4,)-
One can then orthogonally decompose each space A; into the constants C,
plus the trace zero elements AY := {X € A; : 7(X) = 0}.

We now form the Fock space F to be the inner product space formed by
the direct sum of tensor products

(2.125) A w...0A
where m > 0, and i1,...,4, € {1,...,k} are such that no adjacent pair
ij,9541 of the i1,... iy are equal. Each element X; € A; then acts on this

Fock space by defining
XY, ®...0Y,) =X;0Y,®...0Y
when 4 # i1, and

Xi(Vy®...0Y;,) = 17(X;Y;,)Y;,®...0Y, +(X;V;, —7(X;Y;))®Y,®. . .QY;,
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when ¢ = 4;. One can thus map A; into the space A := Hom(F,F) of
linear maps from F to itself. The latter can be given the structure of a non-
commutative space by defining the trace 7(X) of an element X € A by the
formula 7(X) := (Xep, eg) 7, where ey is the vacuum state of F, being the
unit of the m = 0 tensor product. One can verify (Exercise!) that .A; embeds
into A and that elements from different A; are freely independent. O

Exercise 2.5.18. Complete the proof of Lemma 2.5.20. (Hint: You may
find it helpful to first do Exercise 2.5.16, as the construction here is an
abstraction of the one in that exercise.)

Finally, we illustrate the fundamental connection between free proba-
bility and random matrices first observed by Voiculescu [Vo1991], namely
that (classically) independent families of random matrices are asymptotically
free. The intuition here is that while a large random matrix M will certainly
correlate with itself (so that, for instance, tr M*M will be large), once one
interposes an independent random matrix N of trace zero, the correlation is
largely destroyed (thus, for instance, tr M*N M will usually be quite small).

We give a typical instance of this phenomenon here:
Proposition 2.5.21 (Asymptotic freeness of Wigner matrices). Let M, 1,
.. My, i be a collection of independent n x n Wigner matrices, where the
coefficients all have uniformly bounded m*™ moments for each m. Then
the random wvariables ﬁMml,...,%Mn,k € (L ® Mn(C),E% tr) are
asymptotically free.

Proof (Sketch). Let us abbreviate ﬁMn,j as X (suppressing the n depen-
dence). It suffices to show that the traces

(T = 7(X5)) = o(1)
j=1
for each fixed choice of natural numbers a1, ..., a;,, where no two adjacent

ij,1j41 are equal.

Recall from Section 2.3 that T(X;-lj) is (up to errors of o(1)) equal to a
normalised count of paths of length a; in which each edge is traversed exactly
twice, with the edges forming a tree. After normalisation, this count is equal
to 0 when a; is odd, and equal to the Catalan number C,, /, when a; is even.

One can perform a similar computation to compute T(H;nzl XZaJ 7). Up
to errors of o(1), this is a normalised count of coloured paths of length
a1+ - -+am,, where the first a; edges are coloured with colour 7, the next as
with colour 79, etc. Furthermore, each edge is traversed exactly twice (with
the two traversals of each edge being assigned the same colour), and the
edges form a tree. As a consequence, there must exist a j for which the block
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of a; edges of colour i; form their own sub-tree, which contributes a factor
of Cy, /2 or 0 to the final trace. Because of this, when one instead computes

the normalised expression ([ (X Z T —1(X Z 7))), all contributions that are

not o(1) cancel themselves out, and the claim follows. O

Exercise 2.5.19. Expand the above sketch into a full proof of the above
theorem.

Remark 2.5.22. This is by no means the only way in which random ma-
trices can become asymptotically free. For instance, if instead one considers
random matrices of the form M, ; = U/A;U;, where A; are deterministic
Hermitian matrices with uniformly bounded eigenvalues, and the U; are iid
unitary matrices drawn using Haar measure on the unitary group U(n), one
can also show that the M, ; are asymptotically free; again, see [Vo1991] for
details.

2.5.4. Free convolution. When one is summing two classically indepen-
dent (real-valued) random variables X and Y, the distribution ux 4y of the
sum X +Y is the convolution px * py of the distributions px and py. This
convolution can be computed by means of the characteristic function

Fx(t) == 7(e™) = / e dux ()
R
by means of the simple formula
T(eit(XJrY)) _ T(eitX)T(eitY).

As we saw in Section 2.2, this can be used, in particular, to establish a short
proof of the central limit theorem.

There is an analogous theory when summing two freely independent
(self-adjoint) non-commutative random variables X and Y’; the distribution
Ux+y turns out to be a certain combination px B py, known as the free
convolution of px and py. To compute this free convolution, one does
not use the characteristic function; instead, the correct tool is the Stieltjes

transform
1

r—z

sx(2) = (X =97 = [ —— dux(o)

which has already been discussed earlier.

Here’s how to use this transform to compute free convolutions. If one
wishes, one can assume that X is bounded so that all series involved con-
verge for z large enough, though actually the entire argument here can be
performed at a purely algebraic level, using formal power series, and so the
boundedness hypothesis here is not actually necessary.

The trick (which we already saw in Section 2.4) is not to view s = sx(z)
as a function of z, but rather to view z = zx(s) as a function of s. Given
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that one asymptotically has s ~ —1/z for z, we expect to be able to perform
this inversion for z large and s close to zero; and in any event one can easily
invert (2.119) on the level of formal power series.

With this inversion, we thus have
(2.126) s =T7((X —zx(s)™1)
and thus
(X = 2x(s)) ™" = s(1 - Bx)
for some Ex = Ex(s) of trace zero. Now we do some (formal) algebraic
sleight of hand. We rearrange the above identity as

X =z2x(s)+s (1 - Ex)™L.
Similarly, we have
Y =2y(s) +s 11— Ey)™},
and so
X+Y =zx(s)+2y(s)+s (1 - Ex)'+(1—-FEy)™ .
We can combine the second two terms via the identity
(1-Ex) ' +(1-FEy)'=0-Ex)"{(1-Ey +1-Ex)(1- Ey)™"
Meanwhile,
1=(1-Ex) '(1-FEy —Ex +ExFEy)(1—Ey)™ !,
and so
X+Y =z2x(s)+2y(s) +s  +s 11— Ex) (1 - ExEy)(1— Ey)™ .
We can rearrange this a little bit as
(X +Y —zx(s) —2y(s) —s 1) =s[(1 - By)(1 - ExEy) (1 — Ex)].
We expand out as the (formal) Neumann series:
(1—Ey)(1 - ExEy) (1 - Ex)
=(1—-Ey) 1+ ExEy + ExEyExEy +...)(1 - Ex).

This expands out to equal 1 plus a whole string of alternating products of
E X and Ey.

Now we use the hypothesis that X and Y are free. This easily implies
that Ex and Ey are also free. But they also have trace zero, thus by the
definition of free independence, all alternating products of Ex and Ey have
zero trace”. We conclude that

(1 - Ey)(1 — ExEy) '(1-Ex)) =1,

471n the case when there are an odd number of terms in the product, one can obtain this
zero trace property using the cyclic property of trace and induction.
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and so
(X +Y —2x(s) —2y(s) —s ) 1) =s.
Comparing this against (2.126) for X + Y we conclude that

ZX+y(S) = Zx(s) + Zy(S) + s~h

Thus, if we define the R-transform Rx of X to be (formally) given by*® the
formula
Rx(s) = zx(—s) — s ',

then we have the addition formula

Rxiy = Rx + Ry.
Since one can recover the Stieltjes transform sx (and hence the R-transform
Rx) from the spectral measure px and vice versa, this formula (in principle,

at least) lets one compute the spectral measure puxyy of X +Y from the
spectral measures px, py, thus allowing one to define free convolution.

For comparison, we have the (formal) addition formula
10ng+y = logFX + long

for classically independent real random variables X,Y. The following exer-
cises carry this analogy a bit further.

Exercise 2.5.20. Let X be a classical real random variable. Working for-
mally, show that

oo

kip(X) .
log Fx (t) = Z o (it)*

k=1
where the cumulants r(X) can be reconstructed from the moments 7(X*)
by the recursive formula

k—1
r(XF) =m0+ Y k(X)) YD r(xete)

j_]. (z1+---+a]~:k—j
for k > 1. (Hint: Start with the identity 4 Fx(t) = (& log Fx(t))Fx(t).)
Thus, for instance, x1(X) = 7(X) is the expectation, xa(X) = 7(X?) —
7(X)? is the variance, and the third cumulant is given by the formula

Kk3(X) = 7(X?) 4+ 37(X?)7(X) — 47(X)>.
Establish the additional formula
(XM =Y "1 Ca(x)
T A€m
where 7 ranges over all partitions of {1,...,k} into non-empty cells A.
48The sign conventions may seem odd here, but they are chosen to conform to the notational

conventions in the literature, which are based around the moment series > oo ; 7(X™)z"™ rather
than the (slightly different) Stieltjes transform (2.119).
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Exercise 2.5.21. Let X be a non-commutative random variable. Working
formally, show that

Rx(s) =) Cp(X)s*!
k=1

where the free cumulants Ci(X) can be reconstructed from the moments
7(X*) by the recursive formula

k—1
T(XF) = CX)+ ) CX) )T (X)L r(XY)
=1 a1+ ay=k—j
for k > 1. (Hint: Start with the identity sx(2)Rx(—sx(z)) =1+ zsx(z).)
Thus, for instance, C;(X) = 7(X) is the expectation, Co(X) = 7(X?) —
7(X)? is the variance, and the third free cumulant is given by the formula
C3(X) = 7(X?) = 37(X*)7(X) + 27(X)".
Establish the additional formula

(X" =" T] saX)

T A€em
where 7 ranges over all partitions of {1,..., k} into non-empty cells A which
are non-crossing, which means that if a < b < ¢ < d lie in {1,...,k}, then

it cannot be the case that a, c lie in one cell A while b, d lie in a distinct cell
A

Remark 2.5.23. These computations illustrate a more general principle
in free probability, in that the combinatorics of free probability tend to be
the “non-crossing” analogue of the combinatorics of classical probability;
compare with Remark 2.3.18.

Remark 2.5.24. The R-transform allows for efficient computation of the
spectral behaviour of sums X +Y of free random variables. There is an anal-
ogous transform, the S-transform, for computing the spectral behaviour (or
more precisely, the joint moments) of products XY of free random variables;
see for instance [Sp].

The R-transform clarifies the privileged role of the semicircular elements:

Exercise 2.5.22. Let u be a semicircular element. Show that Rz, (s) = ts
for any ¢t > 0. In particular, the free convolution of v/tu and v/t'u is v/t + t'u.
Exercise 2.5.23. From the above exercise, we see that the effect of adding
a free copy of v/tu to a non-commutative random variable X is to shift the

R-transform by ts. Explain how this is compatible with the Dyson Brownian
motion computations in Section 2.4.

It also gives a free analogue of the central limit theorem:
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Exercise 2.5.24 (Free central limit theorem). Let X be a self-adjoint ran-
dom variable with mean zero and variance one (i.e., 7(X) = 0 and 7(X?) =
1), and let X3, Xo, X3, ... be free copies of X. Let S, := (X14+---+X,,)/v/n.
Show that the coefficients of the formal power series Rg, (s) converge to that
of the identity function s. Conclude that S, converges in the sense of mo-
ments to a semicircular element wu.

The free central limit theorem implies the Wigner semicircular law, at
least for the GUE ensemble and in the sense of expectation. Indeed, if
M, is an n x n GUE matrix, then the matrices ﬁMn are a.s. uniformly
bounded (by the Bai-Yin theorem, see Section 2.3), and so (after passing to
a subsequence, if necessary), they converge in the sense of moments to some
limit w.

On the other hand, if M/, is an independent copy of M,,, then M,,+ M/ =
V2M,, from the properties of Gaussians. Taking limits, we conclude that
u+u' = v/2u, where (by Proposition 2.5.21) / is a free copy of u. Comparing
this with the free central limit theorem (or just the additivity property of R-
transforms) we see that u must have the semicircular distribution. Thus the
semicircular distribution is the only possible limit point of the ﬁMn, and

the Wigner semicircular law then holds (in expectation, and for GUE). Using
concentration of measure, we can upgrade the convergence in expectation
to a.s. convergence; using the Lindeberg replacement trick one can replace
GUE with arbitrary Wigner matrices with (say) bounded coefficients, and
then by using the truncation trick one can remove the boundedness hypoth-
esis. (These latter few steps were also discussed in Section 2.4.)

2.6. Gaussian ensembles

Our study of random matrices, to date, has focused on somewhat general en-
sembles, such as iid random matrices or Wigner random matrices, in which
the distribution of the individual entries of the matrices was essentially ar-
bitrary (as long as certain moments, such as the mean and variance, were
normalised). In this section, we now focus on two much more special, and
much more symmetric, ensembles:

(i) The Gaussian Unitary Ensemble (GUE), which is an ensemble of
random n xn Hermitian matrices M,, in which the upper-triangular
entries are iid with distribution N(0, 1)c, and the diagonal entries
are iid with distribution N(0,1)gr, and independent of the upper-
triangular ones.

(ii) The Gaussian random matriz ensemble, which is an ensemble of
random n x n (non-Hermitian) matrices M,, whose entries are iid
with distribution N(0,1)c.
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The symmetric nature of these ensembles will allow us to compute the
spectral distribution by exact algebraic means, revealing a surprising connec-
tion with orthogonal polynomials and with determinantal processes. This
will, for instance, recover the semicircular law for GUE, but will also reveal
fine spacing information, such as the distribution of the gap between adja-
cent eigenvalues, which is largely out of reach of tools such as the Stieltjes
transform method and the moment method (although the moment method,
with some effort, is able to control the extreme edges of the spectrum).

Similarly, we will see for the first time the circular law for eigenvalues
of non-Hermitian matrices.

There are a number of other highly symmetric ensembles which can also
be treated by the same methods, most notably the Gaussian Orthogonal En-
semble (GOE) and the Gaussian Symplectic Ensemble (GSE). However, for
simplicity we shall focus just on the above two ensembles. For a systematic
treatment of these ensembles, see [De1999].

2.6.1. The spectrum of GUE. In Section 3.1 we will use Dyson Brown-
ian motion to establish the Ginibre formula [Gi1965]

1
(271')"/2

for the density function of the eigenvalues (A1,...,A,) € RY of a GUE
matrix M,,, where

(2.127) pr(N) = e P, ()2

AN = T i=A)
1<i<j<n
is the Vandermonde determinant. In this section, we give an alternate proof
of this result (omitting the exact value of the normalising constant W)

that exploits unitary invariance and the change of variables formula (the
latter of which we shall do from first principles). The one thing to be
careful about is that one has to somehow quotient out by the invariances of
the problem before being able to apply the change of variables formula.

One approach here would be to artificially “fix a gauge” and work on
some slice of the parameter space which is “transverse” to all the symme-
tries. With such an approach, one can use the classical change of variables
formula. While this can certainly be done, we shall adopt a more “gauge-
invariant” approach and carry the various invariances with us throughout

the computation®”.

We turn to the details. Let V;, be the space of Hermitian n X n matrices,
then the distribution pys, of a GUE matrix M, is a absolutely continuous

49For a comparison of the two approaches, see [Ta2009b, §1.4].
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probability measure on V,,, which can be written using the definition of GUE

as
finr, = Ch H e 181y ( H e l&l/2y anr,
1<i<j<n 1<i<n
where dM,, is Lebesgue measure on V,,, &;; are the coordinates of M,,, and
C', is a normalisation constant (the exact value of which depends on how one
normalises Lebesgue measure on V;,). We can express this more compactly
as

W, = (Z’nfa_tr(]v‘[’%)/2 dM,,.

Expressed this way, it is clear that the GUE ensemble is invariant under
conjugations M,, — UM,U~! by any unitary matrix.

Let D be the diagonal matrix whose entries Ay > --- > )\, are the
eigenvalues of M, in descending order. Then we have M, = UDU~! for
some unitary matrix U € U(n). The matrix U is not uniquely determined;
if R is a diagonal unitary matrix, then R commutes with D, and so one can
freely replace U with UR. On the other hand, if the eigenvalues of M are
simple, then the diagonal matrices are the only matrices that commute with
D, and so this freedom to right-multiply U by diagonal unitaries is the only
failure of uniqueness here. And in any case, from the unitary invariance of
GUE, we see that even after conditioning on D, we may assume, without
loss of generality, that U is drawn from the invariant Haar measure on U (n).
In particular, U and D can be taken to be independent.

Fix a diagonal matrix Dy = diag()\Y, ..., \)) for some A} > -+ > A0 let
€ > 0 be extremely small, and let us compute the probability

(2.128) P(|| M, — Dol <€)

that M, lies within € of Dy in the Frobenius norm(2.64). On the one hand,
the probability density of M, is proportional to

e~ (D3)/2 _ —IA?/2

near Dy (where we write A := (A,...,\?)) and the volume of a ball of
radius € in the n?-dimensional space V}, is proportional to 5"2, so (2.128) is
equal to

(2.129) (C! + o(1))e™ e tr(D8)/2

for some constant CJ, > 0 depending only on n, where o(1) goes to zero as
e — 0 (keeping n and Dy fixed). On the other hand, if |M,, — Do|lr < e,
then by the Weyl inequality (1.55) (or Weilandt-Hoffman inequality (1.65))
we have D = Dy + O(e) (we allow implied constants here to depend on n
and on Dy). This implies UDU ! = D+0O(e), thus UD — DU = O(e). As a
consequence we see that the off-diagonal elements of U are of size O(¢). We
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can thus use the inverse function theorem in this local region of parameter
space and make the ansatz®’

D =Dy+cE; U=exp(eS)R

where E is a bounded diagonal matrix, R is a diagonal unitary matrix, and
S is a bounded skew-adjoint matrix with zero diagonal. Note that the map
(R, S) — exp(eS)R has a non-degenerate Jacobian, so the inverse function
theorem applies to uniquely specify R,S (and thus FE) from U, D in this
local region of parameter space.

Conversely, if D, U take the above form, then we can Taylor expand and
conclude that

M, = UDU* = Dy + €E +(SDg — DyS) + O(e?),
and so
1M — Dol|p = €[|E + (SDy — DoS) || + O(e?).
We can thus bound (2.128) from above and below by expressions of the form
(2.130) P(|[E+ (SDo — DyS)||r <1+ O(g)).

As U is distributed using Haar measure on U(n), S is (locally) distributed

using €7~ times a constant multiple of Lebesgue measure on the space W

of skew-adjoint matrices with zero diagonal, which has dimension n? — n.

Meanwhile, E is distributed using (p,(A%) +0(1))e™ times Lebesgue measure
on the space of diagonal elements. Thus we can rewrite (2.130) as

Cle™ (pu(A\0) + 0(1))// dEdS
|E4+(SDo—DoS) || r<1+0(e)

where dF and dS denote Lebesgue measure and C}/ > 0 depends only on n.

Observe that the map S +— SDy — DS dilates the (complex-valued) ij
entry of S by )\?—/\?, and so the Jacobian of this map is H1§i<j§n |)\?—)\?|2 =
|AL(A?)|2. Applying the change of variables, we can express the above as

0
%*%A'? // dEdS.
| An (A | E+S| r<140(e)

The integral here is of the form C!" + O(e) for some other constant C)/’ > 0.
Comparing this formula with (2.129) we see that

pn(\0) + o(1) = C"ePF2IA L (A0)2 + o(1)

for yet another constant C!” > 0. Sending ¢ — 0 we recover an exact
formula

pu(N) = Ce W2 AL, (V)2

50Note here the emergence of the freedom to right-multiply U by diagonal unitaries.
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when A is simple. Since almost all Hermitian matrices have simple spectrum
(see Exercise 1.3.10), this gives the full spectral distribution of GUE, except
for the issue of the unspecified constant.

Remark 2.6.1. In principle, this method should also recover the explicit
1

normalising constant (ORE in (2.127), but to do this it appears one needs
to understand the volume of the fundamental domain of U(n) with respect
to the logarithm map, or equivalently to understand the volume of the unit
ball of Hermitian matrices in the operator norm. I do not know of a simple
way to compute this quantity (though it can be inferred from (2.127) and
the above analysis). One can also recover the normalising constant through

the machinery of determinantal processes; see below.

Remark 2.6.2. The above computation can be generalised to other U(n)-
conjugation-invariant ensembles M,, whose probability distribution is of the
form

[, = C’ne_ tr V(Mn) dM,,

for some potential function V' : R — R (where we use the spectral theorem
to define V(M,)), yielding a density function for the spectrum of the form

p(N) = Che™ 2= VDA (V)2

Given suitable regularity conditions on V, one can then generalise many of
the arguments in this section to such ensembles. See [Del1999] for details.

2.6.2. The spectrum of Gaussian matrices. The above method also
works for Gaussian matrices G, as was first observed by Dyson (though the
final formula was first obtained by Ginibre, using a different method). Here,
the density function is given by

(2.131) Cpe™ "G G = CheI6FdG

where C;, > 0 is a constant and dG is Lebesgue measure on the space
M,,(C) of all complex n x n matrices. This is invariant under both left and
right multiplication by unitary matrices, so in particular, is invariant under
unitary conjugations as before.

This matrix G has n complex (generalised) eigenvalues o(G) =
{A1, ..., An}, which are usually distinct:

Exercise 2.6.1. Let n > 2. Show that the space of matrices in M,,(C) with
a repeated eigenvalue has codimension 2.

Unlike the Hermitian situation, though, there is no natural way to order
these n complex eigenvalues. We will thus consider all n! possible permuta-
tions at once, and define the spectral density function p,(A1,...,A,) of G
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by duality and the formula

F(\pn(A) dX:=E > F(AL, .., )
c» M dn} =0 ()
for all test functions F'. By the Riesz representation theorem, this uniquely
defines p, (as a distribution, at least), although the total mass of p,, is n!

rather than 1 due to the ambiguity in the spectrum.

Now we compute p, (up to constants). In the Hermitian case, the key
was to use the factorisation M, = UDU~!. This particular factorisation
is of course unavailable in the non-Hermitian case. However, if the non-
Hermitian matrix G has simple spectrum, it can always be factored instead
as G = UTU™!, where U is unitary and 7T is upper triangular. Indeed,
if one applies the Gram-Schmidt process to the eigenvectors of G and uses
the resulting orthonormal basis to form U, one easily verifies the desired
factorisation. Note that the eigenvalues of G are the same as those of T,
which in turn are just the diagonal entries of 7.

Exercise 2.6.2. Show that this factorisation is also available when there
are repeated eigenvalues. (Hint: Use the Jordan normal form.)

To use this factorisation, we first have to understand how unique it is, at
least in the generic case when there are no repeated eigenvalues. As noted
above, if G = UTU !, then the diagonal entries of T form the same set as
the eigenvalues of G. We have the freedom to conjugate T by a permutation
matriz P to obtain P~'TP, and right-multiply U by P to counterbalance
this conjugation; this permutes the diagonal entries of T" around in any one
of n! combinations.

Now suppose we fix the diagonal Ai,..., )\, of T, which amounts to
picking an ordering of the n eigenvalues of G. The eigenvalues of T' are
Aly ..., Ap, and furthermore for each 1 < j < n, the eigenvector of T" associ-
ated to A; lies in the span of the last n — j + 1 basis vectors e;, ..., e, of C",
with a non-zero e; coeflicient (as can be seen by Gaussian elimination or
Cramer’s rule). As G = UTU ! with U unitary, we conclude that for each
1 < j < n, the j* column of U lies in the span of the eigenvectors associated
to Aj,..., An. As these columns are orthonormal, they must thus arise from
applying the Gram-Schmidt process to these eigenvectors (as discussed ear-
lier). This argument also shows that once the diagonal entries A1,..., A\, of
T are fixed, each column of U is determined up to rotation by a unit phase.
In other words, the only remaining freedom is to replace U by UR for some
unit diagonal matrix R, and then to replace T' by R™!TR to counterbalance
this change of U.

To summarise, the factorisation G = UTU™! is unique up to right-
multiplying U by permutation matrices and diagonal unitary matrices (which
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together generate the Weyl group of the unitary group U(n)), and then con-
jugating T" by the same matrix. Given a matrix G, we may apply these
symmetries randomly, ending up with a random factorisation UTU ! such
that the distribution of T is invariant under conjugation by permutation ma-
trices and diagonal unitary matrices. Also, since G is itself invariant under
unitary conjugations, we may also assume that U is distributed uniformly
according to the Haar measure of U(n), and independently of 7.

To summarise, the Gaussian matrix ensemble G can almost surely be
factorised as UTU ™1, where T = (t;j)1<i<j<n is an upper-triangular matrix
distributed according to some distribution

U((tih<ici<n) ] dty
1<i<j<n
which is invariant with respect to conjugating 7' by permutation matrices
or diagonal unitary matrices, and U is uniformly distributed according to
the Haar measure of U(n), independently of 7.

Now let Ty = (t?j)lgigjgn be an upper triangular matrix with complex

entries whose entries t{,,...,t2, € C are distinct. As in the previous section,
we consider the probability
(2.132) P(|G — Tolr < o).

Since the space M,,(C) of complex n x n matrices has 2n? real dimensions,
we see from (2.131) that this expression is equal to

(2.133) (C! + o(1))e~ I TollF g2n?
for some constant CJ, > 0.

Now we compute (2.132) using the factorisation G = UTU!. Sup-
pose that |G — To||r < €, so G = Ty + O(e). As the eigenvalues of Tp

are t(1J1= ...,t%  which are assumed to be distinct, we see (from the in-
verse function theorem) that for e small enough, G has eigenvalues tJ; +
O(e),...,t° + O(g). Thus the diagonal entries of T are some permutation

of tY1 + O(e),..., 1, + O(g). As we are assuming the distribution of T' to
be invariant under conjugation by permutation matrices, all permutations
here are equally likely, so with probability®! 1/n!, we may assume that the
diagonal entries of T' are given by t{; + O(e),...,t2, + O(e) in that order.

Let uf,...,ud be the eigenvectors of Tp associated to t{;,...,t2 . then
the Gram-Schmidt process applied to u1, ..., u, (starting at u2 and working
backwards to u) gives the standard basis ey, ..., e, (in reverse order). By
the inverse function theorem, we thus see that we have eigenvectors u; =
ud +O(e), ..., up = ud + O(e) of G, which when the Gram-Schmidt process

is applied, gives a perturbation e; + O(¢),...,e, + O(e) in reverse order.

51The factor of 1/n! will eventually be absorbed into one of the unspecified constants.
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This gives a factorisation G = UTU ! in which U = I + O(¢), and hence
T = Ty+O(e). This is, however, not the most general factorisation available,
even after fixing the diagonal entries of T, due to the freedom to right-
multiply U by diagonal unitary matrices R. We thus see that the correct
ansatz here is to have

U=R+0(); T=R TR+ O0()
for some diagonal unitary matrix R.

In analogy with the GUE case, we can use the inverse function theorem
to make the more precise ansatz

U=exp(eS)R; T=R YT, +cE)R

where S is skew-Hermitian with zero diagonal and size O(1), R is diagonal
unitary, and E' is an upper triangular matrix of size O(1). From the invari-
ance U +— UR;T — R™'TR we see that R is distributed uniformly across
all diagonal unitaries. Meanwhile, from the unitary conjugation invariance,
S is distributed according to a constant multiple of £’ times Lebesgue
measure dS on the n? — n-dimensional space of skew Hermitian matrices
with zero diagonal; and from the definition of ¢, E is distributed according
to a constant multiple of the measure
(1+ 0(1))e"+"(Ty) dE,

where dF is Lebesgue measure on the n? + n-dimensional space of upper-
triangular matrices. Furthermore, the invariances ensure that the random
variables S, R, F/ are distributed independently. Finally, we have

G =UTU ! = exp(eS)(T + €E) exp(—eS).

Thus we may rewrite (2.132) as

(2.134) (C;{w(TO)+o(1))52"2// dSdE
|| exp(eS)(To+eFE) exp(—eS)—To||r<e

for some CJ/ > 0 (the R integration being absorbable into this constant CJ).
We can Taylor expand

exp(eS)(Tp + eE) exp(—eS) = Ty + e(E + STy — TpS) + O(£?)

and so we can bound (2.134) above and below by expressions of the form

(CIH(Ty) + o(1))e2 / / dSdE.
|E+STo—ToS||r<14+0(e)

The Lebesgue measure dF is invariant under translations by upper triangu-
lar matrices, so we may rewrite the above expression as

(2135)  (CV(Th) + o(1))e2" / / dSdE,
|E+m(STo—T0S)||F<1+0(e)



190 2. Random matrices

where 7(STy —TpS) is the strictly lower triangular component of STy —TpS.

The next step is to make the (linear) change of variables V := w(STy —
ToS). We check dimensions: S ranges in the space of skew-adjoint Hermitian
matrices with zero diagonal, which has dimension (n? —n)/2, as does the
space of strictly lower-triangular matrices, which is where V' ranges. So we
can in principle make this change of variables, but we first have to compute
the Jacobian of the transformation (and check that it is non-zero). For this,
we switch to coordinates. Write S = (s5)1<ij<n and V = (vij)1<j<i<n. In
coordinates, the equation V' = n(STy — TpS) becomes

J n
— E : 0 2 : 0
Vij = Siktkj - tikskjv
k=1 k=i

or equivalently,

7j—1 n
_ (40 0 0 0
k=1

k=i+1
Thus, for instance,

Unl = (tll t n)Sni;
Una = (19, — t9 )5n2 + 11981,
U(n—1)1 = (1 (n—1)(n—1))$ (n—l)l_t(()n 1nSnls
= (t95 — nn)sng + 193801 + 193502,
Un-1)2 = (t99 (n—1)(n—1))S(n—1)2 + 1198 (n-1)1 — t?n_l)nSnQ,

Vn—2)1 = (111 — t?n—2)(n—2))8(n—2)1 ~ tn=2)(n—1)S(n—1)1 ~ Lln_2)nSnl,

etc. We then observe that the transformation matrix from s,1, sn2, S(n—1)1, - - -
t0 Un1, Un2, V(n—1)1, - - - 18 triangular, with diagonal entries given by tO — to
for 1 < j < i < n. The Jacobian of the (complex-linear) map S + V 1S thus
given by

B | QT N N

1<j<i<n
which is non-zero by the hypothesis that the t}!,... ti" are distinct. We
may thus rewrite (2.135) as

C//w(TO + O
A 2 // dSdv
112> nn E+V||F<1+O E)

where dV is Lebesgue measure on strictly lower-triangular matrices. The
integral here is equal to C!”' + O(e) for some constant C)/'. Comparing this
with (2.132), cancelling the factor of £2"°, and sending ¢ — 0, we obtain the
formula

_ 2
w((t?j)lﬁlgjgn) = C////|A(t117 s 7t9LTL)|2€ 1ol



2.6. Gaussian ensembles 191

for some constant C//"" > 0. We can expand

L

1<i<j<n

If we integrate out the off-diagonal variables t% for 1 <1i < j < n, we
see that the density function for the diagonal entries (A1,...,A,) of T is
proportional to

A, Ag)Pem Ei= NE

Since these entries are a random permutation of the eigenvalues of G, we
conclude the Ginibre formula,

(2.136) pn()\l, RN An) = Cn|A(A1, s An)|2€_ > 12517

for the joint density of the eigenvalues of a Gaussian random matrix, where
¢, > 0 is a constant.

Remark 2.6.3. Given that (2.127) can be derived using Dyson Brownian
motion, it is natural to ask whether (2.136) can be derived by a similar
method. It seems that in order to do this, one needs to consider a Dyson-like
process not just on the eigenvalues Aq,...,A,, but on the entire triangular
matrix 7' (or more precisely, on the moduli space formed by quotienting out
the action of conjugation by unitary diagonal matrices). Unfortunately, the
computations seem to get somewhat complicated, and we do not present
them here.

2.6.3. Mean field approximation. We can use the formula (2.127) for
the joint distribution to heuristically derive the semicircular law, as follows.

It is intuitively plausible that the spectrum (A1,...,\,) should concen-
trate in regions in which p,(A1,..., A, ) is as large as possible. So it is now
natural to ask how to optimise this function. Note that the expression in
(2.127) is non-negative, and vanishes whenever two of the A; collide, or when
one or more of the \; go off to infinity, so a maximum should exist away
from these degenerate situations.

We may take logarithms and write

n
(2.137) —logpn()\l,...,/\n):Z%]/\jF—I—ZZlogﬁ%-C
J=1 7]

where C' = (), is a constant whose exact value is not of importance to us.
From a mathematical physics perspective, one can interpret (2.137) as a
Hamiltonian for n particles at positions Aq,...,\,, subject to a confining
harmonic potential (these are the |;|? terms) and a repulsive logarithmic
potential between particles (these are the \/\TIAJI terms).
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Our objective is now to find a distribution of Ay, ..., A, that minimises
this expression.

We know from previous sections that the A; should have magnitude
O(y/n). Let us then heuristically make a mean field approzimation, in that
we approximate the discrete spectral measure %Z;’:l ) NN by a continu-

ous®? probability measure p(z) dz. Then we can heuristically approximate
(2.137) as

2 </R %:BQp(:B) dr + /R/Rlog rimp(x)f)(y) dfvdy) +Cy,

so we expect the distribution p to minimise the functional

(2.138) /R %:BQp(:B) dx + /R/Rlog z i y|p(x)p(y) dxdy.

One can compute the Euler-Lagrange equations of this functional:

Exercise 2.6.3. Working formally, and assuming that p is a probability
measure that minimises (2.138), argue that

1 1
—2? 4 2/ log ——p(y) dy = C
2 R |7y

for some constant C' and all x in the support of p. For all x outside of the
support, establish the inequality

1, / 1
—z“+2 [ log—— dy > C.
2 z—y]” o)

There are various ways we can solve this equation for p; we sketch here
a complex-analytic method. Differentiating in x, we formally obtain

1
:c—2p.v./ —p(y) dy=0
RT Y

on the support of p, where p. v. denotes a principal value integral. But recall
that if we let

5(2) = /R L () dy

y—z
be the Stieltjes transform of the probability measure p(x) dz, then we have
Im(s(z +i0%)) = 7p(x)

and

Re(s(x +1i0™)) = —p.v./ L p(y) dy.

RLT Y
‘We conclude that
(z 4 2Re(s(z +i0M))Im(s(z +i07))) = 0

52Gecretly, we know from the semicircular law that we should be able to take p = %(4 -

)1/2

T but pretend that we do not know this fact yet.
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for all x, which we rearrange as
Im(s?(z 4 90T) 4+ as(xz +i0")) = 0.

This makes the function f(z) = s%(z) + zs(z) entire (it is analytic in the
upper half-plane, obeys the symmetry f(z) = m, and has no jump across
the real line). On the other hand, as s(z) = 71?(1) as z — oo, [ goes to
—1 at infinity. Applying Liouville’s theorem, we conclude that f is constant,

thus we have the familiar equation

2 +z2s=—1
which can then be solved to obtain the semicircular law as in Section 2.4.

Remark 2.6.4. Recall from Section 3.1 that Dyson Brownian motion can
be used to derive the formula (2.127). One can then interpret the Dyson
Brownian motion proof of the semicircular law for GUE in Section 2.4 as
a rigorous formalisation of the above mean field approximation heuristic
argument.

One can perform a similar heuristic analysis for the spectral measure pug
of a random Gaussian matrix, giving a description of the limiting density:

Exercise 2.6.4. Using heuristic arguments similar to those above, argue
that pg should be close to a continuous probability distribution p(z) dz
obeying the equation

1
\2\2—1—/ log ——p(w) dw =C
C

|2 — wl

on the support of p, for some constant C, with the inequality

1
(2.139) |2)? —I—/ log ———p(w) dw > C.
C |z — wl
Using the Newton potential % log|z| for the fundamental solution of the
two-dimensional Laplacian —02 — 83, conclude (non-rigorously) that p is
equal to % on its support.

Also argue that p should be rotationally symmetric. Use (2.139) and
Green’s formula to argue why the support of p should be simply connected,
and then conclude (again non-rigorously) the circular law

1
(2140) nGg ~ ;1|z|§1 dz.

We will see more rigorous derivations of the circular law later in this
text.
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2.6.4. Determinantal form of the GUE spectral distribution. In
a previous section, we showed (up to constants) that the density function
Pn(A1, ..., Ay) for the eigenvalues A\ > --- > A\, of GUE was given by the
formula (2.127).

As is well known, the Vandermonde determinant A(\q,..., \,) that ap-
pears in (2.127) can be expressed up to sign as a determinant of an n x n
matrix, namely the matrix ()\f _1)19-7]5”. Indeed, this determinant is clearly
a polynomial of degree n(n — 1)/2 in Ay,..., A\, which vanishes whenever
two of the \; agree, and the claim then follows from the factor theorem
(and inspecting a single coefficient of the Vandermonde determinant, e.g.,
the [[5_, )\g_l coefficient, to get the sign).

We can square the above fact (or more precisely, multiply the above
matrix by its adjoint) and conclude that |A(Ay, ..., A\y)|? is the determinant
of the matrix

n—1
O NN 1<i <.
k=0

More generally, if Py(x),..., P,—1(x) are any sequence of polynomials, in
which P;(x) has degree i, then we see from row operations that the deter-
minant of

(Pj—1(Ai))1<ij<n
is a non-zero constant multiple of A(A1,...,\,) (with the constant depend-
ing on the leading coefficients of the P;), and so the determinant of

n—1
O PeN) Pe(A))1<ij<n
k=0

is a non-zero constant multiple of |[A(\1,...,\,)|?. Comparing this with
(2.127), we obtain the formula
n—1
pn(N) = Cdet(3 - PrN)e M PN )e ™ i< jn
k=0

for some non-zero constant C'.

This formula is valid for any choice of polynomials P; of degree i. But
the formula is particularly useful when we set P; equal to the (normalised)
Hermite polynomials, defined®® by applying the Gram-Schmidt process in
L?(R) to the polynomials zie=*/4 for § = 0,...,n—1 to yield PZ-(:B)e_xz/‘l.
In that case, the expression

n—1
(2.141) K, (z,y) = Z Pk(:c)e*‘/’“g/‘lPlyg(y)e*yQ/4
k=0

53Equivalently, the P; are the orthogonal polynomials associated to the measure e %2/2 gy
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becomes the integral kernel of the orthogonal projection 7y, operator in
L2(R) to the span of the zfe™*"/4 thus

mf(@) = [ Kl f0) dy
for all f € L?(R), and so p,()\) is now a constant multiple of
det(Kn (i, Aj))1<ij<n-

The reason for working with orthogonal polynomials is that we have the
trace identity

(2.142) /RKn(x,a?) dx = tr(my,) =n

and the reproducing formula
(2.143) Ky (z,y) :/ Kp(z,2)Kyn(z,y) dz
R

which reflects the identity my,, = 7T‘2/n. These two formulae have an important
consequence:

Lemma 2.6.5 (Determinantal integration formula). Let K, : R xR — R
be any symmetric rapidly decreasing function obeying (2.142), (2.143). Then
for any k > 0, one has

(2.144) / det(Kn(/\i, )\j))lgi,jgk—i-l d)\k—i-l = (n—k) det(Kn()\i, )\j))lgi,jgk-
R

Remark 2.6.6. This remarkable identity is part of the beautiful algebraic
theory of determinantal processes, which is discussed further in [Ta2010b,
§2.6].

Proof. We induct on k. When k£ = 0 this is just (2.142). Now assume that
k > 1 and that the claim has already been proven for k—1. We apply cofactor
expansion to the bottom row of the determinant det(K, (A, A\j))i<ij<kt1-
This gives a principal term

(2.145) det (K, (N, )\j))lgiJngn()\kJrla Akt1)
plus a sum of k additional terms, the I** term of which is of the form
(2.146) (=M K (A, Akpr) det (B (Niy Aj)) 1 <ickst <j<h 140

Using (2.142), the principal term (2.145) gives a contribution of
ndet(Kn(Xi, Aj))1<ij<t

to (2.144). For each non-principal term (2.146), we use the multilinearity of
the determinant to absorb the K, (A;, \g+1) term into the j = k + 1 column
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of the matrix. Using (2.143), we thus see that the contribution of (2.146)
to (2.144) can be simplified as

(=DM det((Kn(Nis Aj))1<i<hi<j<hzts (Kn(Nis M) 1<i<k)

which after row exchange, simplifies to — det (K, (A, Aj))1<i j<k- The claim
follows. O

In particular, if we iterate the above lemma using the Fubini-Tonelli
theorem, we see that

det(Kn(/\i, )\j))lgi,jgn d)\l e d)\n = n'

R
On the other hand, if we extend the probability density function p,(A1,. .., An)
symmetrically from the Weyl chamber RY to all of R", its integral is
also n!. Since det(K, (N, \j))1<ij<n is clearly symmetric in the A1,..., Ay,
we can thus compare constants and conclude the Gaudin-Mehta formula
[MeGal960)|

pn()\l, cey )\n) = det(Kn()\i, )\j))lgi,jgn-
More generally, if we define p;, : R¥ — R to be the function
(2.147) Pe(ALs -, A) = det (K (Xi, Aj))1<i,j<k

then the above formula shows that py is the k-point correlation function for
the spectrum, in the sense that

(2.148) / i Pk()\la veny )\k)F()\la ceey )\k) d/\1 cee d/\k
R

=E > F(\iy (M), -+ A (M)
1<i1,..0 i <n,distinct
for any test function F' : R¥ — C supported in the region {(z1,...,2s) :
rp <o <ap )

In particular, if we set £k = 1, we obtain the explicit formula
1
Euy, = —Kp(z,x) do
n

for the expected empirical spectral measure of M,,. Equivalently, after renor-
malising by 1/n, we have
1

It is thus of interest to understand the kernel K, better.

To do this, we begin by recalling that the functions Pi(:n)e_xz/ 4 were
obtained from zle=2"/4 by the Gram-Schmidt process. In particular, each
H($)€_x2/4 is orthogonal to zie=%*/4 for all 0 < j < ¢. This implies that
zP;(z)e~*"/* is orthogonal to z7e "/ for 0 < j < i — 1. On the other
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—2%/4 must lie in the

hand, zP;(x) is a polynomial of degree i + 1, so xP;(x)e
span of zie=2*/4 for 0 < j < i+ 1. Combining the two facts, we see that
2 P; must be a linear combination of P;_1, P;, P;11, with the P, coefficient

being non-trivial. We rewrite this fact in the form
(2.150) Piii(x) = (ajx + b;) Pi(x) — ¢; Pi—1(x)

for some real numbers a;, b;, ¢; (with ¢g = 0). Taking inner products with
P;+1 and P;—; we see that

1
(2.151) / xPi(x)PiH(x)e_xQ/Q de = —
R a;
and
/ 2Py(x) Py (@)™ do = 2,
R a;
and so
a;
(2.152) Ci= o

(with the convention a_; = 00).

We will continue the computation of a;, b;, ¢; later. For now, we pick two
distinct real numbers x,y and consider the Wronskian-type expression

Piy1(2)Pi(y) — Pi(2) Pipa(y)-
Using (2.150), (2.152), we can write this as

ai(@ — y) Pi(2) Pi(y) + ——(P,—1(2) P:(y) — Pi(x) Pie1 (1)),

ai—1

or in other words,

Pi(z)Pi(y) = (@ =)
_ Bi(x)Pi1(y) — Pica(z)Pi(y)
ai—1(r —y) .

We telescope this and obtain the Christoffel-Darbouz formula for the kernel
(2.141):

Po(2)Po1(y) = Pu1(2)Pu(y) —(s21y2)/

2.153 K,(z,y) = .
( ) n( y) an—l(l' _ y)
Sending y — x using L’Hépital’s rule, we obtain, in particular, that
1
(2.154) Kn(z,z) = (PL(x) Py (z) — P_y(z) Po(x))e " /2.
Gn—1

Inserting this into (2.149), we see that if we want to understand the
expected spectral measure of GUE, we should understand the asymptotic
behaviour of P,, and the associated constants a,,. For this, we need to exploit
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the specific properties of the Gaussian weight e=2%/2 In particular, we have
the identity

2 d 2
2.1 —x?/2 _ % —x?/2
(2.155) ze et
so upon integrating (2.151) by parts, we have
1
[ (PL@Pa(e) + P Plaa()e 2 do =+
R a;

As P! has degree at most ¢ — 1, the first term vanishes by the orthonormal
nature of the P;(z)e~*"/4, thus

(2.156) / Pi(z) Pl (x)e™ "/ da = 1
R

a;

To compute this, let us denote the leading coefficient of P; as k;. Then P/ 11

—(Hlk)k”l P; plus lower-order terms, and so we have

(i+Dkiyr 1

kz’ a; '

is equal to

On the other hand, by inspecting the 2'! coefficient of (2.150) we have
kiy1 = aik;.

Combining the two formulae (and making the sign convention that the k;
are always positive), we see that

1
a; = \/H—_l
and
kiv1 = .ki :
Vi+1
Meanwhile, a direct computation shows that Py(z) = kg = —=—17, and thus

(271.)1/4 )
by induction
1

ki = ————.
T emVAi
A similar method lets us compute the b;. Indeed, taking inner products of
(2.150) with P;(x)e*"/2 and using orthonormality we have

b; = —ai/ :UPZ-(:U)Qe_g”Q/2 dr,
R
which upon integrating by parts using (2.155) gives

b, = —2ai/ Pi(x)Pi'(x)e_xz/z dx.
R
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As P! is of degree strictly less than 7, the integral vanishes by orthonormality,
thus b; = 0. The identity (2.150) thus becomes Hermite recurrence relation

1 Vi
virehie) - @)

Another recurrence relation arises by considering the integral

[ PP w2 da.
R

On the one hand, as P;_; has degree at most 4, this integral vanishes if j > i
by orthonormality. On the other hand, integrating by parts using (2.155),
we can write the integral as

/ («P; - P})(2) P (2)e /2 da.
R

If j < i, then xP; — PJ’- has degree less than 7 4+ 1, so the integral again
vanishes. Thus the integral is non-vanishing only when j = i. Using (2.156),
we conclude that

1
(2.158) 1= ;Pi =Vi+ 1P,

(2.157) Pii(x) =

We can combine (2.158) with (2.157) to obtain the formula

d B _ . _
(e PP(@) = —ViFTe " PP (o),
which together with the initial condition Py = W gives the explicit
representation
_1\n n
(2.159) Po(z) = _ G e d

(2m)1/4/n! dz™
for the Hermite polynomials. Thus, for instance, at + = 0 one sees from
Taylor expansion that

(_1)n/2\/m .p

=0

when n is even, and

(=1) D2 (n + 1)v/n!
(2m)1/420040/2((n + 1) /2)!

(2.161) Pa(0) =0; P(0) =

when n is odd.

In principle, the formula (2.159), together with (2.154), gives us an ex-
plicit description of the kernel K, (z,z) (and thus of Ey, /4, by (2.149)).
However, to understand the asymptotic behaviour as n — oo, we would have
to understand the asymptotic behaviour of Cj‘i—nne_$2/ 2 as n — oo, which is
not immediately discernable by inspection. However, one can obtain such



200 2. Random matrices

asymptotics by a variety of means. We give two such methods here: a
method based on ODE analysis, and a complex-analytic method, based on
the method of steepest descent.

We begin with the ODE method. Combining (2.157) with (2.158) we
see that each polynomial P, obeys the Hermite differential equation

Pl (z) — xP),(z) + mPy,(z) = 0.
If we look instead at the Hermite functions ¢y, (z) := Py, (z)e~"/4, we obtain

the differential equation

Lom(x) = (m + 5)om

where L is the harmonic oscillator operator

" x2
L¢ = —qb + Z(JS

Note that the self-adjointness of L here is consistent with the orthogonal
nature of the ¢,.

Exercise 2.6.5. Use (2.141), (2.154), (2.159), (2.157), (2.158) to establish
the identities

n—1
Kn(z,2) = ¢j(x)?
j=0

2

= @)+ (n— =

and thus by (2.149),

1 n—1
1
Vn
It is thus natural to look at the rescaled functions
q}m(x) = /nom(vVnx)
which are orthonormal in L?(R) and solve the equation

~ m-+1/2 -
Ll/\/ﬁ¢m(x) = T/ m

= [—=¢,,(vnz)? 4+ V/n(1 - %2)%(\/59:)2] dz.

where Ly, is the semiclassical harmonic oscillator operator

2
Lug = —h*¢" + 6,
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thus .
1 e -
Epg, )y = - Z¢j($)2 dx
§=0
1- 2~
(2.162) = [;%(w)z +(1- Z)¢n(x)2] d.

The projection my;, is then the spectral projection operator of L, NG
to [0,1]. According to semi-classical analysis, with h being interpreted as
analogous to Planck’s constant, the operator Lj has symbol p? + %, where
pi= —ih% is the momentum operator, so the projection 7y, is a projection
to the region {(x,p) : p* + %2 < 1} of phase space, or equivalently to the
region {(x,p) : |p| < (4 — x2)1/2}. In the semi-classical limit A — 0, we thus
expect the diagonal K, (x,z) of the normalised projection h?ry, to be pro-
portional to the projection of this region to the x variable, i.e., proportional
to (4 — 3:2)1/ %, We are thus led to the semicircular law via semi-classical
analysis.

It is possible to make the above argument rigorous, but this would re-
quire developing the theory of microlocal analysis, which would be overkill
given that we are just dealing with an ODE rather than a PDE here (and
an extremely classical ODE at that); but see Section 3.3. We instead use a
more basic semiclassical approximation, the WKB approximation, which we
will make rigorous using the classical method of variation of parameters (one
could also proceed using the closely related Priifer transformation, which we
will not detail here). We study the eigenfunction equation

Lrg = Ao
where we think of A > 0 as being small, and A as being close to 1. We
rewrite this as
(2.163) = —%k‘(@%&
where k(z) := /A — 22 /4, where we will only work in the “classical” region
22/4 < X (so k(x) > 0) for now.

Recall that the general solution to the constant coefficient ODE ¢” =
—%kng is given by ¢(z) = Ae'**/" 4 Be=*=/h  Inspired by this, we make
the ansatz

¢(£L’) _ A(:L,)ezllf(m)/h + B(x)e—zlll(m)/h
where W(z) := [ k(y) dy is the antiderivative of k. Differentiating this, we

have
_ik(x)

(A(m)ez‘l!(:c)/h - B(x)e—zlll(x)/h)
_’_A/(a:)ezlll(m)/h + B/(x)e—i\ll(x)/h'
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Because we are representing a single function ¢ by two functions A, B, we
have the freedom to place an additional constraint on A, B. Following the
usual variation of parameters strategy, we will use this freedom to eliminate
the last two terms in the expansion of ¢, thus

(2.164) A ()Y@ 4 B (z)e= Y @/h — g,
We can now differentiate again and obtain

x)? 1k (z . '
¢”(:U) — _k(hz) (15(37) + k}g )(A(x)ez\ll(m)/h o B(m)eﬂ\p(x)/h)

zk(ac)
h
Comparing this with (2.163) we see that

( ( ) (W (z)/h _B/(:E)e—i\lf(z)/h).

A/(J:)ei\ll(w)/h o B/(l‘)e_iql(m)/h - _]:((;E)) (A(:E)ezlll(m)/h . B(l’)e_l\p(w)/h)

Combining this with (2.164), we obtain equations of motion for A and B:

o Kz ) K () —
B(z) = 2k(m)B(x) + o (m)A(x)eQ U(z)/h.

We can simplify this using the integrating factor substitution

A(z) = k()" a(w);  B(x) = k(z) " *b()

to obtain
(2.165) d () = 5};((?)1,(1;)6—%@(@/@
(2.166) b (z) = ;"];((Z)) a(z)e2 V@ /h,

The point of doing all these transformations is that the role of the h-
parameter no longer manifests itself through amplitude factors, and instead
only is present in a phase factor. In particular, we have

a’, ' =O(la] + 1b])

on any compact interval I in the interior of the classical region x?/4 < A
(where we allow implied constants to depend on I), which by Gronwall’s
inequality gives the bounds

d'(z),V'(x), a(z), b(z) = O(la(0)| + [b(0)])
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on this interval I. We can then insert these bounds into (2.165), (2.166)
again and integrate by parts (taking advantage of the non-stationary nature
of ¥) to obtain the improved bounds®*

(2.167)

a(z) = a(0) + O(h(|a(0)| + [b(0)]));  b(x) = b(0) + O(A(|a(0)] + [6(0)]))

on this interval. This is already enough to get the asymptotics that we need:

Exercise 2.6.6. Use (2.162) to show that on any compact interval I in
(—2,2), the density of Epyy, /. /7 is given by

(laf*(2) + b]* (@) (/1 = 22/4 + 0(1)) + O(Ja(=)||b(z)])
where a,b are as above with A =1 + % and h = % Combining this with
(2.167), (2.160), (2.161), and Stirling’s formula, conclude that Euy, / m

converges in the vague topology to the semicircular law %(4 - )1/ 2 dz.
(Note that once one gets convergence inside (—2,2), the convergence outside
of [2,2] can be obtained for free since pyy, /7 and =(4— xQ)i/Q dz are
both probability measures.)

We now sketch out the approach using the method of steepest descent.
The starting point is the Fourier inversion formula

—.’L‘

itx —t /2 dt

ke

which upon repeated differentiation gives
d_ne—aﬂ/z _ i" / tneitme—t2/2 dt

dx™ V21 Jr

and thus by (2.159),

e —(t—ix)?/2 dt

P,
(z) = (27T 3/4 \/— /
and thus

" (=0)" )2 / no(t)
r)=——F"—"=—n e dt
where
B(t) :==logt — (t —ix)?/2 — x%/4

where we use a suitable branch of the complex logarithm to handle the case
of negative t.

The idea of the principle of steepest descent is to shift the contour of
integration to where the real part of ¢(z) is as small as possible. For this, it

54More precise asymptotic expansions can be obtained by iterating this procedure, but we
will not need them here.
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turns out that the stationary points of ¢(z) play a crucial role. A brief calcu-
lation using the quadratic formula shows that there are two such stationary
points, at
ix + V4 — 22

5 .

When |z| < 2, ¢ is purely imaginary at these stationary points, while for
|x| > 2 the real part of ¢ is negative at both points. One then draws a
contour through these two stationary points in such a way that near each
such point, the imaginary part of ¢(z) is kept fixed, which keeps oscilla-
tion to a minimum and allows the real part to decay as steeply as possible
(which explains the name of the method). After a certain tedious amount

z =

of computation, one obtains the same type of asymptotics for ¢, that were
obtained by the ODE method when |z| < 2 (and exponentially decaying
estimates for |z| > 2).

Exercise 2.6.7. Let f : C — C, g : C — C be functions which are analytic
near a complex number zg, with f’(z9) = 0 and f”(z0) # 0. Let € > 0 be a
small number, and let v be the line segment {zg + tv : —¢ < t < e}, where
v is a complex phase such that f”(z9)v? is a negative real. Show that for e
sufficiently small, one has

_verr ”2m)e>\f(zo)
f"(20)A

as A — 4oo. This is the basic estimate behind the method of steepest
descent; readers who are also familiar with the method of stationary phase
may see a close parallel.

/ M Eg(2) dz = (1+ o(1)) 9(z0)
84

Remark 2.6.7. The method of steepest descent requires an explicit rep-
resentation of the orthogonal polynomials as contour integrals, and as such
is largely restricted to the classical orthogonal polynomials (such as the
Hermite polynomials). However, there is a non-linear generalisation of the
method of steepest descent developed by Deift and Zhou, in which one
solves a matrix Riemann-Hilbert problem rather than a contour integral;
see [De1999] for details. Using these sorts of tools, one can generalise
much of the above theory to the spectral distribution of U(n)-conjugation-
invariant discussed in Remark 2.6.2, with the theory of Hermite polynomials
being replaced by the more general theory of orthogonal polynomials; this
is discussed in [De1999] or [DeGi2007].

The computations performed above for the diagonal kernel K, (z, z) can
be summarised by the asymptotic

Kn(Vna,vnx) = vn(pse(z) + o(1))



2.6. Gaussian ensembles 205

whenever z € R is fixed and n — oo, and pec(z) = 5-(4 — xz)iﬂ is the
semicircular law distribution. It is reasonably straightforward to generalise
these asymptotics to the off-diagonal case as well, obtaining the more general
result

(2. 168)
(\/_x+\/_p86( )’ MRV e \/_PSC( )

for fixed = € (—2,2) and y1,y2 € R, where K is the Dyson sine kernel

) = \/ﬁ(psc(x)K(ylayQ) +0(1))

sin(m(y1 — y2)

T(y1 —y2)
In the language of semi-classical analysis, what is going on here is that the
rescaling in the left- hand side of (2.168) is transforming the phase space
region {(z,p) : p* + % ® < 1} to the region {(z,p) : |p| < 1} in the limit n —
oo, and the prOJectlon to the latter region is given by the Dyson sine kernel.
A formal proof of (2.168) can be given by using either the ODE method or
the steepest descent method to obtain asymptotics for Hermite polynomials,
and thence (via the Christoffel-Darboux formula) to asymptotics for K,,; we
do not give the details here; but see for instance [AnGuZi2010].

From (2.168) and (2.147), (2.148) we obtain the asymptotic formula

E Z F(\/ﬁpsc($)(>\i1 (Mn) - \/ﬁ$)v cees

1<iy<...<i<n

Vpse(x)(Niy, (Mn) — v/n))

— /Rk F(yi, ... uk) det(K (i, y5))1<ij<k dy1 - - - dyg

K(y17 yz)

for the local statistics of eigenvalues. By means of further algebraic manipu-
lations (using the general theory of determinantal processes), this allows one
to control such quantities as the distribution of eigenvalue gaps near /nz,
normalised at the scale m, which is the average size of these gaps as
predicted by the semicircular law. For instance, for any sg > 0, one can show

(basically by the above formulae combined with the inclusion-exclusion prin-
H—l >\
ﬂsc z/n)

less than sy converges as n — oo to [ 4 i zdet(l — K)p2)0 ds, where
€ [-2,2] is defined by the formula f_2 psc( ) dx = ¢, and K is the inte-
gral operator with kernel K(z,y) (this operator can be verified to be trace

class, so the determinant can be defined in a Fredholm sense). See for in-
stance®® [Me2004].

ciple) that the proportion of eigenvalues \; with normalised gap \/_

55 A finitary version of this inclusion-exclusion argument can also be found at [Ta2010b,
§2.6).
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Remark 2.6.8. One can also analyse the distribution of the eigenvalues at
the edge of the spectrum, i.e., close to +24/n. This ultimately hinges on
understanding the behaviour of the projection my, near the corners (0, +2)
of the phase space region Q = {(p,z) : p*> + %2 < 1}, or of the Hermite
polynomials P, (x) for x close to £2y/n. For instance, by using steepest
descent methods, one can show that

nM260(2v + ) = Ai()
n

as n — oo for any fixed x,y, where Ai is the Airy function

1[4
Ai(z) := —/ cos(g + tz) dt.
0

s

This asymptotic and the Christoffel-Darboux formula then give the asymp-
totic

(2.169) O (2R 4~ 20+ —s) = Kail,y)
n n

for any fixed x,y, where Ka; is the Airy kernel

Ai(z) A’ (y) — Ai'(x) Ai(y) ‘

KAi(:l:ay) = T—y

This then gives an asymptotic description of the largest eigenvalues of a
GUE matrix, which cluster in the region 2v/n+O(n~/%). For instance, one
can use the above asymptotics to show that the largest eigenvalue A1 of a
GUE matrix obeys the Tracy- Widom law

M= 2/m
P (W < t> — det(l — A)L2([t,+oo))

for any fixed t, where A is the integral operator with kernel K 4;. See
[AnGuZi2010] and Section 3.3 for further discussion.

2.6.5. Tridiagonalisation. We now discuss another approach to studying
the spectral statistics of GUE matrices, based on applying the tridiagonal
matriz algorithm to convert a GUE matrix into a (real symmetric) tridi-
agonal matriz—a matrix which has non-zero entries only on the diagonal,
and on the entries adjacent to the diagonal. The key observation (due to
Trotter) is the following:
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Proposition 2.6.9 (Tridiagonal form of GUE [Tr1984]). Let M), be the
random tridiagonal real symmetric matric

aq bl 0 e 0 0

b1 a9 b2 e 0 0

0 bQ asz ... 0 0

M= . . . .

0 0 0 ... ap—1 bp—

0 0 0 ... bp1 an
where the ay,...,an,b1,...,bh_1 are jointly independent real random vari-
ables, with ay,...,a, = N(0,1)r being standard real Gaussians, and each

b; having a x-distribution,

bi= () |zl
j=1

where z;; = N(0,1)c are iid complex Gaussians. Let M, be drawn from
GUE. Then the joint eigenvalue distribution of M, is identical to the joint
eigenvalue distribution of M),

Proof. Let M,, be drawn from GUE. We can write

Mn—l Xn
w= ()
where M,,_;1 is drawn from the n — 1 x n — 1 GUE, a,, = N(0,1)r, and
X,, € C" 1 isarandom Gaussian vector with all entries iid with distribution
N(0,1)c. Furthermore, M,,_1, X,, a,, are jointly independent.

We now apply the tridiagonal matrix algorithm. Let b,—1 := | X,,|, then
b, has the x-distribution indicated in the proposition. We then conjugate
M, by a unitary matrix U that preserves the final basis vector e,, and maps
X to b,—1€,—1. Then we have

*
n—1€,_1 Gn

where M,,_; is conjugate to M,_;. Now we make the crucial observation:
because M,,_1 is distributed according to GUE (which is a unitarily invariant
ensemble), and U is a unitary matrix independent of M,,_, Mn,l is also
distributed according to GUE, and remains independent of both b, and
G-

We continue this process, expanding UM, U™ as

Mn—Q Xn—l 0
X;:fl an—1 bn— 1
0 bn—l G,
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Applying a further unitary conjugation that fixes e,_1, e, but maps X,
to bp_sen_o, we may replace X,,_1 by b,_oe,_o while transforming M,,_o
to another GUE matrix Mn_g independent of ay,b,_1,a,_1,bp_o. Iterat-
ing this process, we eventually obtain a coupling of M, to M, by unitary
conjugations, and the claim follows. ([

Because of this proposition, any fact about the spectrum of a GUE ma-
trix M, (such as the semicircular law) is equivalent to the corresponding
fact about the spectrum of the tridiagonal matrix M, . Because of its much
sparser form, this matrix can be significantly simpler to analyse than the
original GUE matrix (though at the cost of not having many of the sym-
metries enjoyed by GUE). We illustrate this with Trotter’s proof of the
semicircular law for GUE. Let A,, denote the deterministic real symmetric
tridiagonal matrix

0 1 0 ... 0 0
Vi o0 V2 ... 0 0
0 vV2 0 0 0

An = . . . .
o o0 0 ... 0 vn—1
0o 0 0 ... vyn—1 0
Exercise 2.6.8. Show that the eigenvalues of A, are given by the zeroes
x1,...,x, of the n'" Hermite polynomial P,, with an orthogonal basis of
eigenvectors given by

Po(l‘l)
Py1(xi)
for i = 1,...,n. Using the asymptotics for P,, conclude that u La, con-

verges in the vague topology to the semicircular law as n — oo.

Exercise 2.6.9. Let M, be the tridiagonal matrix from Proposition 2.6.9.
Show that

E|M, — An|h < n
where |||z is the Frobenius norm. Using the preceding exercise and the
Weilandt-Hoffman inequality (1.68), deduce that 4 L (and hence . )

converges in the vague topology to the semicircular law as n — oo.

2.6.6. Determinantal form of the Gaussian matrix distribution.
One can perform an analogous analysis of the joint distribution function
(2.136) of Gaussian random matrices. Indeed, given any family Py(z),...,
P,—_1(2) of polynomials, with each P; of degree i, much the same arguments
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as before show that (2.136) is equal to a constant multiple of

n—1
det (Z Pk()\i)e—)\i|2/2pk()\j)e—|/\j2/2)
k=0

1<i,j<n

One can then select Py (z)e1#"/2 to be orthonormal in L2(C). Actually,
in this case, the polynomials are very simple, being given explicitly by the
formula

—_
N

Exercise 2.6.10. Verify that the Py (z)e™*I*/2 are indeed orthonormal, and
then conclude that (2.136) is equal to det(K, (A, Aj))1<i,j<n, Where

1 2 2) /g (zw)*

= —e—(P+w?)/2 N 22T

K, (z,w) := e kg o
=0

Conclude further that the m-point correlation functions py,(z1,...,2m,) are
given as

pm (215 -+ 2m) = det(Kn(2i, 25))1<i j<m-

Exercise 2.6.11. Show that as n — 0o, one has

K(Wii2, Vi2) = 1z + of1)

for almost every z € C, and deduce that the expected spectral measure
Epg) m converges vaguely to the circular measure p. := %1‘ z|<1 dz; this is
a special case of the circular law.

Remark 2.6.10. One can use the above formulae as the starting point for
many other computations on the spectrum of random Gaussian matrices; to
give just one example, one can show that the expected number of eigenvalues
which are real is of the order of \/n (see [Ed1996] for more precise results of
this nature). It remains a challenge to extend these results to more general
ensembles than the Gaussian ensemble.

2.7. The least singular value

Now we turn attention to another important spectral statistic, the least sin-
gular value o, (M) of an n X n matrix M (or, more generally, the least non-
trivial singular value o,(M) of an n x p matrix with p < n). This quantity
controls the invertibility of M. Indeed, M is invertible precisely when o, (M)
is non-zero, and the operator norm ||M~!||o, of M~! is given by 1/0,(M).
This quantity is also related to the condition number oi(M)/on(M) =
| M ||op||M ~||op of M, which is of importance in numerical linear algebra.
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As we shall see in Section 2.8, the least singular value of M (and more gener-
ally, of the shifts ﬁM —zI for complex z) will be of importance in rigorously
establishing the circular law for iid random matrices M, as it plays a key
role in computing the Stieltjes transform %tr(ﬁM — 2I)~! of such matri-
ces, which as we have already seen is a powerful tool in understanding the
spectra of random matrices.

The least singular value

on(M) = inf ||Mz|,
llzll=1
which sits at the “hard edge” of the spectrum, bears a superficial similarity
to the operator norm

IMlp = o1(M) = sup [ Ma]

at the “soft edge” of the spectrum, that was discussed back in Section 2.3, so
one may at first think that the methods that were effective in controlling the
latter, namely the epsilon-net argument and the moment method, would also
work to control the former. The epsilon-net method does indeed have some
effectiveness when dealing with rectangular matrices (in which the spectrum
stays well away from zero), but the situation becomes more delicate for
square matrices; it can control some “low entropy” portions of the infimum
that arise from “structured” or “compressible” choices of x, but are not
able to control the “generic” or “incompressible” choices of z, for which
new arguments will be needed. As for the moment method, this can give
the coarse order of magnitude (for instance, for rectangular matrices with
p =yn for 0 <y < 1, it gives an upper bound of (1 — /y + o(1))n for the
singular value with high probability, thanks to the Marcenko-Pastur law),
but again this method begins to break down for square matrices, although
one can make some partial headway by considering negative moments such
as tr M2, though these are more difficult to compute than positive moments
tr MF.

So one needs to supplement these existing methods with additional tools.
It turns out that the key issue is to understand the distance between one of
the n rows Xi,..., X, € C" of the matrix M, and the hyperplane spanned
by the other n — 1 rows. The reason for this is as follows. First suppose that
on(M) = 0, so that M is non-invertible, and there is a linear dependence
between the rows X1, ..., X,. Thus, one of the X; will lie in the hyperplane
spanned by the other rows, and so one of the distances mentioned above will
vanish; in fact, one expects many of the n distances to vanish. Conversely,
whenever one of these distances vanishes, one has a linear dependence, and
so op(M) = 0.
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More generally, if the least singular value o,,(M) is small, one generically
expects many of these n distances to be small also, and conversely. Thus,
control of the least singular value is morally equivalent to control of the
distance between a row X; and the hyperplane spanned by the other rows.
This latter quantity is basically the dot product of X; with a unit normal
n; of this hyperplane.

When working with random matrices with jointly independent coeffi-
cients, we have the crucial property that the unit normal n; (which depends
on all the rows other than X;) is independent of X;, so even after condition-
ing n; to be fixed, the entries of X; remain independent. As such, the dot
product X; - n; is a familiar scalar random walk, and can be controlled by a
number of tools, most notably Littlewood-Offord theorems and the Berry-
Esséen central limit theorem. As it turns out, this type of control works well
except in some rare cases in which the normal n; is “compressible” or oth-
erwise highly structured; but epsilon-net arguments can be used to dispose

of these cases’.

These methods rely quite strongly on the joint independence on all the
entries; it remains a challenge to extend them to more general settings.
Even for Wigner matrices, the methods run into difficulty because of the
non-independence of some of the entries (although it turns out one can un-
derstand the least singular value in such cases by rather different methods).

To simplify the exposition, we shall focus primarily on just one specific
ensemble of random matrices, the Bernoulli ensemble M = (&;;)1<i j<n Of
random sign matrices, where §;; = &1 are independent Bernoulli signs. How-
ever, the results can extend to more general classes of random matrices, with
the main requirement being that the coefficients are jointly independent.

2.7.1. The epsilon-net argument. We begin by using the epsilon net
argument to establish a lower bound in the rectangular case, first established
in [LiPaRuTo2005]:

Theorem 2.7.1 (Lower bound). Let M = (&j)i<i<pii<j<n be an n X p
Bernoulli matriz, where 1 < p < (1 — 0)n for some § > 0 (independent
of n). Then with exponentially high probability (i.e., 1 — O(e~") for some
c¢>0), one has op(M) > ¢\/n, where ¢ > 0 depends only on 0.

This should be compared with the upper bound established in Section
2.3, which asserts that

(2.170) |Mop = 01(M) < OV

56This general strategy was first developed for the technically simpler singularity problem in
[Ko1967], and then extended to the least singular value problem in [Ru2008].
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holds with overwhelming probability for some absolute constant C' (indeed,
one can take any C' > 2 here).

We use the epsilon net argument introduced in Section 2.3, but with a
smaller value of £ > 0 than used for the largest singular value. We write

M)= inf |Mz|.
op(M) = _of 1Mzl

Taking ¥ to be a maximal e-net of the unit sphere in CP, with € > 0 to be
chosen later, we have that

op(M) > inf [[Ma] M o
and thus by (2.170), we have with overwhelming probability that
op(M) > inf [[ Mz — Cev/n
and so it suffices to show that
P(in |Ma] < 20=v)

is exponentially small in n. From the union bound, we can upper bound
this by

> P(|Mz|| < 2Cey/n).

L))
From the volume packing argument we have
(2.171) 2] < O(1/e)P < O(1/e)1=0m,

So we need to upper bound, for each x € X, the probability
P(|Ma]| < 2Cev/n).

If we let Y7,...,Y,, € CP be the rows of M, we can write this as

n
P> [V - x* < 4C%n).
j=1
By Markov’s inequality (1.14), the only way that this event can hold is if
we have
Y; - 2* < 8C2%?
for at least n/2 values of j. We do not know in advance what the set of j is
for which this event holds; but the number of possible values of such sets of

Jj is at most 2". Applying the union bound (and paying the entropy cost of
2") and using symmetry, we may thus bound the above probability by>”

< 2"P(|Y; - 2|2 < 8C%? for 1 < j < n/2).

57We will take n to be even for sake of notation, although it makes little essential difference.



2.7. The least singular value 213

Now observe that the random variables Y; - x are independent, and so we
can bound this expression by

< 2"P(|Y - 2| < VBCe)"/?
where Y = (&1, ...,&,) is a random vector of iid Bernoulli signs.
We write x = (z1,...,2,), so that Y - x is a random walk
Y- -z=§&x1+ -+ Enn.

To understand this walk, we apply (a slight variant) of the Berry-Esséen
theorem from Section 2.2:

Exercise 2.7.1. Show”® that

r 1<
supP([Y -2 —t[ <r) < -5 + 3 Z 2]
: o " Tl 2
for any r > 0 and any non-zero x. (Hint: First normalise ||z| = 1, then

adapt the proof of the Berry-Esséen theorem.)
Conclude, in particular, that if
Z | xj]2 > 10,
Jilz;|<et00

(say) then
supP(|Y -z —t| < V/8Ce) < e.
t

(Hint: Condition out all the x; with |z;| > 1/2.)

Let us temporarily call x incompressible if
Z ‘l’j‘Q < g0
Jilas|<et00

and compressible otherwise. If we only look at the incompressible elements
of ¥, we can now bound

P(||Mz]| < 2Cev/n) < O(e)",

and comparing this against the entropy cost (2.171) we obtain an acceptable
contribution for € small enough (here we are crucially using the rectangular
condition p < (1 — 0)n).

It remains to deal with the compressible vectors. Observe that such
vectors lie within € of a sparse unit vector which is only supported in at
most £ 2% positions. The e-entropy of these sparse vectors (i.e., the number
of balls of radius ¢ needed to cover this space) can easily be computed to be

58 Actually, for the purposes of this section, it would suffice to establish a weaker form of the
Berry-Esséen theorem with Z?=1 lz;13/||z||® replaced by (Z?=1 |z;13/||z]|3)¢ for any fixed ¢ > 0.
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of polynomial size O(n% (1) in n. Meanwhile, we have the following crude
bound:

Exercise 2.7.2. For any unit vector x, show that
P(JY -z|<k)<1—-k

for k > 0 small enough. (Hint: Use the Paley-Zygmund inequality, Exercise
1.1.9. Bounds on higher moments on |Y - x| can be obtained, for instance,
using Hoeffding’s inequality, or by direct computation.) Use this to show
that

P(||Mz| < 2Cey/n) < exp(—cn)

for all such x and e sufficiently small, with ¢ > 0 independent of ¢ and n.

Thus the compressible vectors give a net contribution of O(n% M) x
exp(—cn), which is acceptable. This concludes the proof of Theorem 2.7.1.

2.7.2. Singularity probability. Now we turn to square Bernoulli matri-
ces M = (&;j)1<ij<n- Before we investigate the size of the least singular
value, we first tackle the easier problem of bounding the singularity proba-
bility
P(on(M) =0),

i.e., the probability that M is not invertible. The problem of computing
this probability exactly is still not completely settled. Since M is singular
whenever the first two rows (say) are identical, we obtain a lower bound

P(Un(M) = 0) > 2_na

and it is conjectured that this bound is essentially tight in the sense that
1
P(on(M) =0) = (5 +o(1))",
but this remains open; the best bound currently is [BoVuWo2010], and
gives

P(0,(M) = 0) < (—= + o(1))"

V2

We will not prove this bound here, but content ourselves with a weaker
bound, essentially due to Komlés [Ko1967]:

Proposition 2.7.2. We have P(o,(M) = 0) < 1/n!/2.

To show this, we need the following combinatorial fact, due to Erdos
[Er1945):

Proposition 2.7.3 (Erdos Littlewood-Offord theorem). Let z=(x1,...,x,)
be a vector with at least k non-zero entries, and let Y = (&1,...,&,) be a
random vector of iid Bernoulli signs. Then P(Y -z = 0) < k~1/2.
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Proof. By taking real and imaginary parts we may assume that z is real.
By eliminating zero coefficients of © we may assume that k = n; reflecting
we may then assume that all the z; are positive. Observe that the set
of Y = (&,...,&) € {~1,1}" with Y -z = 0 forms an antichain® in
{=1,1}" with the product partial ordering. The claim now easily follows
from Sperner’s theorem and Stirling’s formula (Section 1.2). t

Note that we also have the obvious bound
(2.172) PY-z2=0)<1/2

for any non-zero x.

Now we prove the proposition. In analogy with the arguments of Section
2.7, we write

P(on(M) =0) = P(Mz = 0 for some non-zero = € C")

(actually we can take z € R™ since M is real). We divide into compressible
and incompressible vectors as before, but our definition of compressibility
and incompressibility is slightly different now. Also, one has to do a certain
amount of technical maneuvering in order to preserve the crucial indepen-
dence between rows and columns.

Namely, we pick an € > 0 and call x compressible if it is supported on
at most en coordinates, and incompressible otherwise.

Let us first consider the contribution of the event that Mx = 0 for
some non-zero compressible x. Pick an x with this property which is as
sparse as possible, say k sparse for some 1 < k < en. Let us temporarily
fix k. By paying an entropy cost of |en|(}), we may assume that it is the
first k entries that are non-zero for some 1 < k < en. This implies that
the first k£ columns Y7,...,Y; of M have a linear dependence given by z;
by minimality, Y7,...,Ys_1 are linearly independent. Thus, x is uniquely
determined (up to scalar multiples) by Y1, ..., Ys. Furthermore, as the n x k
matrix formed by Y7, ..., Y has rank k — 1, there is some k X k minor which
already determines x up to constants; by paying another entropy cost of (Z),
we may assume that it is the top left minor which does this. In particular,
we can now use the first k£ rows Xi,..., X} to determine x up to constants.
But the remaining n — k rows are independent of X7,..., X and still need
to be orthogonal to x; by Proposition 2.7.3, this happens with probability

59 An antichain in a partially ordered set X is a subset S of X such that no two elements in
S are comparable in the order. The product partial ordering on {—1,1}" is defined by requiring
(1, y2n) < (Y1,-..,yn) iff ; < y; for all i. Sperner’s theorem asserts that all anti-chains in

{—1,1}"™ have cardinality at most (Ln7/12j)'
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at most O(vk)~("=%) | giving a total cost of

> (}) ovme,

1<k<en

which by Stirling’s formula (Section 1.2) is acceptable (in fact this gives an
exponentially small contribution).

The same argument gives that the event that y*M = 0 for some non-zero
compressible y also has exponentially small probability. The only remaining
event to control is the event that Mz = 0 for some incompressible x, but
that Mz # 0 and y*M # 0 for all non-zero compressible z,y. Call this event
E.

Since Mx = 0 for some incompressible x, we see that for at least en
values of k € {1,...,n}, the row X, lies in the vector space V}, spanned by
the remaining n — 1 rows of M. Let Ej denote the event that E holds, and
that Xj lies in V}; then we see from double counting that

1 n
P(E) < — ;Pwm

By symmetry, we thus have

1
P(E) < -P(E,).
€
To compute P(E,), we freeze Xi,...,X,,—1 and consider a normal vector
x to V,,—1; note that we can select z depending only on X3,..., X,,—1. We

may assume that an incompressible normal vector exists, since otherwise the
event F,, would be empty. We make the crucial observation that X, is still
independent of x. By Proposition 2.7.3, we thus see that the conditional
probability that X,, - z = 0, for fixed X1,..., X,_1, is O-(n~"/?). We thus
see that P(FE) <. 1/n'/2, and the claim follows.

Remark 2.7.4. Further progress has been made on this problem by a finer
analysis of the concentration probability P(Y - = 0), and in particular,
in classifying those x for which this concentration probability is large (this is
known as the inverse Littlewood-Offord problem). Important breakthroughs
in this direction were made by Haldsz [Ha1977] (introducing Fourier-analytic
tools) and by Kahn, Komlds, and Szemerédi [KaKo0Sz1995] (introducing an
efficient “swapping” argument). In [TaVu2007] tools from additive com-
binatorics (such as Freiman’s theorem) were introduced to obtain further
improvements, leading eventually to the results from [BoVuWo02010] men-
tioned earlier.
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2.7.3. Lower bound for the least singular value. Now we return to
the least singular value o, (M) of an iid Bernoulli matrix, and establish a
lower bound. Given that there are n singular values between 0 and o1 (M),
which is typically of size O(y/n), one expects the least singular value to
be of size about 1/4/n on the average. Another argument supporting this
heuristic comes from the following identity:

Exercise 2.7.3 (Negative second moment identity). Let M be an invertible
n X n matrix, let Xq,..., X, be the rows of M, and let Ry,..., R, be the
columns of M~!. For each 1 < i < n, let V; be the hyperplane spanned
by all the rows X7,..., X, other than X;. Show that || R;|| = dist(X;, V;) ™!
and Y. oy (M)72 =Y dist(X;, Vi)2

From Talagrand’s inequality (Theorem 2.1.13), we expect each dist(X;, V;)
to be of size O(1) on the average, which suggests that > 1" | 0;(M)~? = O(n);
this is consistent with the heuristic that the eigenvalues o;(M) should be
roughly evenly spaced in the interval [0,2+/n] (so that o,,—;(M) should be
about (i +1)/y/n).

Now we give a rigorous lower bound:

Theorem 2.7.5 (Lower tail estimate for the least singular value). For any
A >0, one has

P(o,(M) < A/vn) < oa50(1) + 0nso0:n(1)

where 0x_,0(1) goes to zero as X — 0 uniformly in n, and 0n—001(1) goes to
zero as n — oo for each fized .

This is a weaker form of a result of Rudelson and Vershynin [RuVe2008]
(which obtains a bound of the form O(A) + O(c™) for some ¢ < 1), which
builds upon the earlier works [Ru2008], [TaVu2009], which obtained vari-
ants of the above result.

The scale 1/y/n that we are working at here is too fine to use epsilon
net arguments (unless one has a lot of control on the entropy, which can be
obtained in some cases thanks to powerful inverse Littlewood-Offord the-
orems, but is difficult to obtain in general.) We can prove this theorem
along similar lines to the arguments in the previous section; we sketch the
method as follows. We can take A to be small. We write the probability to
be estimated as

P(||Mz| < X/+/n for some unit vector z € C").
We can assume that |[|[M|op < C'y/n for some absolute constant C, as the
event that this fails has exponentially small probability.

We pick an € > 0 (not depending on \) to be chosen later. We call a
unit vector x € C" compressible if z lies within a distance € of a en-sparse
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vector. Let us first dispose of the case in which ||[Mz| < A\/n for some
compressible . By paying an entropy cost of (L; J)’ we may assume that x
is within € of a vector y supported in the first [en]| coordinates. Using the

operator norm bound on M and the triangle inequality, we conclude that
Myl < (A + Ce)v/n.

Since y has norm comparable to 1, this implies that the least singular value
of the first [en| columns of M is O((A+¢€)y/n). But by Theorem 2.7.1, this
occurs with probability O(exp(—cn)) (if A, e are small enough). So the total
probability of the compressible event is at most (L o J)O(exp(—cn)), which
is acceptable if € is small enough.

Thus we may assume now that ||[Mx| > \//n for all compressible unit
vectors x; we may similarly assume that ||y*M|| > \/y/n for all compressible
unit vectors y. Indeed, we may also assume that ||y*M;|| > \/y/n for every
i, where M; is M with the i*" column removed.

The remaining case is if ||[Mz|| < A/y/n for some incompressible z. Let
us call this event E. Write z = (x1,...,%,), and let Y7,...,Y,, be the column
of M, thus

Letting W; be the subspace spanned by all the Yi,...,Y, except for Y;, we
conclude upon projecting to the orthogonal complement of W; that

’.%'z’ diSt(Yi, WZ) S )\/\/ﬁ

for all i (compare with Exercise 2.7.3). On the other hand, since x is incom-
pressible, we see that |z;| > ¢/y/n for at least en values of 7, and thus

(2.173) dist(Y;, W;) < A/e

for at least en values of . If we let E; be the event that E and (2.173) both
hold, we thus have from double-counting that

1

P(E) < — z; P(E;)

and thus by symmetry

1
P(E) < -P(E,)
€
(say). However, if E,, holds, then setting y to be a unit normal vector to W;
(which is necessarily incompressible, by the hypothesis on M;), we have
Yi -yl < Ae.

Again, the crucial point is that Y; and y are independent. The incompress-
ibility of y, combined with a Berry-Esséen type theorem, then gives
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Exercise 2.7.4. Show that
P(|Y; -yl < Me) < &

(say) if A is sufficiently small depending on e, and n is sufficiently large
depending on €.

This gives a bound of O(¢) for P(E) if A is small enough depending on
g, and n is large enough; this gives the claim.

Remark 2.7.6. A variant of these arguments, based on inverse Littlewood-
Offord theorems rather than the Berry-Esséen theorem, gives the variant
estimate

(2.174) M, —zI) >n~"

O'n(%
with high probability for some A > 0, and any z of polynomial size in n.
There are several results of this type, with overlapping ranges of generality
(and various values of A) [GoTi2007, PaZh2010, TaVu2008], and the
exponent A is known to degrade if one has too few moment assumptions on
the underlying random matrix M. This type of result (with an unspecified
A) is important for the circular law, discussed in the next section.

2.7.4. Upper bound for the least singular value. One can complement
the lower tail estimate with an upper tail estimate:

Theorem 2.7.7 (Upper tail estimate for the least singular value). For any
A >0, one has

(2.175) P(0y(M) > X/vV/n) < 0as00(1) + 0n—yoon(1).

We prove this using an argument of Rudelson and Vershynin [RuVe2009].
Suppose that o,(M) > A/y/n, then

(2.176) ly* M| < vallyll/A
for all y.

Next, let X1, ..., X, betherows of M, and let Ry, ..., R, be the columns
of M1, thus Ry,..., R, is a dual basis for X1,...,X,. From (2.176) we
have

DIy Ril* < nllyl?/x°.
i=1

We apply this with y equal to X,, — m,(X,,), where 7, is the orthogonal
projection to the space V,,_1 spanned by Xi,...,X,_1. On the one hand,
we have

[y]|? = dist(Xn, Vi1)?
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and, on the other hand, we have for any 1 < i < n that

Y- R; = _ﬂ'n(Xn) Ry =X, - Wn(Ri)p
and so
n—1
(2.177) D X (R < ndist(X, Vo1)? /A2
i=1

If (2.177) holds, then |X,, - m,(R;)|? = O(dist(Xy, Viu—1)?/A?) for at least
half of the 4, so the probability in (2.175) can be bounded by

n—1
l . N2 : 2 2
<~ ;P(!Xn 70 (R;)|? = O(dist( X, Vio1)2/A%))

which by symmetry can be bounded by
< P(| X, - ma(R1)|)? = O(dist(X,,, Vii_1)?2/22)).

Let € > 0 be a small quantity to be chosen later. From Talagrand’s inequality
(Theorem 2.1.13) we know that dist(X,,,V,—1) = O-(1) with probability
1 — O(e), so we obtain a bound of

< P(X,, - m(R1) = O-(1/\)) + O(e).

Now a key point is that the vectors 7, (Ry1), ..., 7 (R,—1) depend only on
X1,...,X,—1 and not on X,,; indeed, they are the dual basis for X1,..., X1
in V,,—1. Thus, after conditioning Xi,...,X,_1 and thus 7,(R;) to be
fixed, X, is still a Bernoulli random vector. Applying a Berry-Esséen in-
equality, we obtain a bound of O(g) for the conditional probability that
Xpn-mn(R1) = O:(1/X) for X sufficiently small depending on &, unless 7, (R;)
is compressible (in the sense that, say, it is within € of an en-sparse vector).
But this latter possibility can be controlled (with exponentially small prob-
ability) by the same type of arguments as before; we omit the details.

2.7.5. Asymptotic for the least singular value. The distribution of
singular values of a Gaussian random matrix can be computed explicitly
by techniques similar to those employed in Section 2.6. In particular, if M
is a real Gaussian matrix (with all entries iid with distribution N(0,1)r),
it was shown in [Ed1988] that \/no, (M) converges in distribution to the
distribution pp = %e‘x/g_ﬁ dx as n — oo. It turns out that this result
can be extended to other ensembles with the same mean and variance. In
particular, we have the following result from [TaVu2010]:

Theorem 2.7.8. If M is an #d Bernoulli matriz, then \/no, (M) also con-
verges in distribution to ug as n — oo. (In fact there is a polynomial rate
of convergence.)
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This should be compared with Theorems 2.7.5, 2.7.7, which show that
V/nop (M) have a tight sequence of distributions in (0, 400). The arguments
from [TaVu2010] thus provide an alternate proof of these two theorems.
The same result in fact holds for all iid ensembles obeying a finite moment
condition.

The arguments used to prove Theorem 2.7.8 do not establish the limit
ug directly, but instead use the result of [Ed1988] as a black box, focus-
ing instead on establishing the wuniversality of the limiting distribution of
Vno, (M), and in particular, that this limiting distribution is the same
whether one has a Bernoulli ensemble or a Gaussian ensemble.

The arguments are somewhat technical and we will not present them in
full here, but instead give a sketch of the key ideas.

In previous sections we have already seen the close relationship between
the least singular value o,,(M ), and the distances dist(X;, V;) between a row
X; of M and the hyperplane V; spanned by the other n—1 rows. It is not hard
to use the above machinery to show that as n — oo, dist(X;, V;) converges
in distribution to the absolute value |N(0,1)g| of a Gaussian regardless of
the underlying distribution of the coefficients of M (i.e., it is asymptotically
universal). The basic point is that one can write dist(X;, V;) as | X;-n;| where
n; is a unit normal of V; (we will assume here that M is non-singular, which
by previous arguments is true asymptotically almost surely). The previous
machinery lets us show that n; is incompressible with high probability, and
the claim then follows from the Berry-Esséen theorem.

Unfortunately, despite the presence of suggestive relationships such as
Exercise 2.7.3, the asymptotic universality of the distances dist(X;, V;) does
not directly imply asymptotic universality of the least singular value. How-
ever, it turns out that one can obtain a higher-dimensional version of the uni-
versality of the scalar quantities dist(X;, V;), as follows. For any small & (say,

1 <k < n€ for some small ¢ > 0) and any distinct i1,...,it € {1,...,n}, a
modification of the above argument shows that the covariance matrix
(2.178) (m(Xi) - m( X)) 1<ab<k

of the orthogonal projections 7(Xj,),...,m(X;,) of the k rows X;,,..., X;,
to the complement V“L% of the space V;, . ;, spanned by the other n — k
rows of M, is also universal, converging in distribution to the covariance%?
matrix (Gq - Gp)i<ap<i Of k iid Gaussians G, = N(0,1)r (note that the
convergence of dist(X;, Vi) to [N(0,1)r| is the & = 1 case of this claim).
The key point is that one can show that the complement sz‘zk is usu-

ally “incompressible” in a certain technical sense, which implies that the

60These covariance matrix distributions are also known as Wishart distributions.
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projections 7(X;,) behave like iid Gaussians on that projection thanks to a
multidimensional Berry-Esséen theorem.

On the other hand, the covariance matrix (2.178) is closely related to
the inverse matrix M ~!:

Exercise 2.7.5. Show that (2.178) is also equal to A*A, where A is the
n x k matrix formed from the i1, ..., columns of M~

In particular, this shows that the singular values of k£ randomly selected
columns of M~! have a universal distribution.

Recall that our goal is to show that \/no, (M) has an asymptotically
universal distribution, which is equivalent to asking that \%HM “1lop has
an asymptotically universal distribution. The goal is then to extract the
operator norm of M~! from looking at a random n x k minor B of this
matrix. This comes from the following application of the second moment
method:

Exercise 2.7.6. Let A be an n X n matrix with columns Ry, ..., R,, and
let B be the n x k matrix formed by taking k of the columns Ry,..., R, at
random. Show that

n

E|A*A — 2B*B|% < 2N IR, |14
[ p HF—k;’ kIl

where ||| is the Frobenius norm(2.64).

Recall from Exercise 2.7.3 that ||Ry|| = 1/dist(Xg, V), so we expect
each || Ry || to have magnitude about O(1). This, together with the Wielandt-
Hoeffman inequality (1.68) means that we expect o1((M~1)*(M~1)) =
on(M)~? to differ by O(n?/k) from %oy(B*B) = %o1(B)% In principle,
this gives us asymptotic universality on \/no, (M) from the already estab-
lished universality of B.

There is one technical obstacle remaining, however: while we know that
each dist(Xy, Vi) is distributed like a Gaussian, so that each individual Ry
is going to be of size O(1) with reasonably good probability, in order for the
above exercise to be useful, one needs to bound all of the Ry, simultaneously
with high probability. A naive application of the union bound leads to
terrible results here. Fortunately, there is a strong correlation between the
Ry: they tend to be large together or small together, or equivalently that
the distances dist(Xg, Vi) tend to be small together or large together. Here
is one indication of this:

Lemma 2.7.9. For any 1 < k <i <mn, one has
| (X3) |

[l (Xl ’

dist(X,, V) > _
LRI s Al SIeen




2.8. The circular law 223

where ; 1s the orthogonal projection onto the space spanned by X1, ..., Xk, X;.

Proof. We may relabel so that ¢ = k£ + 1; then projecting everything by m;
we may assume that n = k+ 1. Our goal is now to show that

[ Xl
n—1 11Xl '
L+ 2 m1 Tl
Recall that Ry,..., R, is a dual basis to Xi,...,X,,. This implies, in par-
ticular, that

dist( Xy, Vio1) >

n

r=Y (v-X))R,

j=1
for any vector x; applying this to X,, we obtain

n—1

Xn = HXHHZRn + Z(Xj ’ Xn)Rj
j=1
and hence by the triangle inequality
n—1
IXalPIRall < N1Xnll + > 11 Xnllll R51-
j=1
Using the fact that ||R;|| = 1/dist(X}, R;), the claim follows. O

In practice, once k gets moderately large (e.g., & = n® for some small
¢ > 0), one can control the expressions ||m;(X;)|| appearing here by Tala-
grand’s inequality (Theorem 2.1.13), and so this inequality tells us that once
dist(X}, V;) is bounded away from zero for j =1,...,k, it is bounded away
from zero for all other k£ also. This turns out to be enough to get uniform
control on the R; to make Exercise 2.7.6 useful, and ultimately to complete
the proof of Theorem 2.7.8.

2.8. The circular law

In this section, we leave the realm of self-adjoint matrix ensembles, such
as Wigner random matrices, and consider instead the simplest examples of
non-self-adjoint ensembles, namely the iid matrix ensembles.

The basic result in this area is

Theorem 2.8.1 (Circular law). Let M,, be an nxn iid matriz, whose entries
&j, 1 <i,j < n are iid with a fized (complex) distribution &;; = £ of mean
zero and variance one. Then the spectral measure LM, converges both in

probability and almost surely to the circular law pciye = %1|x‘2+‘y|2§1 dxdy,
where x,y are the real and imaginary coordinates of the complex plane.
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This theorem has a long history; it is analogous to the semicircular
law, but the non-Hermitian nature of the matrices makes the spectrum so
unstable that key techniques that are used in the semicircular case, such
as truncation and the moment method, no longer work; significant new
ideas are required. In the case of random Gaussian matrices, this result
was established by Mehta [Me2004] (in the complex case) and by Edelman
[Ed1996] (in the real case), as was sketched out in Section 2.6. In 1984,
Girko [Gi1984] laid out a general strategy for establishing the result for
non-Gaussian matrices, which formed the base of all future work on the
subject; however, a key ingredient in the argument, namely a bound on the
least singular value of shifts ﬁMn — zI, was not fully justified at the time.

A rigorous proof of the circular law was then established by Bai [Ba1997],
assuming additional moment and boundedness conditions on the individual
entries. These additional conditions were then slowly removed in a sequence
of papers [GoTi2007, Gi2004, PaZh2010, TaVu2008]|, with the last
moment condition being removed in [TaVuKr2010].

At present, the known methods used to establish the circular law for
general ensembles rely very heavily on the joint independence of all the
entries. It is a key challenge to see how to weaken this joint independence
assumption.

2.8.1. Spectral instability. One of the basic difficulties present in the
non-Hermitian case is spectral instability: small perturbations in a large
matrix can lead to large fluctuations in the spectrum. In order for any sort
of analytic technique to be effective, this type of instability must somehow
be precluded.

The canonical example of spectral instability comes from perturbing the
right shift matrix

010 ... 0

001 ... 0
Uy := .

000 0

to the matrix

010 0

0 01 0
U, .= )

e 00 0

for some £ > 0.

The matrix Uy is nilpotent: U} = 0. Its characteristic polynomial is
(=A\)™, and it thus has n repeated eigenvalues at the origin. In contrast, U
obeys the equation U' = eI, its characteristic polynomial is (—\)" —e(—1)",
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and it thus has n eigenvalues at the n'® roots e'/me2™/n j =0,...,n—1
of €. Thus, even for exponentially small values of ¢, say ¢ = 27", the
eigenvalues for U. can be quite far from the eigenvalues of Uy, and can
wander all over the unit disk. This is in sharp contrast with the Hermitian
case, where eigenvalue inequalities such as the Weyl inequalities (1.64) or
Wielandt-Hoffman inequalities (1.68) ensure stability of the spectrum.

One can explain the problem in terms of pseudospectrum®'. The only
spectrum of Uy is at the origin, so the resolvents (Uy — zI)~! of Uy are
finite for all non-zero z. However, while these resolvents are finite, they can
be extremely large. Indeed, from the nilpotent nature of Uy we have the
Neumann series

1 U upt
z 22 2n

i

so for |z| < 1 we see that the resolvent has size roughly |z| =", which is expo-
nentially large in the interior of the unit disk. This exponentially large size
of resolvent is consistent with the exponential instability of the spectrum:

Exercise 2.8.1. Let M be a square matrix, and let z be a complex number.
Show that ||(M — zI)7!||op > R if and only if there exists a perturbation
M + E of M with ||E||op < 1/R such that M + E has z as an eigenvalue.

This already hints strongly that if one wants to rigorously prove control
on the spectrum of M near z, one needs some sort of upper bound on
|(M — 2I)7Y{|op, or equivalently one needs some sort of lower bound on the
least singular value o, (M — zI) of M — zI.

Without such a bound, though, the instability precludes the direct use
of the truncation method, which was so useful in the Hermitian case. In par-
ticular, there is no obvious way to reduce the proof of the circular law to the
case of bounded coefficients, in contrast to the semicircular law where this
reduction follows easily from the Wielandt-Hoffman inequality (see Section
2.4). Instead, we must continue working with unbounded random variables
throughout the argument (unless, of course, one makes an additional decay
hypothesis, such as assuming certain moments are finite; this helps explain
the presence of such moment conditions in many papers on the circular law).

2.8.2. Incompleteness of the moment method. In the Hermitian case,
the moments

Etr(%M)k—/ka dum(x)

61The pseudospectrum of an operator T is the set of complex numbers z for which the operator
norm ||(T — 2I)~!|jop is either infinite, or larger than a fixed threshold 1/e. See [Tr1991] for
further discussion.
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of a matrix can be used (in principle) to understand the distribution u\/_1
mMnp

completely (at least, when the measure /L\/_l has sufficient decay at infin-
nMn

ity). This is ultimately because the space of real polynomials P(x) is dense
in various function spaces (the Weierstrass approximation theorem).
In the non-Hermitian case, the spectral measure ;1__1  is now supported

VrMy,
on the complex plane rather than the real line. One still has the formula

Lir(— (2),

k k
Etr(%]\/l) = AZ d’u\/aan
but it is much less useful now, because the space of complex polynomials
P(z) no longer has any good density properties®2. In particular, the mo-
ments no longer uniquely determine the spectral measure.

This can be illustrated with the shift examples given above. It is easy
to see that Uy and U, have vanishing moments up to (n — 1) order, i.e.,

11 11

for k=1,...,n— 1. Thus we have

k k
/Rz duﬁUo(z)—/Rz d,u%UE(z):0

for Kk =1,...,n — 1. Despite this enormous number of matching moments,
the spectral measures p1 1 ;; and p 1, are dramatically different; the for-
NG Vo

Up)k =

mer is a Dirac mass at the origin, while the latter can be arbitrarily close
to the unit circle. Indeed, even if we set all moments equal to zero,

/zkd,u:O
R

for k = 1,2,..., then there are an uncountable number of possible (con-
tinuous) probability measures that could still be the (asymptotic) spectral
measure p; for instance, any measure which is rotationally symmetric around
the origin would obey these conditions.

If one could somehow control the mixed moments
n

1 1

k=l k l

2"z" d z)=— —\; (M, —\; (M,

[ iy, ) LN ()

of the spectral measure, then this problem would be resolved, and one could
use the moment method to reconstruct the spectral measure accurately.
However, there does not appear to be any obvious way to compute this
quantity; the obvious guess of tr(ﬁMn)k(ﬁMﬁ)l works when the matrix

62For instance, the uniform closure of the space of polynomials on the unit disk is not the
space of continuous functions, but rather the space of holomorphic functions that are continuous
on the closed unit disk.
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M,, is normal, as M,, and M, then share the same basis of eigenvectors, but
generically one does not expect these matrices to be normal.

Remark 2.8.2. The failure of the moment method to control the spectral
measure is consistent with the instability of spectral measure with respect
to perturbations, because moments are stable with respect to perturbations.

Exercise 2.8.2. Let £k > 1 be an integer, and let M, be an iid matrix
whose entries have a fixed distribution & with mean zero, variance 1, and
with &' moment finite. Show that % tr(ﬁMn)k converges to zero as n — oo
in expectation, in probability, and in the almost sure sense. Thus we see
that |5 2F du - (z) converges to zero in these three senses also. This

is of course consistent with the circular law, but does not come close to
establishing that law, for the reasons given above.

The failure of the moment method also shows that methods of free proba-
bility (Section 2.5) do not work directly. For instance, observe that for fixed
e, Up and U. (in the non-commutative probability space (Mat,(C), L tr))
both converge in the sense of *-moments as n — 0o to that of the right
shift operator on ¢2(Z) (with the trace 7(T) = (eg, Teg), with eg being the
Kronecker delta at 0); but the spectral measures of Uy and U, are differ-
ent. Thus the spectral measure cannot be read off directly from the free
probability limit.

2.8.3. The logarithmic potential. With the moment method out of con-
sideration, attention naturally turns to the Stieltjes transform

di 1y, (w)
1 1 =My
sn(2) = = tr(—=M,, — 2I)~* —/ —m
n o \/n c w-—z
Even though the measure p1 1, is now supported on C rather than R, the

Stieltjes transform is still well-defined. The Plemelj formula for reconstruct-
ing spectral measure from the Stieltjes transform that was used in previous
sections is no longer applicable, but there are other formulae one can use
instead, in particular, one has

Exercise 2.8.3. Show that

1
Pt = —Ozsn(2)
in the sense of distributions, where
1,0 0
0z i= =(=— +i—
2(895 + Z(‘)y)

is the Cauchy-Riemann operator.
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One can control the Stieltjes transform quite effectively away from the
origin. Indeed, for iid matrices with sub-Gaussian entries, one can show
(using the methods from Section 2.3) that the operator norm of ﬁMn is
1 + o(1) almost surely; this, combined with (2.8.2) and Laurent expansion,
tells us that s, (z) almost surely converges to —1/z locally uniformly in the
region {z : |z| > 1}, and that the spectral measure p L, converges almost

surely to zero in this region (which can of course also be deduced directly
from the operator norm bound). This is of course consistent with the circular
law, but is not sufficient to prove it (for instance, the above information is
also consistent with the scenario in which the spectral measure collapses
towards the origin). One also needs to control the Stieltjes transform inside
the disk {z : |z] < 1} in order to fully control the spectral measure.

For this, existing methods (such as predecessor comparison) are not
particularly effective (mainly because of the spectral instability, and also
because of the lack of analyticity in the interior of the spectrum). Instead,
one proceeds by relating the Stieltjes transform to the logarithmic potential

fn(2) ::/Clog|w—z]d,u¢15Mn(w).

It is easy to see that s, (z) is essentially the (distributional) gradient of f,,(z):
0 0
sn(z) = (—% + ia—y)fn(z),
and thus f,, is related to the spectral measure by the distributional formula%
1

(2.179) “%Mn = %Afn
where A := % + g—;; is the Laplacian.

In analogy to previous continuity theorems, we have

Theorem 2.8.3 (Logarithmic potential continuity theorem). Let M, be a
sequence of random matrices, and suppose that for almost every complex
number z, fn(z) converges almost surely (resp., in probability) to

2) o= [ 1og]z = widu(w

for some probability measure u. Then ML\/_MH converges almost surely (resp.,

in probability) to wu in the vague topology.

Proof. We prove the almost sure version of this theorem, and leave the
convergence in the probability version as an exercise.

63This formula just reflects the fact that % log |z| is the Newtonian potential in two dimen-

sions.
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On any bounded set K in the complex plane, the functions log| - —w]
lie in L2(K) uniformly in w. From Minkowski’s integral inequality, we con-
clude that the f,, and f are uniformly bounded in L?(K). On the other hand,
almost surely the f,, converge pointwise to f. From the dominated conver-
gence theorem this implies that min(|f,, — f|, M) converges in L'(K) to zero
for any M; using the uniform bound in L?(K) to compare min(|f,, — f|, M)
with |f, — f| and then sending M — oo, we conclude that f,, converges to
f in LY(K). In particular, f,, converges to f in the sense of distributions;
taking distributional Laplacians using (2.179) we obtain the claim. ]

Exercise 2.8.4. Establish the convergence in probability version of Theo-
rem 2.8.3.

Thus, the task of establishing the circular law then reduces to show-
ing, for almost every z, that the logarithmic potential f,(z) converges (in
probability or almost surely) to the right limit f(z).

Observe that the logarithmic potential
1 & X (M)
(2) == log |2
$ile) = 5 Y og 47—

can be rewritten as a log-determinant:

1 1
z) = —log |det(—=M,, — z1)|.
Ful) = - log| det(—=M, — =1)
To compute this determinant, we recall that the determinant of a matrix A
is not only the product of its eigenvalues, but also has a magnitude equal to
the product of its singular values:

|det A] = [[ o;(A) = [ Mi(44)'?
1

Jj= Jj=1
and thus

1 (e.)
fulz) = 5/ log x dvy, ()
0
where du,, , is the spectral measure of the matrix (ﬁMn—zI)*(ﬁMn —zI).
The advantage of working with this spectral measure, as opposed to the

o . . . 1 1
original spectral measure “ﬁMn’ is that the matrix (ﬁMn — ZI)*(WM” _

zI) is self-adjoint, and so methods such as the moment method or free proba-
bility can now be safely applied to compute the limiting spectral distribution.
Indeed, Girko [Gi1984] established that for almost every z, v, , converged
both in probability and almost surely to an explicit (though slightly com-
plicated) limiting measure v, in the vague topology. Formally, this implied
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that f,(z) would converge pointwise (almost surely and in probability) to

1 o0
—/ logz dv,(z).
2 Jo

A lengthy but straightforward computation then showed that this expres-
sion was indeed the logarithmic potential f(z) of the circular measure picirc,
so that the circular law would then follow from the logarithmic potential
continuity theorem.

Unfortunately, the vague convergence of v, . to v, only allows one to
deduce the convergence of [;~ F(x) dvy,. to [;° F(x) dv. for F continuous
and compactly supported. Unfortunately, log z has singularities at zero and
at infinity, and so the convergence

/ log z dvy, () —>/ logz dv,(x)
0 0

can fail if the spectral measure v, , sends too much of its mass to zero or to
infinity.

The latter scenario can be easily excluded, either by using operator norm
bounds on M,, (when one has enough moment conditions) or even just the
Frobenius norm bounds (which require no moment conditions beyond the
unit variance). The real difficulty is with preventing mass from going to the
origin.

The approach of Bai [Bal997] proceeded in two steps. First, he estab-
lished a polynomial lower bound

Jn(%Mn —2I)>n"C

asymptotically almost surely for the least singular value of ﬁMn — zI.

This has the effect of capping off the logz integrand to be of size O(logn).
Next, by using Stieltjes transform methods, the convergence of v, . to v,
in an appropriate metric (e.g., the Levi distance metric) was shown to be
polynomially fast, so that the distance decayed like O(n~¢) for some ¢ >
0. The O(n™°) gain can safely absorb the O(logn) loss, and this leads to
a proof of the circular law assuming enough boundedness and continuity
hypotheses to ensure the least singular value bound and the convergence
rate. This basic paradigm was also followed by later works [GoTi2007,
PaZh2010, TaVu2008]|, with the main new ingredient being the advances
in the understanding of the least singular value (Section 2.7).

Unfortunately, to get the polynomial convergence rate, one needs some
moment conditions beyond the zero mean and unit variance rate (e.g., finite
241" moment for some i > 0). In [TaVuKr2010] the additional tool of the
Talagrand concentration inequality (Theorem 2.1.13) was used to eliminate
the need for the polynomial convergence. Intuitively, the point is that only
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a small fraction of the singular values of ﬁMn — zI are going to be as

small as n™¢ most will be much larger than this, and so the O(logn) bound

is only going to be needed for a small fraction of the measure. To make
this rigorous, it turns out to be convenient to work with a slightly different
formula for the determinant magnitude | det(A)| of a square matrix than the
product of the eigenvalues, namely the base-times-height formula

|det(A)| = ﬁ dist(X;, Vj)

j=1
where X is the j' row and V; is the span of X1,..., X;_1.
Exercise 2.8.5. Establish the inequality

n m m

I o) < dist(x;,v5) < [[o;(4)
j=n+l-m j=1 j=1
for any 1 < m < n. (Hint: The middle product is the product of the singular
values of the first m rows of A, and so one should try to use the Cauchy
interlacing inequality for singular values, see Section 1.3.3.) Thus we see
that dist(X;, V) is a variant of o;(A).

The least singular value bounds, translated in this language (with A :=
\%Mn — zI), tell us that dist(X;, V;) > n~¢ with high probability; this lets
us ignore the most dangerous values of j, namely those j that are equal to
n—0(n%%) (say). For low values of j, say j < (1—4)n for some small §, one
can use the moment method to get a good lower bound for the distances
and the singular values, to the extent that the logarithmic singularity of
log x no longer causes difficulty in this regime; the limit of this contribution
can then be seen by moment method or Stieltjes transform techniques to be
universal in the sense that it does not depend on the precise distribution of
the components of M,,. In the medium regime (1 —§)n < j < n—n%%, one
can use Talagrand’s inequality (Theorem 2.1.13) to show that dist(X}, Vj)
has magnitude about /n — 7, giving rise to a net contribution to f,(z)
of the form %2(1_5)n<j<n_n0_99 O(log v/n — j), which is small. Putting all
this together, one can show that f,(z) converges to a universal limit as
n — oo (independent of the component distributions); see [TaVuKr2010]
for details. As a consequence, once the circular law is established for one
class of iid matrices, such as the complex Gaussian random matrix ensemble,
it automatically holds for all other ensembles also.

2.8.4. Brown measure. We mentioned earlier that due to eigenvalue in-
stability (or equivalently, due to the least singular value of shifts possibly
going to zero), the moment method (and thus, by extension, free probabil-
ity) was not sufficient by itself to compute the asymptotic spectral measure
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of non-Hermitian matrices in the large n limit. However, this method can be
used to give a heuristic prediction as to what that measure is, known as the
Brown measure [Br1986]. While Brown measure is not always the limiting
spectral measure of a sequence of matrices, it turns out in practice that this
measure can (with some effort) be shown to be the limiting spectral measure
in key cases. As Brown measure can be computed (again, after some effort)
in many cases, this gives a general strategy towards computing asymptotic
spectral measure for various ensembles.

To define Brown measure, we use the language of free probability (Sec-
tion 2.5). Let u be a bounded element (not necessarily self-adjoint) of a
non-commutative probability space (A, 7), which we will assume to be tra-
cial. To derive Brown measure, we mimic the Girko strategy used for the
circular law. First, for each complex number z, we let v, be the spectral
measure of the non-negative self-adjoint element (u — 2)*(u — z).

Exercise 2.8.6. Verify that the spectral measure of a positive element u*u
is automatically supported on the non-negative real axis. (Hint: Show that
T(P(u*u)u*uP(u*u)) > 0 for any real polynomial P, and use the spectral
theorem.)

By the above exercise, v, is a compactly supported probability measure
on [0, +00). We then define the logarithmic potential f(z) by the formula

1

flz) = 3 /000 log x dv,(x).

Note that f may equal —oo at some points.

To understand this determinant, we introduce the regularised determi-
nant

fe(z) = %/OOO log(e + x) dv,(z)

for ¢ > 0. From the monotone convergence theorem we see that f.(2)
decreases pointwise to f(z) as ¢ — 0.

We now invoke the Gelfand-Naimark theorem (Exercise 2.5.10) and em-
bed% A into the space of bounded operators on L?(7), so that we may now
obtain a functional calculus. Then we can write

f(2) = 5rlog(e + (u— 2)°(u — 2)))

One can compute the first variation of f.:

641f T is not faithful, this embedding need not be injective, but this will not be an issue in
what follows.
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Exercise 2.8.7. Let ¢ > 0. Show that the function f. is continuously
differentiable with
Oufe(z) = —Re7((e + (u— 2)*(u— 2)) " L(u — 2))

and

Oyfe(2) = —Im7((e + (u — 2)*(u — 2)) ' (u - 2)).
Then, one can compute the second variation at, say, the origin:

Exercise 2.8.8. Let ¢ > 0. Show that the function f. is twice continuously
differentiable with

1

Ope f-(0) = Re7((e + u*u) ™' — (e + v u) " Hu + u*) (e + u*u) " u)

and

Oyy [-(0) = Re7((g + v u) ! — (e + w*u) ' (u* — u)(e + uu) tu).
We conclude, in particular, that

Af(0) =2Re7((e + u*u) ™t — (e + w*u) "u* (e + u*u) " tu),

or equivalently,
AL0) = 201 + wu) 2 2ay — (e + wrw) ™ 2ule + wu) V2| 2a ).

Exercise 2.8.9. Show that

e + ) e + wu) 2 oy < e+ w'w) 2] o,
(Hint: Adapt the proof of Lemma 2.5.13.)

We conclude that Af; is non-negative at zero. Translating u by any
complex number we see that A f. is non-negative everywhere, that is to say
that f. is subharmonic. Taking limits we see that f is subharmonic also;
thus if we define the Brown measure u = i, of u as

1
= —A
pi=o f

(cf. (2.179)), then p is a non-negative measure.

Exercise 2.8.10. Show that for |z| > p(u) := p(u*u)/2, f is continuously
differentiable with

0:f(2) = =Re7((u—2)"")
and

Oy f(2) =Im7((u— 2)™h

and conclude that f is harmonic in this region; thus Brown measure is
supported in the disk {z : |z] < p(u)}. Using Green’s theorem, conclude
also that Brown measure is a probability measure.
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Exercise 2.8.11. In a finite-dimensional non-commutative probability space
(Mat,(C), 2 tr), show that Brown measure is the same as spectral measure.

Exercise 2.8.12. In a commutative probability space (L*°(Q2), E), show
that Brown measure is the same as the probability distribution.

Exercise 2.8.13. If u is the left shift on ¢?(Z) (with the trace 7(T) :=
(Teq, eq)), show that the Brown measure of u is the uniform measure on the
unit circle {z € C : |z| = 1}.

This last exercise illustrates the limitations of Brown measure for under-
standing asymptotic spectral measure. The shift Uy and the perturbed shift
U. introduced in previous sections both converge in the sense of *-moments
as n — oo (holding ¢ fixed) to the left shift u. For non-zero e, the spectral
measure of U, does indeed converge to the Brown measure of u, but for
¢ = 0 this is not the case. This illustrates a more general principle®®, that
Brown measure is the right asymptotic limit for “generic” matrices, but not
for exceptional matrices.

The machinery used to establish the circular law in full generality can
be used to show that Brown measure is the correct asymptotic spectral limit
for other models:

Theorem 2.8.4. Let M, be a sequence of random matrices whose entries
are joint independent and with all moments uniformly bounded, with vari-
ance uniformly bounded from below, and which converges in the sense of
x-moments to an element u of a non-commutative probability space. Then
the spectral measure LM, converges almost surely and in probability to the

Brown measure of u.

This theorem is essentially [TaVuKr2010, Theorem 1.20]. The main
ingredients are those mentioned earlier, namely a polynomial lower bound
on the least singular value, and the use of Talagrand’s inequality (Theorem
2.1.13) to control medium singular values (or medium codimension distances
to subspaces). Of the two ingredients, the former is more crucial, and is much
more heavily dependent at present on the joint independence hypothesis; it
would be of interest to see how to obtain lower bounds on the least singu-
lar value in more general settings. Some recent progress in this direction
can be found in [GuKrZe2009]|, [BoCaCh2008]. See also [BiLe2001]
for extensive computations of Brown measure for various random matrix
models.

65See [Sn2002] for a precise formulation of this heuristic, using Gaussian regularisation.
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3.1. Brownian motion and Dyson Brownian motion

One theme in this text will be the central nature played by the Gaussian
random variables X = N(u,0?). Gaussians have an incredibly rich algebraic
structure, and many results about general random variables can be estab-
lished by first using this structure to verify the result for Gaussians, and then
using universality techniques (such as the Lindeberg exchange strategy) to
extend the results to more general variables.

One way to exploit this algebraic structure is to continuously deform the
variance t := o2 from an initial variance of zero (so that the random variable
is deterministic) to some final level T. We would like to use this to give a
continuous family ¢ — X; of random variables Xy = N(u,t) as ¢ (viewed as
a “time” parameter) runs from 0 to 7.

At present, we have not completely specified what X; should be, because
we have only described the individual distribution X; = N (u,t) of each Xy,
and not the joint distribution. However, there is a very natural way to
specify a joint distribution of this type, known as Brownian motion. In
this section we lay the necessary probability theory foundations to set up
this motion, and indicate its connection with the heat equation, the central
limit theorem, and the Ornstein-Uhlenbeck process. This is the beginning
of stochastic calculus, which we will not develop fully here.

We will begin with one-dimensional Brownian motion, but it is a simple
matter to extend the process to higher dimensions. In particular, we can
define Brownian motion on vector spaces of matrices, such as the space of
n x n Hermitian matrices. This process is equivariant with respect to conju-
gation by unitary matrices, and so we can quotient out by this conjugation
and obtain a new process on the quotient space, or in other words, on the
spectrum of n x n Hermitian matrices. This process is called Dyson Brown-
ian motion, and turns out to have a simple description in terms of ordinary
Brownian motion; it will play a key role in this text.

3.1.1. Formal construction of Brownian motion. We begin with con-
structing one-dimensional Brownian motion, following the classical method
of Lévy. We shall model this motion using the machinery of Wiener pro-
cesses:

Definition 3.1.1 (Wiener process). Let p € R, and let ¥ C [0,400) be a
set of times containing 0. A (one-dimensional) Wiener process on ¥ with
initial position u is a collection (X¢)ex of real random variables X for each
time t € X, with the following properties:

(i) Xo = p.
(ii) Almost surely, the map ¢ — X; is a continuous function on 3.
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(ili) For every 0 < ¢t_ < ty in 3, the increment X; — X; has the
distribution of N(0,t; —t_)r. (In particular, X; = N(u,t)r for
every ¢t > 0.)

(iv) For every to < t; < --- < t, in X, the increments X;, — X;,_, for
1=1,...,n are jointly independent.

If 3 is discrete, we say that (Xy)iex is a discrete Wiener process; if ¥ =
[0,4+00), then we say that (X;)ex is a continuous Wiener process.

Remark 3.1.2. Collections of random variables (X¢);ey, where ¥ is a set
of times, will be referred to as stochastic processes, thus Wiener processes
are a (very) special type of stochastic process.

Remark 3.1.3. In the case of discrete Wiener processes, the continuity
requirement (ii) is automatic. For continuous Wiener processes, there is a
minor technical issue: the event that ¢ — X; is continuous need not be
a measurable event (one has to take uncountable intersections to define
this event). Because of this, we interpret (i) by saying that there exists
a measurable event of probability 1, such that ¢ — X; is continuous on
all of this event, while also allowing for the possibility that ¢ — X; could
also sometimes be continuous outside of this event also. One can view the
collection (X¢);ex as a single random variable, taking values in the product
space R* (with the product o-algebra, of course).

Remark 3.1.4. One can clearly normalise the initial position p of a Wiener
process to be zero by replacing X; with X; — p for each t.

We shall abuse notation somewhat and identify continuous Wiener pro-
cesses with Brownian motion in our informal discussion, although techni-
cally the former is merely a model for the latter. To emphasise this link
with Brownian motion, we shall often denote continuous Wiener processes
as (Bt)ie[o,4o0) Tather than (Xi)ie(0 4o0)-

It is not yet obvious that Wiener processes exist, and to what extent they
are unique. The situation is easily clarified though for discrete processes:

Proposition 3.1.5 (Discrete Brownian motion). Let ¥ be a discrete subset
of [0,4+00) containing 0, and let p € R. Then (after extending the sample
space if necessary) there exists a Wiener process (Xi)iex, with base point p.
Furthermore, any other Wiener process (X{)icx, with base point j has the
same distribution as (.

Proof. As ¥ is discrete and contains 0, we can write it as {to, t1,t2, ...} for
some

O=th<ti<ta<....
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Let (dX;)2, be a collection of jointly independent random variables with
dX; = N(0,t; — t;_1)r (the existence of such a collection, after extending
the sample space, is guaranteed by Exercise 1.1.20). If we then set

Xy, o= p4dX, 4 - +dX;

for all i = 0,1,2,..., then one easily verifies (using Exercise 2.1.9) that
(Xt)tex is a Wiener process.

Conversely, if (X{)iex is a Wiener process, and we define dX| := X/ —
X! | fori=1,2,..., then from the definition of a Wiener process we see that
the dX/ have distribution N(0,¢; — ¢;—1)r and are jointly independent (i.e.,
any finite subcollection of the dX] are jointly independent). This implies
for any finite n that the random variables (dX;) ; and (dX])!, have the
same distribution, and thus (X;)sesy and (X[);exy have the same distribution
for any finite subset ¥ of X. From the construction of the product o-
algebra we conclude that (X;):ex, and (X[)iex have the same distribution,
as required. O

Now we pass from the discrete case to the continuous case.

Proposition 3.1.6 (Continuous Brownian motion). Let up € R. Then
(after extending the sample space if necessary) there exists a Wiener pro-
cess (Xt)ie[0,400) With base point ju. Furthermore, any other Wiener process
(X)te(0,400) with base point p has the same distribution as fu.

Proof. The uniqueness claim follows by the same argument used to prove
the uniqueness component of Proposition 3.1.5, so we just prove existence
here. The iterative construction we give here is somewhat analogous to that
used to create self-similar fractals, such as the Koch snowflake. (Indeed,
Brownian motion can be viewed as a probabilistic analogue of a self-similar
fractal.)

The idea is to create a sequence of increasingly fine discrete Brownian
motions, and then to take a limit. Proposition 3.1.5 allows one to create
each individual discrete Brownian motion, but the key is to couple these
discrete processes together in a consistent manner.

Here’s how. We start with a discrete Wiener process (X¢)ien on the
natural numbers N = {0,1,2...} with initial position u, which exists by
Proposition 3.1.5. We now extend this process to the denser set of times
IN = {in:n € N} by setting

X+ X

Xy = S Ly

for t = 0,1,2,..., where (Y;0)ien are iid copies of N(0,1/4)r, which are
jointly independent of the (X;)ien. It is a routine matter to use Exercise
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2.1.9 to show that this creates a discrete Wiener process (X¢),c1x oD %N
2
which extends the previous process.

Next, we extend the process further to the denser set of times iN by
defining
X+ Xiq1)2
Xyt =——5 — TYa
for t € N, where (Y1),c1y are iid copies of N(0,1/8)g, jointly indepen-
2
dent of (Xt)te%N- Again, it is a routine matter to show that this creates a

discrete Wiener process (X, 1 on LN,
p ( t)thN 4

Iterating this procedure a countable number! of times, we obtain a col-
lection of discrete Wiener processes (X¢),c 1N for k=0,1,2,... which are
2

consistent with each other, in the sense that the earlier processes in this
collection are restrictions of later ones.

Now we establish a Holder continuity property. Let # be any exponent
between 0 and 1/2, and let T" > 0 be finite. Observe that for any k£ =0, 1,...
and any j € N, we have X(;1)/or — X /o0 = N(0, 1/2¥)r and hence (by the
sub-Gaussian nature of the normal distribution)

P([X(j 41y 00 = X or| = 27k0y < C exp(—c2F(1—20))

for some absolute constants C,c. The right-hand side is summable as j, k
run over N subject to the constraint j/2% < T. Thus, by the Borel-Cantelli
lemma, for each fixed T, we almost surely have that

[X(jnyyn — Xjyar| <27%

for all but finitely many j,k € N with j/2* < T. In particular, this im-
plies that for each fixed T, the function ¢ — X; is almost surely Holder
continuous® of exponent § on the dyadic rationals j/2* in [0,7], and thus
(by the countable union bound) is almost surely locally Holder continuous
of exponent 6 on the dyadic rationals in [0, 400). In particular, they are
almost surely locally uniformly continuous on this domain.

As the dyadic rationals are dense in [0, +00), we can thus almost surely®
extend ¢ — X; uniquely to a continuous function on all of [0, +00). Note that
if ¢,, is any sequence in [0, +00) converging to ¢, then X; converges almost
surely to X;, and thus also converges in probability and in distribution.

1This requires a countable number of extensions of the underlying sample space, but one
can capture all of these extensions into a single extension via the machinery of inverse limits
of probability spaces; it is also not difficult to manually build a single extension sufficient for
performing all the above constructions.

2Tn other words, there exists a constant C such that | X, —X¢| < Cr|s—t|? for all s,t € [0, T].

30n the remaining probability zero event, we extend ¢ — X; in some arbitrary measurable
fashion.
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Similarly, for differences such as Xy, , — X;_, . Using this, we easily verify
that (Xt)te[0,+oo) is a continuous Wiener process, as required. (I

Remark 3.1.7. One could also have used the Kolmogorov extension theorem
(see e.g. [Ta2011]) to establish the limit.

Exercise 3.1.1. Let (Xt);c[0,400) De a continuous Wiener process. We have
already seen that if 0 < 6 < 1/2, that the map t — X; is almost surely
Holder continuous of order #. Show that if 1/2 < 6 < 1, then the map
t — X is almost surely not Holder continuous of order 6.

Show also that the map t — X; is almost surely nowhere differentiable.
Thus, Brownian motion provides a (probabilistic) example of a continuous
function which is nowhere differentiable.

Remark 3.1.8. In the above constructions, the initial position p of the
Wiener process was deterministic. However, one can easily construct Wiener
processes in which the initial position Xj is itself a random variable. Indeed,
one can simply set

Xt = X() + Bt

where (Bt)ic[o,4+00) 18 @ continuous Wiener process with initial position 0
which is independent of Xy. Then we see that X; obeys properties (ii), (iii),
(iv) of Definition 3.1.1, but the distribution of X is no longer N (u,t)r, but
is instead the convolution of the law of X, and the law of N(0,t)g.

3.1.2. Connection with random walks. We saw how to construct Brow-
nian motion as a limit of discrete Wiener processes, which were partial sums
of independent Gaussian random variables. The central limit theorem (see
Section 2.2) allows one to interpret Brownian motion in terms of limits
of partial sums of more general independent random variables, otherwise
known as (independent) random walks.

Definition 3.1.9 (Random walk). Let AX be a real random variable, let
1 € R be an initial position, and let At > 0 be a time step. We define a dis-
crete random walk with initial position p, time step At and step distribution
AX (or pax) to be a process (X¢)iearN defined by

Xnar = p+ > AXiag
i=1

where (AX;a¢)°, are iid copies of AX.

Example 3.1.10. From the proof of Proposition 3.1.5, we see that a discrete
Wiener process on At - N with initial position g is nothing more than a
discrete random walk with step distribution of N (0, A¢)gr. Another basic
example is simple random walk, in which AX is equal to (At)'/2 times a
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signed Bernoulli variable, thus we have X, 1)a; = Xnat £ (At)Y/2, where
the signs £ are unbiased and are jointly independent in n.

Exercise 3.1.2 (Central limit theorem). Let X be a real random vari-
able with mean zero and variance 1, and let € R. For each At > 0,

let (Xt(At))te[O’Jroo) be a process formed by starting with a random walk
(Xt(At))teAt.N with initial position p, time step At, and step distribution
(At)Y/2X, and then extending to other times in [0,+00), in a piecewise
linear fashion, thus

At At At
X((n+)9)At = (1- Q)Xr(LAt) + HX((nJr)l)At

for all n € N and 0 < # < 1. Show that as At — 0, the process
(Xt(At))te[Q 4oo) converges in distribution to a continuous Wiener process
with initial position u. (Hint: From the Riesz representation theorem (or
the Kolmogorov extension theorem), it suffices to establish this convergence
for every finite set of times in [0, +00). Now use the central limit theorem;
treating the piecewise linear modifications to the process as an error term.)

3.1.3. Connection with the heat equation. Let (B;);co,40c) be a
Wiener process with base point u, and let F': R — R be a smooth function
with all derivatives bounded. Then, for each time ¢, the random variable
F(By) is bounded and thus has an expectation EF(B;). From the almost
sure continuity of B; and the dominated convergence theorem we see that
the map t — EF(B;) is continuous. In fact, it is differentiable, and obeys
the following differential equation:

Lemma 3.1.11 (Equation of motion). For all timest > 0, we have

d 1
—EF(B;) = =EF,.(B
dt ( t) 2 x:c( t)

where Fy, is the second derivative of F. In particular, t — EF(By) is

continuously differentiable (because the right-hand side is continuous).

Proof. We work from first principles. It suffices to show for fixed ¢t > 0,
that

1
as dt — 0. We shall establish this just for non-negative dt; the claim for

negative dt (which only needs to be considered for ¢t > 0) is similar and is
left as an exercise.

Write dB; := By 4 — B. From Taylor expansion and the bounded third
derivative of I, we have

1
(3.1) F(Biyat) = F(By) + Fo(By)dBy + §Fm(Bt)|dBt’2 + O(‘dBt’3)~
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We take expectations. Since dB; = N (0, dt)r, we have E|dB;|* = O((dt)*/?),
so in particular,

1
EF(B,.q4) = EF(B;) + EF,(B;)dB; + §EFM(Bt)]dBt\2 + o(dt).

Now observe that dB; is independent of By, and has mean zero and variance
dt. The claim follows. O

Exercise 3.1.3. Complete the proof of the lemma by considering negative
values of dt. (Hint: One has to exercise caution because dB; is not inde-
pendent of B, in this case. However, it will be independent of B; 4. Also,
use the fact that EF,(B;) and EF,,(B;) are continuous in ¢t. Alternatively,
one can deduce the formula for the left-derivative from that of the right-
derivative via a careful application of the fundamental theorem of calculus,
paying close attention to the hypotheses of that theorem.)

Remark 3.1.12. In the language of Ito calculus, we can write (3.1) as
1
(3.2) dF(B;) = Fy(B:)dB; + §Fm(Bt)dt.

Here, dF(B¢) := F(Bi+at) — F(Bt), and dt should either be thought of
as being infinitesimal, or being very small, though in the latter case the
equation (3.2) should not be viewed as being exact, but instead only being
true up to errors of mean o(dt) and third moment O(dt?). This is a special
case of Ito’s formula. It should be compared against the chain rule

dF(X;) = Fy(X,)dX,

when t — X is a smooth process. The non-smooth nature of Brownian mo-
tion causes the quadratic term in the Taylor expansion to be non-negligible,
which explains* the additional term in (3.2), although the Holder continuity
of this motion is sufficient to still be able to ignore terms that are of cubic
order or higher.

Let p(t,z) dx be the probability density function of By; by inspection of
the normal distribution, this is a smooth function for £ > 0, but is a Dirac
mass at p at time ¢ = 0. By definition of density function,

EF(B;) = /RF(:B),O(L‘, x) dx

for any Schwartz function F. Applying Lemma 3.1.11 and integrating by
parts, we see that

1

§ammp

(3.3) Op =

4In this spirit, one can summarise (the differential side of) Tto calculus informally by the
heuristic equations dB; = O((dt)'/?) and |dB;|? = dt, with the understanding that all terms that
are o(dt) are discarded.
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in the sense of (tempered) distributions (see e.g. [Ta2010, §1.13]). In other
words, p is a (tempered distributional) solution to the heat equation (3.3).
Indeed, since p is the Dirac mass at p at time ¢t = 0, p for later times t is
the fundamental solution of that equation from initial position u.

From the theory of PDE one can solve® the (distributional) heat equation
with this initial data to obtain the unique solution

p(t, :C) — ef‘mfﬂ\z/%.

V2t

Of course, this is also the density function of N(u,t)r, which is (unsurpris-
ingly) consistent with the fact that By = N(u,t). Thus we see why the
normal distribution of the central limit theorem involves the same type of
functions (i.e. Gaussians) as the fundamental solution of the heat equation.
Indeed, one can use this argument to heuristically derive the central limit
theorem from the fundamental solution of the heat equation (cf. Section
2.2.7), although the derivation is only heuristic because one first needs to
know that some limiting distribution already exists (in the spirit of Exercise
3.1.2).

Remark 3.1.13. Because we considered a Wiener process with a determin-
istic initial position u, the density function p was a Dirac mass at time ¢t = 0.
However, one can run exactly the same arguments for Wiener processes with
stochastic initial position (see Remark 3.1.8), and one will still obtain the
same heat equation (3.1.8), but now with a more general initial condition.

We have related one-dimensional Brownian motion to the one-dimen-
sional heat equation, but there is no difficulty establishing a similar rela-
tionship in higher dimensions. In a vector space R", define a (continuous)
Wiener process (Xt)ie[0,+00) in R™ with an initial position u = (1, ..., un) €
R™ to be a process whose components (Xt )ic[0,400) for i =1,...,n are in-
dependent Wiener processes with initial position p;. It is easy to see that
such processes exist, are unique in distribution, and obey the same sort of
properties as in Definition 3.1.1, but with the one-dimensional Gaussian dis-
tribution N (u,0?)r replaced by the n-dimensional analogue N (u,0%I)Rrn,
which is given by the density function

1

(2mo)n/2

where dx is now Lebesgue measure on R™.

1242
e~ lz=nl*/o% 1.

Exercise 3.1.4. If (Bt);c[0,4+c) is an n-dimensional continuous Wiener pro-

cess, show that

d 1
S EF(By) = ;E(AF)(BY)

5See for instance [Ta2010, §1.12].
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whenever F': R™ — R is smooth with all derivatives bounded, where
n
82

AF = —
— Ox?

is the Laplacian of F. Conclude, in particular, that the density function
p(t,z) dx of By obeys the (distributional) heat equation

1

A simple but fundamental observation is that n-dimensional Brown-
ian motion is rotation-invariant; more precisely, if (Xt)te[0,+oo) is an n-
dimensional Wiener process with initial position 0, and U € O(n) is any
orthogonal transformation on R™, then (U Xt)t€[07+oo) is another Wiener
process with initial position 0, and thus has the same distribution:

(3.4) (UXt)t6[0,+oo) = (Xt)te[0,+oo)-
This is ultimately because the n-dimensional normal distributions
N(0,0%I)rr» are manifestly rotation-invariant (see Exercise 2.2.13).

Remark 3.1.14. One can also relate variable-coefficient heat equations to
variable-coefficient Brownian motion (Xt);(0,4+c), in which the variance of
an increment dX; is now only proportional to dt for infinitesimal dt rather
than being equal to dt, with the constant of proportionality allowed to de-
pend on the time ¢ and on the position X;. One can also add drift terms by
allowing the increment dX; to have a non-zero mean (which is also propor-
tional to dt). This can be accomplished through the machinery of stochastic
calculus, which we will not discuss in detail in this text. In a similar fashion,
one can construct Brownian motion (and heat equations) on manifolds or
on domains with boundary, though we will not discuss this topic here.

Exercise 3.1.5. Let X be a real random variable of mean zero and variance
1. Define a stochastic process (Xt)ie[0,400) by the formula
X;:=e Y(Xo+ Beai_y)
where (Bt)ie(o,+00) is @ Wiener process with initial position zero that is
independent of X. This process is known as an Ornstein- Uhlenbeck process.
e Show that each X; has mean zero and variance 1.
e Show that X; converges in distribution to N(0,1)r as t — oo.
e If F: R — R is smooth with all derivatives bounded, show that
d

ZEF(X,) = ELF (X))

where L is the Ornstein-Uhlenbeck operator

LF = F,, —xF,.
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Conclude that the density function p(t,z) of X; obeys (in a distri-
butional sense, at least) the Ornstein-Uhlenbeck equation

op=L"p
where the adjoint operator L* is given by
L*p := pyz + 0x(xp).
e Show that the only probability density function p for which L*p = 0
is the Gaussian \/%e—:ﬁ/? dx; further, show that Re(p, L*p) 12(m) <
0 for all probability density functions p in the Schwartz space with

mean zero and variance 1. Discuss how this fact relates to the
preceding two parts of this exercise.

Remark 3.1.15. The heat kernel ( \/—) e~le=rl*/2t i1y d dimensions is ab-
solutely integrable in time away from the initial time ¢ = 0 for dimensions
d > 3, but becomes divergent in dimension 1 and (just barely) divergent for
d = 2. This causes the qualitative behaviour of Brownian motion B; in R?
to be rather different in the two regimes. For instance, in dimensions d > 3
Brownian motion is transient; almost surely one has By — oo as t — oc.
But in dimension d = 1 Brownian motion is recurrent: for each xy € R, one
almost surely has B, = x¢ for infinitely many ¢. In the critical dimension
d = 2, Brownian motion turns out to not be recurrent, but is instead neigh-
bourhood recurrent; almost surely, B; revisits every neighbourhood of zq at
arbitrarily large times, but does not visit zq itself for any positive time t.
The study of Brownian motion and its relatives is in fact a huge and active
area of study in modern probability theory, but will not be discussed in this
text.

3.1.4. Dyson Brownian motion. The space V' of n x n Hermitian matri-
ces can be viewed as a real vector space of dimension n? using the Frobenius
norm

1/2

A tr(A%)Y2 = Za”—l—Q Z Re(a;;)? + Im(a;;)?
1<i<j<n

where a;; are the coefficients of A. One can then identify V' explicitly with
R" via the identification

(aij)i<ij<n = ((ai)izr, (V2Re(ay), V21Im(ai;))1<icj<n)-

Now that one has this identification, for each Hermitian matrix Ay € V
(deterministic or stochastic) we can define a Wiener process (A¢);e[o,+o0) O
V' with initial position Ag. By construction, we see that ¢t — A; is almost
surely continuous, and each increment A;, — A; is equal to (ty — t_)'/2
times a matrix drawn from the Gaussian Unitary Ensemble (GUE), with
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disjoint increments being jointly independent. In particular, the diagonal
entries of Ay, — A;_ have distribution N(0,t; —t_)Rr, and the off-diagonal
entries have distribution N(0,¢4 —t_)c.

Given any Hermitian matrix A, one can form the spectrum (A1(A),...,
An(A)), which lies in the Weyl chamber RZ = {(A\1,...,A\n) € R" :
A1 > -+ > A}, Taking the spectrum of the Wiener process (A¢)ie(o 4o00)s
we obtain a process

(A(Ae)s - An(Ab))ref0,4-00)
in the Weyl chamber. We abbreviate \;(A;) as A;.

For t > 0, we see that A; is absolutely continuously distributed in V. In
particular, since almost every Hermitian matrix has simple spectrum, we see
that A; has almost surely simple spectrum for ¢ > 0. (The same is true for
t = 0 if we assume that A also has an absolutely continuous distribution.)

The stochastic dynamics of this evolution can be described by Dyson
Brownian motion [Dy1962]:

Theorem 3.1.16 (Dyson Brownian motion). Let t > 0, and let dt > 0, and

let M, ..., An be as above. Then we have
dt
3.5 d\; = dB;
(3.5) * Z i —Aj *
1<j<n:ji

for all 1 < i < n, where d\; :== Nj(A¢rar) — Ni(A¢), and dBy,...,dB, are
iid copies of N(0,dt)r which are jointly independent of (Ay)yepoy, and the
error term ... has mean o(dt) and third moment O(dt®) in the limit dt — 0
(holding t and n fized).

Using the language of Ito calculus, one usually views dt as infinitesimal
and drops the ... error, thus giving the elegant formula

dAi = dB; + Z )\.dt)\.
1<j<njzi 0 Y

that shows that the eigenvalues \; evolve by Brownian motion, combined
with a deterministic repulsion force that repels nearby eigenvalues from
each other with a strength inversely proportional to the separation. One
can extend the theorem to the ¢ = 0 case by a limiting argument provided
that Ay has an absolutely continuous distribution. Note that the decay rate
of the error ... can depend on n, so it is not safe to let n go off to infinity
while holding dt fixed. However, it is safe to let dt go to zero first, and then
send n off to infinity®.

61t is also possible, by being more explicit with the error terms, to work with dt being a
specific negative power of n; see [TaVu2009b].
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Proof. Fixt. We can write A, 4 = A;+ (dt)'/2G, where G is independent”
of A; and has the GUE distribution. We now condition A; to be fixed,
and establish (3.5) for almost every fixed choice of A;; the general claim
then follows upon undoing the conditioning (and applying the dominated
convergence theorem). Due to independence, observe that G continues to
have the GUE distribution even after conditioning A; to be fixed.

Almost surely, A; has simple spectrum; so we may assume that the fixed
choice of A; has simple spectrum also. The eigenvalues \; now vary smoothly
near t, so we may Taylor expand

1
Ai(Aepar) = Ai + (dD)Y2V e + EdtV%;Ai +O((dt)*?|G|?)

for sufficiently small dt, where V¢ is directional differentiation in the G
direction, and the implied constants in the O() notation can depend on A;
and n. In particular, we do not care what norm is used to measure G in.

As G has the GUE distribution, the expectation and variance of |G|
is bounded (possibly with constant depending on n), so the error here has
mean o(dt) and third moment O(dt?). We thus have

1
dhi = (dt)?V e + thvéxi +....

Next, from the first and second Hadamard variation formulae (1.73), (1.74)
we have

and
|u*GuZ|2
A =2
e Z Ai — A
i#]

where u1,...,u, are an orthonormal eigenbasis for A;, and thus

. |u; G \2

dXi = (dt)"?u; Gu; + dtz "y _;

Now we take advantage of the unitary invariance of the Gaussian unitary
ensemble (that is, that UGU* = G for all unitary matrices G; this is easiest
to see by noting that the probability density function of G is proportional
to exp(—||G|%/2)). From this invariance, we can assume without loss of
generality that uq,...,u, is the standard orthonormal basis of C™, so that
we now have

d\i = (dt)1/2§u+dtz)\|§”|)\ + ...
i#]

7Strictly speaking, G depends on dt, but this dependence will not concern us.
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where ;; are the coefficients of G. But the ¢; are iid copies of N(0,1)R,
and the ¢; are iid copies of N(0,1)c, and the claim follows (note that

Aty ‘i’fl_g);l has mean zero and third moment O(dt?).) O

Remark 3.1.17. Interestingly, one can interpret Dyson Brownian motion
in a different way, namely as the motion of n independent Wiener processes
Ai(t) after one conditions the A; to be non-intersecting for all time; see
[Gr1999]. It is intuitively reasonable that this conditioning would cause a
repulsion effect, though we do not know of a simple heuristic reason why
this conditioning should end up giving the specific repulsion force present in
(3.5).

In the previous section, we saw how a Wiener process led to a PDE
(the heat flow equation) that could be used to derive the probability density
function for each component X; of that process. We can do the same thing
here:

Exercise 3.1.6. Let A\{,...,\, be as above. Let F': R” — R be a smooth
function with bounded derivatives. Show that for any ¢t > 0, one has

GEF(Ai,..., ) =ED*F(A1,...,\n)
where D* is the adjoint Dyson operator
1w o F
D*F := = a i
2.28)” * Z A — Ay
=1 1<4,5<n:i#j
If we let p : [0, +00) x RZ — R denote the density function p(¢,-) : R — R

of (A1(t),...,Aa(t)) at time t € [0, +00), deduce the Dyson partial differen-
tial equation

(3.6) dp = Dp

(in the sense of distributions, at least, and on the interior of RZ), where D
is the Dyson operator

1l P
(3.7) D,o._2;aw > 3Ai<AZ~—AJ~>‘

1<, j<niiz;

The Dyson partial differential equation (3.6) looks a bit complicated,
but it can be simplified (formally, at least) by introducing the Vandermonde
determinant

(3.8) An(Ar, o) = T v=A)
1<i<j<n
Exercise 3.1.7. Show that (3.8) is the determinant of the matrix

()\g_lhgmgna and is also the sum ) g sgn(o) L= )‘Z_(zl)
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Note that this determinant is non-zero on the interior of the Weyl cham-
ber RY. The significance of this determinant for us lies in the identity

A,
(3.9) Oriln = Z A — Ay
1<) <nii]

which can be used to cancel off the second term in (3.7). Indeed, we have

Exercise 3.1.8. Let p be a smooth solution to (3.6) in the interior of R%,
and write

(3.10) p=A2Anu

in this interior. Show that u obeys the linear heat equation

1 n
Oyu = 3 2 8§iu
1=

in the interior of RY. (Hint: You may need to exploit the identity m—i—

(b_a)l(b_c) + (c_a)l(c_b) = 0 for distinct a, b, c. Equivalently, you may need to
first establish that the Vandermonde determinant is a harmonic function.)

Let p be the density function of the (Ai,...,A,), as in (3.1.6). Recall
that the Wiener random matrix A; has a smooth distribution in the space
V' of Hermitian matrices, while the space of matrices in V' with non-simple
spectrum has codimension 3 by Exercise 1.3.10. On the other hand, the
non-simple spectrum only has codimension 1 in the Weyl chamber (being
the boundary of this cone). Because of this, we see that p vanishes to
at least second order on the boundary of this cone (with correspondingly
higher vanishing on higher codimension facets of this boundary). Thus, the
function u in Exercise 3.1.8 vanishes to first order on this boundary (again
with correspondingly higher vanishing on higher codimension facets). Thus,
if we extend p symmetrically across the cone to all of R™, and extend the
function u antisymmetrically, then the equation (3.6) and the factorisation
(3.10) extend (in the distributional sense) to all of R". Extending (3.1.8)
to this domain (and being somewhat careful with various issues involving
distributions), we now see that u obeys the linear heat equation on all of
R™

Now suppose that the initial matrix Ag had a deterministic spectrum
v = (v1,...,vy), which to avoid technicalities we will assume to be in the
interior of the Weyl chamber (the boundary case then being obtainable by
a limiting argument). Then p is initially the Dirac delta function at v,

extended symmetrically. Hence, w is initially Anl(u) times the Dirac delta
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function at v, extended antisymmetrically:

> sgn(0)6r—o()-

O'ESW,

(0, 2) = Anl(y)

Using the fundamental solution for the heat equation in n dimensions, we
conclude that

U(t, )\) = Z Sgn(g)e_p‘_U(V)P/zt‘

1
2
(27Tt)n/ 0ESH
By the Leibniz formula for determinants

n

det((aij)i<ijen) = ) sen(0) ] [ aio).

gESy i=1
we can express the sum here as a determinant of the matrix

(e—(/\i—w)2/2t)1<ij<n_

Applying (3.10), we conclude

Theorem 3.1.18 (Johansson formula). Let Ay be a Hermitian matriz with
simple spectrum v = (v1,...,vp), lett >0, and let Ay = Ay +t1/2G where G
is drawn from GUE. Then the spectrum X\ = (A1, ..., \n) of Ay has probability
density function

L AN

(3.11) p(t,\) = Bt Bus)

det(e_o‘i_”j)z/%)

1<i,j<n
R™
on >-

This formula is given explicitly in [Jo2001], who cites [BrHi1996] as
inspiration. (One can also check by hand that (3.11) satisfies the Dyson
equation (3.6).)

We will be particularly interested in the case when Ag = 0 and t = 1,
so that we are studying the probability density function of the eigenvalues
(AM(G),...; 2 (G)) of a GUE matrix G. The Johansson formula does not
directly apply here, because v is vanishing. However, we can investigate the
limit of (3.11) in the limit as ¥ — 0 inside the Weyl chamber; the Lipschitz
nature of the eigenvalue operations A — \;(A) (from the Weyl inequalities)
tell us that if (3.11) converges locally uniformly as v — 0 for A in the interior
of RZ, then the limit will indeed® be the probability density function for
v=20.

8Note from continuity that the density function cannot assign any mass to the boundary of
the Weyl chamber, and in fact must vanish to at least second order by the previous discussion.
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Exercise 3.1.9. Show that as v — 0, we have the identities
det(e=N70)%/2) oy = e T2 2 det (M) 14 <

and )

mAn(/\)An(V) + 0(An(v))

locally uniformly in A. (Hint: For the second identity, use Taylor expansion
and the Leibniz formula for determinants, noting the left-hand side vanishes
whenever A, (v) vanishes and so can be treated by the (smooth) factor

theorem.)

det(eX"7) 1< j<n =

From the above exercise, we conclude the fundamental Ginibre formula
[Gi1965]
1

(3.12) p(A) = @m il

for the density function for the spectrum (A (G), ..., A\, (G)) of a GUE ma-
trix G.

This formula can be derived by a variety of other means; we sketch one
such way below.

e PE2IA,L (02

Exercise 3.1.10. For this exercise, assume that it is known that (3.12) is
indeed a probability distribution on the Weyl chamber RZ (if not, one would
have to replace the constant (277)”/ 2 by an unspecified normalisation factor
depending only on n). Let D = diag(Ay,...,A,) be drawn at random using
the distribution (3.12), and let U be drawn at random from Haar measure
on U(n). Show that the probability density function of UDU™* at a matrix
A with simple spectrum is equal to cne_”A”%/ 2 for some constant ¢, > 0.
(Hint: Use unitary invariance to reduce to the case when A is diagonal. Now
take a small € and consider what U and D must be in order for UDU* to
lie within € of A in the Frobenius norm, performing first order calculations
only (i.e. linearising and ignoring all terms of order o(¢)).)

Conclude that (3.12) must be the probability density function of the
spectrum of a GUE matrix.

Exercise 3.1.11. Verify by hand that the self-similar extension
plt,x) =t p(a/ VD)

of the function (3.12) obeys the Dyson PDE (3.6). Why is this consistent
with (3.12) being the density function for the spectrum of GUE?

Remark 3.1.19. Similar explicit formulae exist for other invariant ensem-
bles, such as the Gaussian Orthogonal Ensemble GOE and the Gaussian
Symplectic Ensemble GSE. One can also replace the exponent in density
functions such as e~ l41%/2 with more general expressions than quadratic
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expressions of A. We will, however, not detail these formulae in this text
(with the exception of the spectral distribution law for random iid Gaussian
matrices, which we discuss in Section 2.6).

3.2. The Golden-Thompson inequality

Let A, B be two Hermitian n x n matrices. When A and B commute, we
have the identity

When A and B do not commute, the situation is more complicated; we
have the Baker-Campbell-Hausdorff formula (or more precisely, the closely
related Zassenhaus formula)

1
A+B _ A B, ~3[AB]

(& =€

where the infinite product here is explicit but very messy. On the other
hand, taking determinants we still have the identity

det(eTB) = det(e?eP).

An identity in a somewhat similar spirit (which Percy Deift has half-jokingly
termed “the most important identity in mathematics”) is the Sylvester de-
terminant theorem

(3.13) det(1 + AB) = det(1 + BA)

whenever A, B are n x k and k X n matrices respectively (or more generally,
A and B could be linear operators with sufficiently good spectral properties
that make both sides equal). Note that the left-hand side is an n x n
determinant, while the right-hand side is a k x k determinant; this formula
is particularly useful when computing determinants of large matrices (or
of operators), as one can often use it to transform such determinants into
much smaller determinants. In particular, the asymptotic behaviour of n xn
determinants as n — oo can be converted via this formula to determinants
of a fixed size (independent of n), which is often a more favourable situation
to analyse. Unsurprisingly, this trick is particularly useful for understanding
the asymptotic behaviour of determinantal processes.

There are many ways to prove (3.13). One is to observe first that when
A, B are invertible square matrices of the same size, that 1+ BA and 1+ AB
are conjugate to each other and thus clearly have the same determinant; a
density argument then removes the invertibility hypothesis, and a padding-
by-zeroes argument then extends the square case to the rectangular case.
Another is to proceed via the spectral theorem, noting that AB and BA
have the same non-zero eigenvalues.



3.2. The Golden-Thompson inequality 253

By rescaling, one obtains the variant identity
det(z + AB) = 2" " det(z + BA),

which essentially relates the characteristic polynomial of AB with that of
BA. When n = k, a comparison of coefficients this already gives important
basic identities such as tr(AB) = tr(BA) and det(AB) = det(BA); when
n is larger than k, an inspection of the 2" % coefficient similarly gives the
Cauchy-Binet formula

(3.14) det(BA) = ) det(Agy ) det(Bpyxs)
se(i)
where S ranges over all k-element subsets of [n] := {1,...,n}, Ag.p is

the k x k minor of A coming from the rows S, and Bjxs is similarly the
k x k minor coming from the columns S. Unsurprisingly, the Cauchy-Binet
formula is also quite useful when performing computations on determinantal
processes.

There is another very nice relationship between eA2 and e4e®?, namely
the Golden-Thompson inequality [Go1965, Th1965]

(3.15) tr(eTB) < tr(e?e?).

The remarkable thing about this inequality is that no commutativity hy-
potheses whatsoever on the matrices A, B are required. Note that the
right-hand side can be rearranged using the cyclic property of trace as
tr(eB/2e4eB/?); the expressmn inside the trace is positive definite so the
right-hand side is positive®.

To get a sense of how delicate the Golden-Thompson inequality is, let
us expand both sides to fourth order in A, B. The left-hand side expands as

tnwwdA+By+%mm?+AB+BA+B%+%ﬁdA+BP
+imm+BV+m
while the right-hand side expands as
Hl+¢dA=%B)+%tdA2+2AB4<B%
- %tr(AS +3A4°B +3AB* + B?)
+ i tr(A* +4A43B + 6A°B? + 4AB® + B*) +

9In contrast, the obvious extension of the Golden-Thompson inequality to three or more
Hermitian matrices fails dramatically; there is no reason why expressions such as tr(e?eBeC)
need to be positive or even real.
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Using the cyclic property of trace tr(AB) = tr(BA), one can verify that
all terms up to third order agree. Turning to the fourth order terms, one
sees after expanding out (A + B)* and using the cyclic property of trace
as much as possible, we see that the fourth order terms almost agree, but
the left-hand side contains a term % tr(ABAB) whose counterpart on the
right-hand side is i tr(ABBA). The difference between the two can be
factorised (again using the cyclic property of trace) as —g; tr[A, B]?. Since
[A, B] :== AB — BA is skew-Hermitian, —[A, B]? is positive definite, and so
we have proven the Golden-Thompson inequality to fourth order!?.

Intuitively, the Golden-Thompson inequality is asserting that interac-
tions between a pair A, B of non-commuting Hermitian matrices are strongest
when cross-interactions are kept to a minimum, so that all the A factors lie
on one side of a product and all the B factors lie on the other. Indeed, this
theme will be running through the proof of this inequality, to which we now
turn.

The proof of the Golden-Thompson inequality relies on the somewhat
magical power of the tensor power trick (see [Ta2008, §1.9]). For any even
integer p = 2,4,6,... and any n x n matrix A (not necessarily Hermitian),
we define the p-Schatten norm || A, of A by the formula!!

1A]lp = (e (AA")P/2)1P.

This norm can be viewed as a non-commutative analogue of the ¢ norm;
indeed, the p-Schatten norm of a diagonal matrix is just the 2 norm of the
coefficients.

Note that the 2-Schatten norm
|A]l2 = (tr(AA*))"/2

is the Hilbert space norm associated to the Frobenius inner product (or
Hilbert-Schmidt inner product)

(A, B := tr(AB").

This is clearly a non-negative Hermitian inner product, so by the Cauchy-
Schwarz inequality we conclude that

|tr(A1A3)] < [|A1]l2][A2]l2

for any nxn matrices Aj, As. As || Azl|2 = [|A%]|2, we conclude, in particular,
that
| tr(A1A2)] < [[Axllal|Az]l2-

100ne could also have used the Cauchy-Schwarz inequality for the Frobenius norm to establish
this; see below.

1 This formula in fact defines a norm for any p > 1; see Exercise 1.3.22(vi). However, we
will only need the even integer case here.
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We can iterate this and establish the non-commutative Holder inequality
(3.16) [tr(A1Az ... Ap)| < [|Aslpl[Azllp - - [|Ap]lp

whenever p = 2,4, 8, ... is an even power of 2 (compare with Exercise 1.3.9).
Indeed, we induct on p, the case p = 2 already having been established. If
p > 4 is a power of 2, then by the induction hypothesis (grouping A; ... A4,
into p/2 pairs) we can bound

(3.17) [ tr(A1 Az ... Ap)| < | A1 Azl /2]l AsAdllpya - - [ Ap—1Apllp 2.
On the other hand, we may expand
|41 As||)3 = tr A1 Ap A5 AT ... Ay Ap ASAT.

We use the cyclic property of trace to move the rightmost A7 factor to the
left. Applying the induction hypothesis again, we conclude that

2 * * * *
|41 As|[?5 < [| A Ax [/l A2 A5y - - - 11 AT At llp 2]l A2 A3 o

But from the cyclic property of trace again, we have |[A7A1l,2 = [|A1]2
and || A2 A3 ||, 2 = HA2||12). We conclude that

A1 A2]lp/2 < [ Axllpll Azllp
and similarly for [|A3A4||,,/2, etc. Inserting this into (3.17) we obtain (3.16).

Remark 3.2.1. Though we will not need to do so here, it is interesting to
note that one can use the tensor power trick to amplify (3.16) for p equal to a
power of two, to obtain (3.16) for all positive integers p, at least when the A;
are all Hermitian (again, compare with Exercise 1.3.9). Indeed, pick a large
integer m and let N be the integer part of 2™ /p. Then expand the left-hand

side of (3.16) as tr(A}/N . A}/NA;/N . .A;,/N . .A;,/N) and apply (3.16)
with p replaced by 2™ to bound this by ||A}/N||§Vm o ||Aé/N|\éVm\|1||§:_pN.
Sending m — oo (noting that 2™ = (1 4 o(1)) Np) we obtain the claim.

Specialising (3.16) to the case where A; = --- = A, = AB for some
Hermitian matrices A, B, we conclude that
tr((AB)") < | AB]?
and hence by cyclic permutation
tr((AB)) < tr((A2B2)/?)
for any p = 2,4, .... Iterating this we conclude that
(3.18) tr((AB)P) < tr(APBP).
Applying this with A, B replaced by e#/? and B/, respectively, we obtain

tr((eA/PeB/P)P) < tr(eeP).
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Now we send p — oo. Since e/P = 1+ A/p+0O(1/p?) and eB/P =1+ B/p+
O(1/p?), we have eA/PeB/p = ¢(A+B)/pTO1/P*) "and so the left-hand side is
tr(eA+B+O(1/p)); taking the limit as p — oo we obtain the Golden-Thompson
inequality!?

If we stop the iteration at an earlier point, then the same argument gives
the inequality

A+B A_B
e Z Ny < llee®ll,

forp = 2,4,8,...apower of two; one can view the original Golden-Thompson
inequality as the p = 1 endpoint of this case in some sense'3. In the limit
p — 00, we obtain in particular the operator norm inequality

(3.19) e+ llop < e lop
This inequality has a nice consequence:

Corollary 3.2.2. Let A, B be Hermitian matrices. If e < eP (i.e., eB —e4
is positive semi-definite), then A < B.

Proof. Since e? < P we have (e?z,z) < (ePx,z) for all vectors x, or in
other words, |e4/%z|| < ||eB/2z| for all x. This implies that e?/2¢=5/2
is a contraction, i.e., |eA/2e7B/?|,, < 1. By (3.19), we conclude that
|e(A=B)/2|,, < 1, thus (A — B)/2 < 0, and the claim follows. O

Exercise 3.2.1. Reverse the above argument and conclude that (3.2.2) is
in fact equivalent to (3.19).

It is remarkably tricky to try to prove Corollary 3.2.2 directly. Here is a
somewhat messy proof. By the fundamental theorem of calculus, it suffices
to show that whenever A(t) is a Hermitian matrix depending smoothly on
a real parameter with 4e4() >0, then 4 A(t) > 0. Indeed, Corollary 3.2.2
follows from this claim by setting A(t) := log(e? +t(e” —e4)) and concluding
that A(1) > A(0).

To obtain this claim, we use the Duhamel formula

ieA(t) = /1 e(l_S)A(t)(iA(t))BSA(t) ds.
di ; dt

This formula can be proven by Taylor expansion, or by carefully approxi-
mating e(®) by (14 A(t)/N)V; alternatively, one can integrate the identity

9 (=5t D guatn)y

—S a S
88 (e at - A(t)(_A(t))e A(t)7

ot

12See also [Ve2008] for a slight variant of this proof.
13In fact, the Golden-Thompson inequality is true in any operator norm; see [Bh1997,
Theorem 9.3.7].
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which follows from the product rule and by interchanging the s and t deriva-
tives at a key juncture. We rearrange the Duhamel formula as

d a@ _ A2 / Y2 aw d CSA() 70y A()/2
il ( 71/26 (th(t))e ds)e :

Using the basic identity e?Be=4 = () B, we thus have

1/2
oA AW/ / /2 sadtaw) ds) (L A(1))]eA O,
it i di
formally evaluating the integral, we obtain
d A _ _awy2sinh(ad(A(t))/2)  d A(t)/2
i a2 AT
and thus
d _ad(A()/2 —Aw/2, 4 Aw)\ —A@))2
74 = Shadae) 2 ¢ (Gee e )

As %eA(t) was positive semi-definite by hypothesis, e_A(t)/2(%€A(t))€_A(t)/2

is also. It thus suffices to show that for any Hermitian A, the operator
ad(A) . . .

Sh(ad(4)) Dreserves the property of being semi-definite.

Note that for any real &, the operator e2™€2d(4) maps a positive
semi-definite matrix B to another positive semi-definite matrix,
namely e>™é4Be=2m€A By the Fourier inversion formula, it thus suffices
to show that the kernel F'(z) := ﬁ is positive semi-definite in the sense
that it has non-negative Fourier transform (this is a special case of Bochner’s
theorem). But a routine (but somewhat tedious) application of contour inte-
gration shows that the Fourier transform F(§) = Jg e ¥ F (z) dx is given

by the formula F(£) = mu

Because of the Golden-Thompson inequality, many applications of the
exponential moment method in commutative probability theory can be ex-
tended without difficulty to the non-commutative case, as was observed in
[AhWi2002]. For instance, consider (a special case of) the Chernoff in-
equality

and the claim follows.

PXi+ - +Xnv>)N)< max(e_/\z/4, e/2)

for any A > 0, where X1,..., Xy = X are iid scalar random variables taking
values in [—1,1] of mean zero and with total variance o2 (i.e., each factor
has variance 02/N). We briefly recall the standard proof of this inequality
from Section 2.1. We first use Markov’s inequality to obtain

P(X1 4+ Xy > )\) < e PRS0 H+X0)
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for some parameter ¢ > 0 to be optimised later. In the scalar case, we can
factor e!(X1++XN) a5 ¢tX1  e!XN and then use the iid hypothesis to write
the right-hand side as

e~ (EetX)N.
An elementary Taylor series computation then reveals the bound Ee!X <
exp(t?0?/N) when 0 < ¢ < 1; inserting this bound and optimising in ¢ we
obtain the claim.

Now suppose that X1,..., Xy = X are iid n x n Hermitian matrices.
One can try to adapt the above method to control the size of the sum
X1+ -+ Xu. The key point is then to bound expressions such as

E tr e!(X1t+Xn),
As Xq,..., Xy need not commute, we cannot separate the product com-
pletely. But by Golden-Thompson, we can bound this expression by

Etr et(X1+"'+XN71)€tXN’

which by independence we can then factorise as
tr(Eet(Xl-l—'"-l—XNA))(EetXN)‘

As the matrices involved are positive definite, we can then take out the final

factor in the operator norm:

|EetXn|op tr Bet(X1t+Xn-1)

Iterating this procedure, we can eventually obtain the bound

E tre!(X1t-+X8) < getX Hé\{)

Combining this with the rest of the Chernoff inequality argument, we can
establish a matrix generalisation

P(HXl + -+ XN”op Z )\) S nmaX(e_A2/47€—)\U/2)

of the Chernoff inequality, under the assumption that the Xy,..., Xy are iid
with mean zero, have operator norm bounded by 1, and have total variance
SN L IIEX?||op equal to 02; see for instance [Ve2008] for details.

Further discussion of the use of the Golden-Thompson inequality and
its variants to non-commutative Chernoff-type inequalities can be found in
[Gr2009], [Ve2008], [Tr2010]. It seems that the use of this inequality may
be quite useful in simplifying the proofs of several of the basic estimates in
this subject.
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3.3. The Dyson and Airy kernels of GUE via semiclassical
analysis

Let n be a large integer, and let M,, be the Gaussian Unitary Ensemble
(GUE), i.e., the random Hermitian matrix with probability distribution
C e~ TMD/2gpr

where dM,, is a Haar measure on Hermitian matrices and C,, is the nor-
malisation constant required to make the distribution of unit mass. The
eigenvalues \; < --- < A, of this matrix are then a coupled family of n real
random variables. For any 1 < k < n, we can define the k-point correlation
function py(x1,...,x;) to be the unique symmetric measure on R* such
that

/ F(:cl,...,a:k)pk(xl,...,:vk):E E F(/\ila"'a)‘ik)'
Rk . .
1< << <n

A standard computation (given for instance in Section 2.6 gives the Ginibre
formula [Gil965]

_\n 12 /9
pn(a:l,...,a:n) :C;L( H ’xi_xj|2)e > lzil?/
1<i<j<n
for the n-point correlation function, where C/ is another normalisation con-
stant. Using Vandermonde determinants, one can rewrite this expression in
determinantal form as
pr(1, .. 2n) = Cp det(Ky (i, 25))1<i,j<n
where the kernel K, is given by

n—1
Kn(z,y) =Y é()dr(y)
k=0

where ¢y (z) := Py(z)e~*"/* and Py, Py, . .. are the (L%-normalised) Hermite
polynomials (thus the ¢y are an orthonormal family, with each Py being a
polynomial of degree k). Integrating out one or more of the variables, one
is led to the Gaudin-Mehta formula'*

(3.20) Pe(@1, . k) = det(Kn (24, 75))1<i,j<k-
Again, see Section 2.6 for details.

The functions ¢ (x) can be viewed as an orthonormal basis of eigenfunc-
tions for the harmonic oscillator operator

L(b _ ( d2 332

“aE T

14Tn particular, the normalisation constant C?/ in the previous formula turns out to simply
be equal to 1.
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indeed it is a classical fact that

Lo = ( + 5)6.

As such, the kernel K, can be viewed as the integral kernel of the spectral
projection operator 1 _ n+;](L).
’ 2

From (3.20) we see that the fine-scale structure of the eigenvalues of
GUE are controlled by the asymptotics of K,, as n — oco. The two main
asymptotics of interest are given by the following lemmas:

Lemma 3. 3 1 (Asymptotics of K, in the bulk). Let xy € (—2,2), and let

psc(To) = (4 - :co)l/z be the semicircular law density at xo. Then, we
have

KalwoVi+ s ao/id s

sin(r(y — 2))
- m(y — z)

——)
(3.21) \F’O“(xO)

as n — oo for any fized y,z € R (removing the singularity at y = z in the
usual manner).

Lemma 3.3.2 (Asymptotics of K, at the edge). We have
A _
A AV() - AY() AIG)
y—z
as n — oo for any fixred y,z € R, where Ai is the Airy function

(3.22)

1 o[> 4
Ai(z) := —/ cos(g +tx) dt
0

™

and again removing the singularity at y = z in the usual manner.

The proof of these asymptotics usually proceeds via computing the
asymptotics of Hermite polynomials, together with the Christoffel-Darboux
formula; this is, for instance, the approach taken in Section 2.6. However,
there is a slightly different approach that is closer in spirit to the methods
of semi-classical analysis. For sake of completeness, we will discuss this ap-
proach here, although to focus on the main ideas, the derivation will not be
completely r1g0rous15

15In particular, we will ignore issues such as convegence of integrals or of operators, or
(removable) singularities in kernels caused by zeroes in the denominator. For a rigorous approach
to these asymptotics in the discrete setting, see [O12008].
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3.3.1. The bulk asymptotics. We begin with the bulk asymptotics; see
Lemma 3.3.1. Fix zp in the bulk region (—2,2). Applying the change of

variables
T =x0VNn+ —"
0 \/_ PSC($0)

we see that the harmonic oscillator L becomes

i ( Vit =)’
dy R X/_IOSC(xO) '

Since K, is the integral kernel of the spectral projection to the region L <
n+ 1, we conclude that the left-hand side of (3.21) (as a function of y, 2) is
the integral kernel of the spectral projection to the region

—npsc(fﬁo)

d? 1
_npsc(xo) dy -+ (370\/_+ \/_Psc($0)) <n-+ >
Isolating out the top order terms in n, we can rearrange this as
d2
T <%+ o(1).

Thus, in the limit n — oo, we expect (heuristically, at least) that the
left-hand side of (3.21) to converge as n — oo to the integral kernel of the
spectral projection to the region

Introducing the Fourier dual variable £ to y, as manifested by the Fourier
transform

ﬂo—Aam%@m

and its inverse

Fo) = [ SR de,

R

then we (heuristically) have % = 2mi€, and so we are now projecting to the
region

(3.23) €17 < 1/4,

i.e., we are restricting the Fourier variable to the interval [—1/2,1/2]. Back
in physical space, the associated projection P thus takes the form

m@:/ STEf(¢) de
[—1/2,1/2]

/ / 27rz£ye—27rz§z dff( )
[ 1/2 1/2]

[ sin(m 2))

- e

and the claim follows.
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Remark 3.3.3. From a semiclassical perspective, the original spectral pro-
jection L < n+ % can be expressed in phase space (using the dual frequency
variable 7 to x) as the ellipse

9 9 z? 1
which after the indicated change of variables becomes the elongated ellipse
1 1
&+ y+ Y’
2npsc(0)(4 —a5)”  An?pse(0)?(4 — x7)
1 1

< = - -
- 4+2n(4—x3)’

which converges (in some suitably weak sense) to the strip (3.23) as n — oo.

3.3.2. The edge asymptotics. A similar (heuristic) argument gives the
edge asymptotics, Lemma 3.3.2. Starting with the change of variables

T=2Vn+ 1/6
the harmonic oscillator L now becomes
d? 1
nl/3 4

Thus, the left-hand side of (3.22) becomes the kernel of the spectral projec-
tion to the region

dy i
Expanding out, computing all terms of size n'/3 or larger, and rearranging,
this (heuristically) becomes

1
(2f+n1/6) sn+g

and so, heuristically at least, we expect (3.22) to converge to the kernel of
the projection to the region
2

T dy?
To compute this, we again pass to the Fourier variable &, converting the
above to

(3.25) +y<0.

d
22

<
S dg—o

using the usual Fourier-analytic correspondences between multiplication and
differentiation. If we then use the integrating factor transformation

F(&) rs ™ BR(g),
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we can convert the above region to
1 d
—— <0,
2w d§
which on undoing the Fourier transformation becomes

y <0,

and the spectral projection operation for this is simply the spatial multiplier
1(—o0,0]- Thus, informally at least, we see that the spectral projection P to
the region (3.25) is given by the formula

P=M"1_qoqM
where the Fourier multiplier M is given by the formula
MJ(&) = SR f(©).

In other words (ignoring issues about convergence of the integrals),
Mf(y) — / (/ 627riy5687r3i£3/36727riz§ df)f(z) dz
R /R
= 2/ (/ cos(2m(y — 2)& 4 8m3€3/3) d€) f(2) d=z
R JO

1 o
-1 /R ( /0 cos(t(y — 2) + £3/3) dt) f(2) d=

_ /R Aily — 2)f(2) dz,
/A1 ~ ) f(y) dy

(this reflects the unitary nature of M). We thus see (formally, at least) that

Pf(y):/R(/(_ O]Ai(y—w)Ai(z—w) dw) f(z) dz.

and similarly,

To simplify this expression we perform some computations closely related
to the ones above. From the Fourier representation

1 [ee)
Ai(y) = ;/0 cos(ty +t3/3) dt

_ / e27riy5687ri§3/3 d¢
R

we see that
Ai(g) = L,
which means that

1 d
271 d€

(4r€? + JAi(€) =0
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and thus )

T
thus Ai obeys the Airy equation
Ai"(y) = y Ai(y).
Using this, one soon computes that
d Ai(y —w) Ai'(z —w) — Ai'(y — w) Ai(z — w)
dw y—z

+y) Ai(y) =0,

= Ai(y — w) Ai(z — w).

Also, stationary phase asymptotics tell us that Ai(y) decays exponentially
fast as y — +o00o, and hence Ai(y — w) decays exponentially fast as w —
—oo for fixed y; similarly for Ai'(z — w), Ai'(y — w), Ai(z — w). From the
fundamental theorem of calculus, we conclude that
Ai(y) Ai'(z) — Ai'(y) Ai
[ A=) i - ) o = AWATE) = G A
(—00,0] Yy—=z

(this is a continuous analogue of the Christoffel-Darboux formula), and the
claim follows.

Remark 3.3.4. As in the bulk case, one can take a semi-classical analysis
perspective and track what is going on in phase space. With the scaling we
have selected, the ellipse (3.24) has become

Am2n1/3e? 4 (2y/n +y/n'/%)?
4

<n-+ =
n 57
- 2
which we can rearrange as the eccentric ellipse

y2

i3 4n2/3
which is converging as n — oo to the parabolic region

422 4y <0

which can then be shifted to the half-plane y < 0 by the parabolic shear
transformation (y, &) — (y +472£2, ), which is the canonical relation of the
Fourier multiplier M. (The rapid decay of the kernel Ai of M at +oo is
then reflected in the fact that this transformation only shears to the right
and not the left.)

4% 4y <

Remark 3.3.5. Presumably one should also be able to apply the same
heuristics to other invariant ensembles, such as those given by probability
distributions of the form

Che” tr(P(Mn))dMn

for some potential function P. Certainly one can soon get to an orthogonal
polynomial formulation of the determinantal kernel for such ensembles, but
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I do not know if the projection operators for such kernels can be viewed
as spectral projections to a phase space region as was the case for GUE.
But if one could do this, this would provide a heuristic explanation as to the
universality phenomenon for such ensembles, as Taylor expansion shows that
all (reasonably smooth) regions of phase space converge to universal limits
(such as a strip or paraboloid) after rescaling around either a non-critical
point or a critical point of the region with the appropriate normalisation.

3.4. The mesoscopic structure of GUE eigenvalues

In this section we give a heuristic model of the mesoscopic structure of the
eigenvalues A\; < --- <\, of the n x n Gaussian Unitary Ensemble (GUE),
where n is a large integer. From Section 2.6, the probability density of these
eigenvalues is given by the Ginibre distribution

ie—H N

Zn
where d\ = d\; ...d)\, is Lebesgue measure on the Weyl chamber

{()\1,---,)%) eR": M <1 S)\n};
Zy is a constant, and the Hamiltonian H is given by the formula

H(, .. An) == _ 7]-2 Z log |Ai — ;-
j=1 1<i<j<n
As we saw in Section 2.4, at the macroscopic scale of y/n, the eigenvalues

Aj are distributed according to the Wigner semicircle law

1 1/2
pucla) = 5 (4 - 2"}/,

Indeed, if one defines the classical location ’yfl of the i*" eigenvalue to be the
unique solution in [—2y/n, 2/n| to the equation

N i
/ psc(x) dr = —,
—2v/n n

then it is known that the random wvariable ); is quite close to ’yl‘?l. In-
deed, a result of Gustavsson [Gu2005] shows that, in the bulk region when
en < i < (1 —¢e)n for some fixed £ > 0, \; is distributed asymptotically as

logn 1
™ Vipse(¥§)
is the mean eigen-

a Gaussian random variable with mean 7' and variance

1

Note that from the semicircular law, the factor —————
\/HPSC('YZ‘ )

value spacing.

At the other extreme, at the microscopic scale of the mean eigenvalue
spacing (which is comparable to 1/y/n in the bulk, but can be as large
as n~ Y6 at the edge), the eigenvalues are asymptotically distributed with



266 3. Related articles

respect to a special determinantal point process, namely the Dyson sine
process in the bulk (and the Airy process on the edge), as discussed in
Section 3.3.

We now focus on the mesoscopic structure of the eigenvalues, in which
one involves scales that are intermediate between the microscopic scale 1//n
and the macroscopic scale /n, for instance, in correlating the eigenvalues
Ai and A; in the regime i — j| ~ n? for some 0 < 6 < 1. Here, there is a
surprising phenomenon; there is quite a long-range correlation between such
eigenvalues. The results from [Gu2005] show that both A; and \; behave
asymptotically like Gaussian random variables, but a further result from the
same paper shows that the correlation between these two random variables
is asymptotic to 1 — 6 (in the bulk, at least); thus, for instance, adjacent
eigenvalues \;11 and \; are almost perfectly correlated (which makes sense,
as their spacing is much less than either of their standard deviations), but
that even very distant eigenvalues, such as A, /4 and A, /4, have a correlation
comparable to 1/logn. One way to get a sense of this is to look at the trace

A1‘|‘—|‘)\n

This is also the sum of the diagonal entries of a GUE matrix, and is thus
normally distributed with a variance of n. In contrast, each of the \; (in the
bulk, at least) has a variance comparable to logn/n. In order for these two
facts to be consistent, the average correlation between pairs of eigenvalues
then has to be of the order of 1/logn.

In this section we will use a heuristic way to see this correlation, based
on Taylor expansion of the convex Hamiltonian H(\) around the minimum
~, which gives a conceptual probabilistic model for the mesoscopic structure
of the GUE eigenvalues. While this heuristic is in no way rigorous, it does
seem to explain many of the features currently known or conjectured about
GUE, and seems likely to extend also to other models.

3.4.1. Fekete points. It is easy to see that the Hamiltonian H () is convex
in the Weyl chamber, and goes to infinity on the boundary of this chamber,
s0 it must have a unique minimum, at a set of points v = (71, ...,7,) known
as the Fekete points. At the minimum, we have VH () = 0, which expands
to become the set of conditions
! =0
Vi

(3.26) V=2 —
izj V7
for all 1 < j < n. To solve these conditions, we introduce the monic degree

n polynomial
n

P(z) =[] — 7).

i=1
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Differentiating this polynomial, we observe that

(3.27) P'(z)=P(x))

i=1

r—"7

and

P"(z) = P(z) Z ! !

1<ijnizg T T
Using the identity
o111 11
Ay
followed by (3.26), we can rearrange this as

P"(z) = P(x) Z - j’

1<i<n:i#j

Y
Comparing this with (3.27), we conclude that
P"(z) = 2P'(z) — nP(x),
or in other words, that P is the n'® Hermite polyomial
_ L n_x2/2 d —x2/2
P(z) = Hy(z) := (—=1)"e"/ el /2,

Thus, the Fekete points 7; are nothing more than the zeroes of the n®
Hermite polynomial.

Heuristically, one can study these zeroes by looking at the function
o(x) == P(x)e™/*

which solves the eigenfunction equation
2

¢ () + (n =)o) = 0.

Comparing this equation with the harmonic oscillator equation ¢”(x) +
k?¢(x) = 0, which has plane wave solutions ¢(z) = Acos(kx + 6) for k2
positive and exponentially decaying solutions for k? negative, we are led
(heuristically, at least) to conclude that ¢ is concentrated in the region
where n — 2—2 is positive (i.e., inside the interval [-2y/n, 2y/n]) and will oscil-

late at frequency roughly /n — % inside this region. As such, we expect the
Fekete points v; to obey the same spacing law as the classical locations ”yfl;
indeed, it is possible to show that v; = ' +O(1/y/n) in the bulk (with some
standard modifications at the edge). In particular, we have the heuristic
(3.28) Y=~ (= 4)/Vn

for 4, 7 in the bulk.
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Remark 3.4.1. If one works with the circular unitary ensemble (CUE)
instead of the GUE, in which M, is drawn from the unitary n x n matrices
using Haar measure, the Fekete points become equally spaced around the
unit circle, so that this heuristic essentially becomes exact.

3.4.2. Taylor expansion. Now we expand around the Fekete points by
making the ansatz

Ai =i + @i,
thus the results of [Gu2005] predict that each z; is normally distributed
with standard deviation O(y/logn//n) (in the bulk). We Taylor expand

H(\) = H(y)+VH(y)(z) + %VQH(V)(x, T+ ...

We heuristically drop the cubic and higher order terms. The constant term
H(7y) can be absorbed into the partition constant Z,, while the linear term
vanishes by the property VH(y) of the Fekete points. We are thus lead to
a quadratic (i.e., Gaussian) model

ie*%V2H(’Y)(I,m) da:

!
n

for the probability distribution of the shifts x;, where Z/, is the appropriate
normalisation constant.

Direct computation allows us to expand the quadratic form %VQH (7) as

1 L a? (x; — xj)
—VQH(’}’)(.Z‘,{L‘):Z—]—F Z ! 2
2 2 i<icien (v =)

The Taylor expansion is not particularly accurate when j and ¢ are too
close, say j = 7 + O(logo(l) n), but we will ignore this issue as it should
only affect the microscopic behaviour rather than the mesoscopic behaviour.
This models the z; as (coupled) Gaussian random variables whose covariance
matrix can in principle be explicitly computed by inverting the matrix of
the quadratic form. Instead of doing this precisely, we shall instead work
heuristically (and somewhat inaccurately) by re-expressing the quadratic
form in the Haar basis. For simplicity, let us assume that n is a power of 2.
Then the Haar basis consists of the basis vector

1
= —(1,...,1
¢0 \/ﬁ( )
together with the basis vectors

1
V1= —=(1, — 11,)
VI
for every discrete dyadic interval I C {1,...,n} of length between 2 and n,
where I; and I, are the left and right halves of I, and 1;,, 1;, € R™ are the
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vectors that are one on Ij, I, respectively, and zero elsewhere. These form
an orthonormal basis of R", thus we can write

x = oo + Zfl@ﬁl
i

for some coefficients &, &;.

From orthonormality we have

n g2
S L =g+
j 1

and we have

D

1<i<j<n

;)
J
5= &iéer
I,J
where the matrix coefficients cr ; are given by

(¥1(1) — i) (s (@) — ¥ ()
2 (Vi —75)? '

(i —

Cr.J =
1<i<j<n
A standard heuristic wavelet computation using (3.28) suggests that ¢ s is
small unless I and J are actually equal, in which case one has
n

1]

(in the bulk, at least). Actually, the decay of the c; ; away from the diagonal
I = J is not so large, because the Haar wavelets 17 have poor moment and
regularity properties. But one could in principle use much smoother and
much more balanced wavelets, in which case the decay should be much
faster.

This suggests that the GUE distribution could be modeled by the dis-
tribution

cry~

1 oy o
7{53/% OXr e ge

n

(3.29)

for some absolute constant C; thus we may model §, = N(0,1) and & =
C'\/|I|\/ngr for some iid Gaussians gy = N(0,1) independent of &. We
then have as a model

T = \/—Z 15,(4) — 11,(9))gr

for the fluctuations of the eigenvalues (in the bulk, at least), leading of course
to the model

(3.30) A =i+ Z (15,() = 11,(i))g1
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for the fluctuations themselves. This model does not capture the microscopic
behaviour of the eigenvalues such as the sine kernel (indeed, as noted before,
the contribution of the very short I (which corresponds to very small values
of |7 — i]) is inaccurate), but appears to be a good model to describe the
mesoscopic behaviour. For instance, observe that for each ¢ there are ~ logn
independent normalised Gaussians in the above sum, and so this model
is consistent with the result of Gustavsson that each ); is Gaussian with
standard deviation ~ @. Also, if |i — j| ~ n?, then the expansions (3.30)
of Ai, Aj share about (1 — #)logn of the logn terms in the sum in common,
which is consistent with the further result of Gustavsson that the correlation

between such eigenvalues is comparable to 1 — 6.

If one looks at the gap A\j+1 — \; using (3.30) (and replacing the Haar
cutoff 1y,(¢) — 1y, (i) by something smoother for the purposes of computing
the gap), one is led to a heuristic of the form

1 1 C’ . N/
Yot = e v v 2~ 1 Oy
The dominant terms here are the first term and the contribution of the very
short intervals I. At present, this model cannot be accurate, because it
predicts that the gap can sometimes be negative; the contribution of the
very short intervals must instead be replaced by some other model that
gives sine process behaviour, but we do not know of an easy way to set up
a plausible such model.

On the other hand, the model suggests that the gaps are largely decou-
pled from each other, and have Gaussian tails. Standard heuristics then
suggest that of the ~ n gaps in the bulk, the largest one should be compa-

rable to /25" which was indeed established recently in [BeB02010].

n
Given any probability measure y = p dz on R™ (or on the Weyl chamber)
with a smooth non-zero density, one can can create an associated heat flow
on other smooth probability measures f dx by performing gradient flow with
respect to the Dirichlet form

D(f dx) := %/Rn yv%ﬁ dp.

Using the ansatz (3.29), this flow decouples into a system of independent
Ornstein-Uhlenbeck processes

déo = —Eodt + dWy

and
n

dgr = C"
1|

(—g[dt + dWI)
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where dWy, dW are independent Wiener processes (i.e., Brownian motion).
This is a toy model for the Dyson Brownian motion (see Section 3.1). In
this model, we see that the mixing time for each gr is O(|I|/n); thus, the
large-scale variables (g; for large I) evolve very slowly by Dyson Brownian
motion, taking as long as O(1) to reach equilibrium, while the fine scale
modes (gr for small I) can achieve equilibrium in as brief a time as O(1/n),
with the intermediate modes taking an intermediate amount of time to reach
equilibrium. It is precisely this picture that underlies the Erdos-Schlein-
Yau approach [ErScYa2009] to universality for Wigner matrices via the
local equilibrium flow, in which the measure (3.29) is given an additional
(artificial) weight, roughly of the shape e~ TG, 5?), in order to make
equilibrium achieved globally in just time O(n'~¢), leading to a local log-
Sobolev type inequality that ensures convergence of the local statistics once
one controls a Dirichlet form connected to the local equilibrium measure,
and then one can use the localisation of eigenvalues provided by a local
semicircle law to control that Dirichlet form in turn for measures that have
undergone Dyson Brownian motion.
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activity in recent years, with connections to many areas of
mathematics and physics. However, this makes the current
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In this graduate text, we focus on one specific sector of the
field, namely the spectral distribution of random Wigner matrix
ensembles (such as the Gaussian Unitary Ensemble), as well as
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