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Preface to the Second Edition
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therefore jump directly from Chapter VII to Chapters IX, X and XI.

In Chapter VIII other important properties of diffusions are discussed.
While not strictly necessary for the rest of the book, these properties are
central in today’s theory of stochastic analysis and crucial for many other
applications.

Hopefully this change will make the book more flexible for the different
purposes. I have also made an effort to improve the presentation at some points
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helpful comments.
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Preface to the First Edition

These notes are based on a postgraduate course I gave on stochastic dif-
ferential equations at Edinburgh University in the spring 1982. No previous
knowledge about the subject was assumed, but the presentation is based on
some background in measure theory.

There are several reasons why one should learn more about stochastic
differential equations: They have a wide range of applications outside mathe-
matics, there are many fruitful connections to other mathematical disciplines
and the subject has a rapidly developing life of its own as a fascinating research
field with many interesting unanswered questions.

Unfortunately most of the literature about stochastic differential equations
seems to place so much emphasis on rigor and completeness that it scares
many nonexperts away. These notes are an attempt to approach the subject
from the nonexpert point of view: Not knowing anything (except rumours,
maybe) about a subject to start with, what would I like to know first of all?
My answer would be:

1) In what situations does the subject arise?
2) What are its essential features?
3) What are the applications and the connections to other fields?

I would not be so interested in the proof of the most general case, but rather
in an easier proof of a special case, which may give just as much of the basic
idea in the argument. And I would be willing to believe some basic results
without proof (at first stage, anyway) in order to have time for some more
basic applications.

These notes reflect this point of view. Such an approach enables us to
reach the highlights of the theory quicker and easier. Thus it is hoped that
these notes may contribute to fill a gap in the existing literature. The course
is meant to be an appetizer. If it succeeds in awaking further interest, the
reader will have a large selection of excellent literature available for the study
of the whole story. Some of this literature is listed at the back.
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In the introduction we state 6 problems where stochastic differential equa-
tions play an essential role in the solution. In Chapter II we introduce the
basic mathematical notions needed for the mathematical model of some of
these problems, leading to the concept of Ito integrals in Chapter III. In
Chapter IV we develop the stochastic calculus (the Ito formula) and in Chap-
ter V we use this to solve some stochastic differential equations, including the
first two problems in the introduction. In Chapter VI we present a solution
of the linear filtering problem (of which problem 3 is an example), using the
stochastic calculus. Problem 4 is the Dirichlet problem. Although this is purely
deterministic we outline in Chapters VII and VIII how the introduction of an
associated Ito diffusion (i.e. solution of a stochastic differential equation) leads
to a simple, intuitive and useful stochastic solution, which is the cornerstone
of stochastic potential theory. Problem 5 is an optimal stopping problem. In
Chapter IX we represent the state of a game at time ¢ by an Ito diffusion
and solve the corresponding optimal stopping problem. The solution involves
potential theoretic notions, such as the generalized harmonic extension pro-
vided by the solution of the Dirichlet problem in Chapter VIII. Problem 6
is a stochastic version of F.P. Ramsey’s classical control problem from 1928.
In Chapter X we formulate the general stochastic control problem in terms
of stochastic differential equations, and we apply the results of Chapters VII
and VIII to show that the problem can be reduced to solving the (determinis-
tic) Hamilton-Jacobi-Bellman equation. As an illustration we solve a problem
about optimal portfolio selection.

After the course was first given in Edinburgh in 1982, revised and expanded
versions were presented at Agder College, Kristiansand and University of Oslo.
Every time about half of the audience have come from the applied section,
the others being so-called “pure” mathematicians. This fruitful combination
has created a broad variety of valuable comments, for which I am very grate-
ful. T particularly wish to express my gratitude to K.K. Aase, L. Csink and
A .M. Davie for many useful discussions.

I wish to thank the Science and Engineering Research Council, U.K. and
Norges Almenvitenskapelige Forskningsrad (NAVF), Norway for their finan-
cial support. And I am greatly indebted to Ingrid Skram, Agder College and
Inger Prestbakken, University of Oslo for their excellent typing — and their
patience with the innumerable changes in the manuscript during these two
years.

Oslo, June 1985 Bernt Oksendal

Note: Chapters VIII, IX, X of the First Edition have become Chapters IX, X,
XTI of the Second Edition.
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1

Introduction

To convince the reader that stochastic differential equations is an important
subject let us mention some situations where such equations appear and can
be used:

1.1 Stochastic Analogs of Classical Differential Equations

If we allow for some randomness in some of the coefficients of a differential
equation we often obtain a more realistic mathematical model of the situation.

Problem 1. Consider the simple population growth model

dN

= a(t)N(t), N(0) = Ny (constant) (1.1.1)

where N (t) is the size of the population at time ¢, and a(t) is the relative rate
of growth at time ¢. It might happen that a(t) is not completely known, but
subject to some random environmental effects, so that we have

a(t) = r(t) + “noise” ,

where we do not know the exact behaviour of the noise term, only its prob-
ability distribution. The function r(t) is assumed to be nonrandom. How do
we solve (1.1.1) in this case?

Problem 2. The charge Q(t) at time ¢ at a fixed point in an electric circuit
satisfies the differential equation

L Q0 =F0), Q) =Qu Q) =1 (1.12)

L-Q")+R-Qt)+ 5

where L is inductance, R is resistance, C' is capacitance and F'(t) the potential
source at time t.

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_1, © Springer-Verlag Berlin Heidelberg 2013
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Again we may have a situation where some of the coefficients, say F(t),
are not deterministic but of the form

F(t) = G(t) + “noise” . (1.1.3)

How do we solve (1.1.2) in this case?

More generally, the equation we obtain by allowing randomness in the
coefficients of a differential equation is called a stochastic differential equation.
This will be made more precise later. It is clear that any solution of a stochastic
differential equation must involve some randomness, i.e. we can only hope to
be able to say something about the probability distributions of the solutions.

1.2 Filtering Problems

Problem 3. Suppose that we, in order to improve our knowledge about the
solution, say of Problem 2, perform observations Z(s) of Q(s) at times s < t.
However, due to inaccuracies in our measurements we do not really measure
Q(s) but a disturbed version of it:

Z(s) = Q(s) + “noise” . (1.2.1)

So in this case there are two sources of noise, the second coming from the
error of measurement.

The filtering problem is: What is the best estimate of Q(t) satisfying
(1.1.2), based on the observations Z(s) in (1.2.1), where s < ¢? Intuitively,
the problem is to “filter” the noise away from the observations in an optimal
way.

In 1960 Kalman and in 1961 Kalman and Bucy proved what is now known
as the Kalman-Bucy filter. Basically the filter gives a procedure for estimating
the state of a system which satisfies a “noisy” linear differential equation,
based on a series of “noisy” observations.

Almost immediately the discovery found applications in aerospace engi-
neering (Ranger, Mariner, Apollo etc.) and it now has a broad range of appli-
cations.

Thus the Kalman-Bucy filter is an example of a recent mathematical dis-
covery which has already proved to be useful — it is not just “potentially”
useful.

It is also a counterexample to the assertion that “applied mathematics is
bad mathematics” and to the assertion that “the only really useful mathe-
matics is the elementary mathematics”. For the Kalman-Bucy filter — as the
whole subject of stochastic differential equations — involves advanced, inter-
esting and first class mathematics.
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1.3 Stochastic Approach to Deterministic Boundary
Value Problems

Problem 4. The most celebrated example is the stochastic solution of the
Dirichlet problem:

Given a (reasonable) domain U in R" and a continuous function f on
the boundary of U,dU. Find a function f continuous on the closure
U of U such that
(i) f = f on U

(ii) f is harmonic in U, i.e.

In 1944 Kakutani proved that the solution could be expressed in terms
of Brownian motion (which will be constructed in Chapter 2): f(z) is the
expected value of f at the first exit point from U of the Brownian motion
starting at x € U.

It turned out that this was just the tip of an iceberg: For a large class
of semielliptic second order partial differential equations the corresponding
Dirichlet boundary value problem can be solved using a stochastic process

which is a solution of an associated stochastic differential equation.

1.4 Optimal Stopping

Problem 5. Suppose a person has an asset or resource (e.g. a house, stocks,
oil...) that she is planning to sell. The price X; at time ¢ of her asset on the
open market varies according to a stochastic differential equation of the same
type as in Problem 1:
% =rX; + aX; - “noise”
dt

where 7, @ are known constants. The discount rate is a known constant p. At
what time should she decide to sell?

We assume that she knows the behaviour of X up to the present time ¢,
but because of the noise in the system she can of course never be sure at the
time of the sale if her choice of time will turn out to be the best. So what
we are searching for is a stopping strategy that gives the best result in the
long run, i.e. maximizes the expected profit when the inflation is taken into
account.

This is an optimal stopping problem. It turns out that the solution can be
expressed in terms of the solution of a corresponding boundary value problem
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(Problem 4), except that the boundary is unknown (free) as well and this is
compensated by a double set of boundary conditions. It can also be expressed
in terms of a set of variational inequalities.

1.5 Stochastic Control

Problem 6 (An optimal portfolio problem).
Suppose that a person has two investment possibilities:

(i) A safe investment (e.g. a bond), where the price X(t) per unit at time ¢

grows exponentially:
dXo
=X 1.5.1
o = rXo (1.5.1)
where p > 0 is a constant.

(ii) A risky investment (e.g. a stock), where the price X;(¢) per unit at time
t satisfies a stochastic differential equation of the type discussed in Prob-

lem 1:
dX,

dt
where 11 > p and 0 € R\ {0} are constants.

= (1 + o - “noise”) X (1.5.2)

At each instant ¢ the person can choose how large portion (fraction) u; of
his fortune V; he wants to place in the risky investment, thereby placing
(1—wu¢) V4 in the safe investment. Given a utility function U and a terminal
time T the problem is to find the optimal portfolio u; € [0, 1] i.e. find the
investment distribution u;; 0 < t < T which maximizes the expected

utility of the corresponding terminal fortune Vr}u):

max {E [U(VT(“))} } (1.5.3)

0<u:+ <1

1.6 Mathematical Finance

Problem 7 (Pricing of options).

Suppose that at time ¢ = 0 the person in Problem 6 is offered the right (but
without obligation) to buy one unit of the risky asset at a specified price K
and at a specified future time ¢ = T'. Such a right is called a Furopean call
option. How much should the person be willing to pay for such an option?
This problem was solved when Fischer Black and Myron Scholes (1973) used
stochastic analysis and an equlibrium argument to compute a theoretical value
for the price, the now famous Black-Scholes option price formula. This the-
oretical value agreed well with the prices that had already been established
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as an equilibrium price on the free market. Thus it represented a triumph for
mathematical modelling in finance. It has become an indispensable tool in the
trading of options and other financial derivatives. In 1997 Myron Scholes and
Robert Merton were awarded the Nobel Prize in Economics for their work
related to this formula. (Fischer Black died in 1995.)

We will return to these problems in later chapters, after having developed
the necessary mathematical machinery. We solve Problem 1 and Problem 2 in
Chapter 5. Problems involving filtering (Problem 3) are treated in Chapter 6,
the generalized Dirichlet problem (Problem 4) in Chapter 9. Problem 5 is
solved in Chapter 10 while stochastic control problems (Problem 6) are dis-
cussed in Chapter 11. Finally we discuss applications to mathematical finance
in Chapter 12.
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Some Mathematical Preliminaries

2.1 Probability Spaces, Random Variables and
Stochastic Processes

Having stated the problems we would like to solve, we now proceed to find
reasonable mathematical notions corresponding to the quantities mentioned
and mathematical models for the problems. In short, here is a first list of the
notions that need a mathematical interpretation:

(1) A random quantity
Independence

lem 3)?

(6) What is the mathematical interpretation of the “noise” terms?

(7) What is the mathematical interpretation of the stochastic differential
equations?

In this chapter we will discuss (1)—(3) briefly. In the next chapter we will
consider (6), which leads to the notion of an Itd stochastic integral (7). In
Chapter 6 we will consider (4)—(5).

The mathematical model for a random quantity is a random wvariable.
Before we define this, we recall some concepts from general probability theory.
The reader is referred to e.g. Williams (1991) for more information.

Definition 2.1.1 If 2 is a given set, then a o-algebra F on (2 is a family of
subsets of 2 with the following properties:

i) berF
(ii) FeF = FYecF, where F¢ = Q\ F is the complement of F in (2
(111) Al,Ag,...E}—iAZ:UAiEJ:

i=1

1=

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_2, © Springer-Verlag Berlin Heidelberg 2013
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The pair (2, F) is called a measurable space. A probability measure P on
a measurable space (£2,F) is a function P: F — [0,1] such that

(a) P(0)=0, P(2)=1
(b) if A1, Ag,... € F and {A;}52, is disjoint (i.e. A;NA; =0 ifi#j) then

() -

The triple (2, F,P) is called a probability space. It is called a complete
probability space if F contains all subsets G of {2 with P-outer measure zero,

i.e. with
PY(G):=inf{P(F);Fe F,GCF} =0.

Any probability space can be made complete simply by adding to F all
sets of outer measure 0 and by extending P accordingly. From now on we will
assume that all our probability spaces are complete.

The subsets F' of {2 which belong to F are called F-measurable sets. In a
probability context these sets are called events and we use the interpretation

P(F) = “the probability that the event F occurs” .

In particular, if P(F) = 1 we say that “F occurs with probability 1”7, or
“almost surely (a.s.)”.

Given any family U of subsets of (2 there is a smallest o-algebra Hy
containing U, namely

Hu = [ {H; H o-algebra of 2, U C H} .

(See Exercise 2.3.)

We call Hyy the o-algebra generated by U.

For example, if U is the collection of all open subsets of a topological space
2 (e.g. 2 =R"), then B = Hy is called the Borel o-algebra on 2 and the
elements B € B are called Borel sets. B contains all open sets, all closed
sets, all countable unions of closed sets, all countable intersections of such
countable unions etc.

If (2, F,P) is a given probability space, then a function Y:2 — R" is
called F-measurable if

YN U):={weY(w)eU}eF

for all open sets U € R™ (or, equivalently, for all Borel sets U C R™).
If X:2 — R"” is any function, then the o-algebra Hx generated by X is
the smallest o-algebra on 2 containing all the sets

XNU); U CR" open.
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It is not hard to show that
Hx ={X"'(B); B € B},

where B is the Borel g-algebra on R"™. Clearly, X will then be H x-measurable
and Hx is the smallest o-algebra with this property.

The following result is useful. It is a special case of a result sometimes
called the Doob-Dynkin lemma. See e.g. M. M. Rao (1984), Prop. 3, p. 7.

Lemma 2.1.2 If X,Y:2 — R" are two given functions,then Y is Hx-
measurable if and only if there exists a Borel measurable function g: R™ — R™
such that

Y =¢9(X).

In the following we let (£2, F, P) denote a given complete probability space.
A random variable X is an F-measurable function X: {2 — R". Every random
variable induces a probability measure pux on R™, defined by

ux is called the distribution of X.
If [|X(w)|dP(w) < co then the number
Q

BIX)i= [ X)) = [ adux(z)
2

R”

is called the ezpectation of X (w.r.t. P).

More generally, if f: R™ — R is Borel measurable and
J1f(X (w))|dP(w) < co then we have
0

E[f(X)]:= / F(X () dP(w) = / F@)dpx (@),
2

R”

The LP-spaces
If X : 2 — R"is a random variable and p € [1,00) is a constant we define
the LP-norm of X, || X||,, by

1
P

Xl = 1 XN = ([ 1X@)PdP@)"
2

If p = co we set

1X oo = X | e (p) = inf{N € R; [X ()] < N a. 5.}
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The corresponding LP-spaces are defined by
LP(P)=LP(2) ={X: 2 - R" || X||, < oo}

With this norm the LP-spaces are Banach spaces, i.e. complete (see Exercise
2.19), normed linear spaces. If p = 2 the space L?(P) is even a Hilbert space,
i.e. a complete inner product space, with inner product

(X,Y)r2py:=E[X-Y]; X, Y e€L*P).
The mathematical model for independence is the following:

Definition 2.1.3 Two subsets A, B € F are called independent if
P(ANB)=P(A) - P(B).

A collection A = {H;;i € I} of families H; of measurable sets is independent

if
P(Hilﬂ'--ﬁHik):P(Hi )P(‘E[Z )

for all choices of H;, € Hy,, -+, H;, € H;, with different indices i1, ..., .
A collection of random variables {X;;4 € I} is independent if the collection
of generated o-algebras Hx, is independent.

If two random variables X,Y: {2 — R are independent then
E[XY] = E[X]E[Y],
provided that E[|X|] < oo and E[|Y]] < co. (See Exercise 2.5.)

Definition 2.1.4 A stochastic process is a parametrized collection of random
variables

{Xiter
defined on a probability space (£2,F, P) and assuming values in R™.

The parameter space T is usually (as in this book) the halfline [0, c0), but
it may also be an interval [a, b], the non-negative integers and even subsets of
R" for n > 1. Note that for each ¢t € T fixed we have a random variable

w— X(w); we .
On the other hand, fixing w € {2 we can consider the function
t— Xi(w); teT

which is called a path of X;.

It may be useful for the intuition to think of ¢ as “time” and each w
as an individual “particle” or “experiment”. With this picture X;(w) would
represent the position (or result) at time ¢ of the particle (experiment) w.
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Sometimes it is convenient to write X (¢,w) instead of X;(w). Thus we may
also regard the process as a function of two variables

(t,w) — X(t,w)

from T x §2 into R™. This is often a natural point of view in stochastic analysis,
because (as we shall see) there it is crucial to have X (¢, w) jointly measurable
in (t,w).

Finally we note that we may identify each w with the function t — Xy (w)
from T into R™. Thus we may regard {2 as a subset of the space 2= (R™)T of
all functions from 7" into R"™. Then the o-algebra F will contain the o-algebra
B generated by sets of the form

{wyw(tr) € F1,--,w(ty) € F}, F; C R™ Borel sets

Therefore one may also adopt the point of view that a stochastic process is a
probability measure P on the measurable space (R™)T, B).

The (finite-dimensional) distributions of the process X = {X;}ier are the
measures [, .+, defined on R"™ k=1,2,... by

,utlym_,tk(Fl X FQ X oo X Fk) = P[th S Fl,"',th S Fk] ) t; € T.

Here Fi,..., F} denote Borel sets in R™.

The family of all finite-dimensional distributions determines many (but
not all) important properties of the process X.

Conversely, given a family {v, . .;k € N,t; € T} of probability mea-
sures on R™ it is important to be able to construct a stochastic process
Y = {YVi}ier having vy, . 4, asits finite-dimensional distributions. One of Kol-
mogorov’s famous theorems states that this can be done provided {v, .. ¢, }

satisfies two natural consistency conditions: (See Lamperti (1977) or Kallen-
berg (2002).)

Theorem 2.1.5 (Kolmogorov’s extension theorem)
For allty,...,tx €T, k € N let vy, .. 4, be probability measures on R s.t.

Vtg(l),»»»,ta(k)(Fl X oo X Fk) = Viq ooty (Fg—l(l) X oo X Fg—l(k)) (Kl)
for all permutations o on {1,2,...,k} and
Vit (le' e XF/C) = Vty ottty otktm (le s XFp xR 'XRn) (K2)

for all m € N, where (of course) the set on the right hand side has a total of
k +m factors.

Then there exists a probability space (2, F,P) and a stochastic process
{X} on 2, X: 2 — R, s.t.

th,...,tk(Fl X e X Fk) = P[th S Fl,' .- ,th S Fk] s
forallt; € T, k € N and all Borel sets F;.
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2.2 An Important Example: Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later ex-
plained by the random collisions with the molecules of the liquid. To describe
the motion mathematically it is natural to use the concept of a stochastic
process Bi(w), interpreted as the position at time t of the pollen grain w. We
will generalize slightly and consider an n-dimensional analog.

To construct { By }+>0 it suffices, by the Kolmogorov extension theorem, to
specify a family {v, .. ¢+, } of probability measures satisfying (K1) and (K2).
These measures will be chosen so that they agree with our observations of the
pollen grain behaviour:

Fix x € R™ and define

)2
p(t,z,y) = (2mt)~"/? -exp(—%) for ye R", t>0.
If 0 < t; <ty <--- <t define a measure vy, 4, on R™ by
Vty oty (FL X o X F) = (2.2.1)

= / p(ti, @, z1)p(ta—t1, x1,22) - Ptk —tp—1, Tp—1, Tx)dx1 - - - dy;
Fy XX Fy,

where we use the notation dy = dy; - - - dy, for Lebesgue measure and the
convention that p(0,z,y)dy = d,(y), the unit point mass at x.
Extend this definition to all finite sequences of ¢;’s by using (K1). Since

[ p(t,z,y)dy = 1 for all t>0, (K2) holds, so by Kolmogorov’s theorem there
Rn

exists a probability space (2, F, P?) and a stochastic process {B;}:>0 on {2
such that the finite-dimensional distributions of B; are given by (2.2.1), i.e.

Px(Btl €F1,"',Btk EFk) =

= / p(t,z, 1) - plte — th—1, Tp—1, Tk )dxy . . . dT) . (2.2.2)
Fy XX Fy

Definition 2.2.1 Such a process is called (a version of) Brownian motion
starting at = (observe that P*(By =z) =1).

The Brownian motion thus defined is not unique, i.e. there exist several
quadruples (By, £2, F, P*) such that (2.2.2) holds. However, for our purposes
this is not important, we may simply choose any version to work with. As we
shall soon see, the paths of a Brownian motion are (or, more correctly, can be
chosen to be) continuous, a.s. Therefore we may identify (a.a.) w € 2 with a
continuous function ¢ — By(w) from [0, 00) into R™. Thus we may adopt the
point of view that Brownian motion is just the space C([0,00), R™) equipped
with certain probability measures P* (given by (2.2.1) and (2.2.2) above).
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This version is called the canonical Brownian motion. Besides having the ad-
vantage of being intuitive, this point of view is useful for the further analysis of
measures on C([0, 00), R™), since this space is Polish (i.e. a complete separable
metric space). See Stroock and Varadhan (1979).

(i)

We state some basic properties of Brownian motion:

B, is a Gaussian process, i.e. for all 0 < t; < ... <t the random variable
Z = (By,,...,B:,) € R™ has a (multi)normal distribution. This means
that there exists a vector M € R™ and a non-negative definite matrix
C = [cjm] € R™* " (the set of all nk x nk-matrices with real entries)
such that

nk
E* [exp (7, ZUJZJ)] = exp (— %ZUjijum —I—ZZUJM]) (223)
j=1 im J

for all u = (uy,...,unx) € R, where i = /—1 is the imaginary unit
and E* denotes expectation with respect to P*. Moreover, if (2.2.3) holds
then

M = E®|Z] is the mean value of Z (2.2.4)

and
cim=E"[(Z;—M;)(Z,,—My,)] 1is the covariance matrix of Z. (2.2.5)

(See Appendix A).
To see that (2.2.3) holds for Z = (By,, ..., By, ) we calculate its left hand
side explicitly by using (2.2.2) (see Appendix A) and obtain (2.2.3) with

M = E*[Z] = (z,x,---,z) € R™ (2.2.6)
and
tI, tl, --- tl,
tlln t2In T t2In
= . . ) (2.2.7)
tljn tQIn e tkIn
Hence
E*|B] == forall t >0 (2.2.8)
and
E®[(B; — )] = nt, E®[(B; — x)(Bs — x)] = n min(s,t) . (2.2.9)
Moreover,
E*[(B; — Bs)?| =n(t —s)ift > s, (2.2.10)
since

E*[(B; — By)?] = E*[(By — 2)* = 2(B, — 2)(Bs — @) + (Bs — )]
=n(t—2s+s)=n(t—s),whent>s.
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(ii) By has independent increments, i.e.

B:,,Bt, — Bt,, -, By, — By, _, are independent
forall 0 <t; <tg--- <tp. (2211)

To prove this we use the fact that normal random variables are indepen-
dent iff they are uncorrelated. (See Appendix A). So it is enough to prove
that

Eﬂx[(BigI — Btifl)(Btj — Btj—l)] =0 when t; < tj s (2212)
which follows from the form of C:

Em[BtiBtj - Bti—lBt]‘ - BtiBtj—l + Bti—lBt]‘—l]
= n(ti — ti,1 — ti + ti71> = 0 .

From this we deduce that Bs — B; is independent of F; if s > t.

(iii) Finally we ask: Is ¢ — B;(w) continuous for almost all w? Stated like this
the question does not make sense, because the set H = {w;t — B(w) is
continuous} is not measurable with respect to the Borel o-algebra B on
(R™)[%°°) mentioned above (H involves an uncountable number of ¢’s).
However, if modified slightly the question can be given a positive answer.
To explain this we need the following important concept:

Definition 2.2.2 Suppose that {X:} and {Y:} are stochastic processes on
(2, F, P). Then we say that {X;} is a version of (or a modification of ) {Y¥;}
if

P{w; Xi(w) =Y (w)}) =1 forall ¢.

Note that if X; is a version of Y;, then X; and Y; have the same finite-
dimensional distributions. Thus from the point of view that a stochastic pro-
cess is a probability law on (R")[O’OO) two such processes are the same, but
nevertheless their path properties may be different. (See Exercise 2.9.)

The continuity question of Brownian motion can be answered by using
another famous theorem of Kolmogorov:

Theorem 2.2.3 (Kolmogorov’s continuity theorem) Suppose that the
process X = {X}i>o0 satisfies the following condition: For all T > 0 there ex-
ist positive constants a, 8, D such that

E[|X; — X <D-t—s'"P; 0<s,t<T. (2.2.13)
Then there exists a continuous version of X.

For a proof see for example Stroock and Varadhan (1979, p. 51) or Kallen-
berg (2002), Thm. 3.23.
For Brownian motion B it is not hard to prove that (See Exercise 2.8)

E®[|B; — Bs[*] = n(n +2)|t — s|*. (2.2.14)
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So Brownian motion satisfies Kolmogorov’s condition (2.2.13) with a = 4,
D =n(n+2) and 8 = 1, and therefore it has a continuous version. From now
on we will assume that B; is such a continuous version.

Finally we note that

If B;= (B,gl), e B,En)) is n-dimensional Brownian motion, then

the 1-dimensional processes {Bt(j )}t20= 1< j <n are independent,

1-dimensional Brownian motions . (2.2.15)

Exercises

2.1. Suppose that X: 2 — R is a function which assumes only countably
many values aj,az,... € R.

a) Show that X is a random variable if and only if
X Yap)eF  forall k=1,2,... (2.2.16)

b) Suppose (2.2.16) holds. Show that
E[X[] =) |ak|P[X = ax] . (2.2.17)
k=1
c) If (2.2.16) holds and E[|X|] < oo, show that
E[X] =Y axP[X =a] .
k=1

d) If (2.2.16) holds and f:R — R is measurable and bounded, show
that

E[f(X)] =) flar)P[X = a] .

2.2. Let X:{2 — R be a random variable. The distribution function F of X
is defined by
F(z)=P[X <z].

a) Prove that F has the following properties:
) 0<F<1, lim F(z)=0, lim F(z)=1.

(
(ii) F is increasing (= non-decreasing).
(iii) F is right-continuous, i.e. F(z) =limp_o F(z + h) .

h>0
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b) Let g: R — R be measurable such that E[|g(X)|] < oo. Prove that

oo

E[g(X)] = / g()dF (z)

— 00

where the integral on the right is interpreted in the Lebesgue-
Stieltjes sense.

c) Let p(z) > 0 be a measurable function on R. We say that X has
the density p if

x

F(x) = / p(y)dy for all z .

— 00

Thus from (2.2.1)—(2.2.2) we know that 1-dimensional Brownian mo-
tion By at time ¢ with By = 0 has the density

()= ——ep-L) zeR
) = exp(—=—); =z )
b 2nt P 2t

Find the density of B?.
2.3. Let {H;}icsr be a family of o-algebras on (2. Prove that
H=({Hiicl}
is again a o-algebra.
2.4.* a) Let X: 2 — R" be a random variable such that
E[|X|P] < o0 for some p, 0 <p < oo.

Prove Chebychev’s inequality:

PlX| >\ < %E[|X|p] for all A > 0.

Hint: [ |X[PdP > [|X|PdP, where A = {w:|X|> A} .
b) Suppg;e there exiséos k > 0 such that
M = Elexp(k|X])] < o0 .
Prove that P[|X| > A\ < Me * forall A > 0.

2.5. Let X,Y: {2 — R be two independent random variables and assume for
simplicity that X and Y are bounded. Prove that

E[XY] = E[X]E[Y] .
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2.7.%

2.8.
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(Hint: Assume | X| < M, |Y| < N. Approximate X and Y by simple

m—1 n—1
functions p(w) = 3 a;idF,(w), Y(w) = 3 bjXg,(w), respectively,
i=1 j=1

where F; = X_l([ai,aiﬂ)), Gj = Y_l([bj,bj+1)), M =qa9g < a; <
o< am=M,—N=by<by <...<b,=N.Then

E[X]~ Elg] = > _aiP(F), EY]~E[y]=} b;P(G))

and
E[XY]~ Elp¢] = ¥ aib;P(F;NGy).. ) .
4,
Let (£2,F,P) be a probability space and let A1, As,... be sets in F
such that

ZP(Ak) < 00.
k=1

Prove the Borel-Cantelli lemma:

P(ﬁ GAH:(%

m=1k=m
i.e. the probability that w belongs to infinitely many Aj s is zero.

a) Suppose G1,Ga, ..., G, are disjoint subsets of {2 such that

Prove that the family G consisting of ) and all unions of some (or
all) of G, ..., G,, constitutes a o-algebra on {2.

b) Prove that any finite o-algebra F on {2 is of the type described in
a).

c) Let F be a finite o-algebra on 2 and let X:2 — R be F-
measurable. Prove that X assumes only finitely many possible
values. More precisely, there exists a disjoint family of subsets
Fi,..., F, € F and real numbers ¢y, ..., ¢, such that

X(w) = ZCiXFi (w) .
i=1

Let B; be Brownian motion on R, By = 0. Put E = E°.
a) Use (2.2.3) to prove that

EleB] = eXp(—%UQt) forallu e R.
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b) Use the power series expansion of the exponential function on both

sides, compare the terms with the same power of u and deduce that

E[B}] = 3t?
and more generally that
oy _ (2R
E [B; }_2k.k!t ;  keN.

If you feel uneasy about the lack of rigour in the method in b), you
can proceed as follows: Prove that (2.2.2) implies that

BB = —= [ fla)e

for all functions f such that the integral on the right converges.
Then apply this to f(z) = 22 and use integration by parts and
induction on k.

_z2
2t

dzr

d) Prove (2.2.14), for example by using b) and induction on n.

2.9.* To illustrate that the (finite-dimensional) distributions alone do not
give all the information regarding the continuity properties of a process,
consider the following example:

Let (£2,F,P) = (]0,00), B, 1) where B denotes the Borel o-algebra on
[0,00) and p is a probability measure on [0, 00) with no mass on single
points. Define

1 ift=w
Xy (w) = {
t(w) 0 otherwise

and

Yi(w) =0 forall (¢,w) € [0,00) x [0,00) .

Prove that {X;} and {Y;} have the same distributions and that X; is
a version of Y;. And yet we have that t — Y;(w) is continuous for all w,
while ¢t — X;(w) is discontinuous for all w.

2.10. A stochastic process X; is called stationary if {X;} has the same dis-
tribution as {X;y,} for any h > 0. Prove that Brownian motion B;
has stationary increments, i.e. that the process { Bi+, — B }n>0 has the
same distribution for all ¢.

2.11. Prove (2.2.15).

2.12. Let B; be Brownian motion and fix tg > 0. Prove that

Et::Bto—H_Bto 3 tZ 0

is a Brownian motion.
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2.13.* Let B; be 2-dimensional Brownian motion and put
D, ={z € R*|z| < p} for p>0.

Compute
P°B,e D,].

2.14.*% Let B; be n-dimensional Brownian motion and let X C R™ have zero
n-dimensional Lebesgue measure. Prove that the expected total length
of time that B; spends in K is zero. (This implies that the Green
measure associated with B, is absolutely continuous with respect to
Lebesgue measure. See Chapter 9).

2.15.*% Let B; be n-dimensional Brownian motion starting at 0 and let
UeR™ ™ be a (constant) orthogonal matrix, i.e. UUT =1. Prove that

Btl = UBt
is also a Brownian motion.

2.16. (Brownian scaling). Let B; be a 1-dimensional Brownian motion and
let ¢ > 0 be a constant. Prove that

=~ 1
BtZ = _Bczt
c

is also a Brownian motion.

2.17.% If X;(): 2 — R is a continuous stochastic process, then for p > 0 the
p’th variation process of Xy, (X, X}gp) is defined by

(X, X>,Ep) (w) = lim Z | Xt (w) — X, (w)}p (limit in probability)
At —0 P

where 0 =t <ty < ... < t, =t and Aty = tgy1 — tx. In particular,

if p = 1 this process is called the total variation process and if p = 2

this is called the quadratic variation process. (See Exercise 4.7.) For

Brownian motion B; € R we now show that the quadratic variation

process is simply

(B,B)y(w) = (B,B)?(w) =t as.

Proceed as follows:
a) Define
ABy, = B,,, — B,

k

and put

Y(t,w) =Y (ABi(w))®,

t <t
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2.18.

2.19.

2.20.
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Show that

E[(Y_(ABr)® —t)’]=2) (At)*

tp<t tp<t

and deduce that Y (t,-) — t in L?(P) as Aty — 0.

b) Use a) to prove that a.a. paths of Brownian motion do not have
a bounded variation on [0,¢], i.e. the total variation of Brownian
motion is infinite, a.s.

a) Let 2 =1{1,2,3,4,5} and let U be the collection

U=1{{1,2,3},{3,4,5}}

of subsets of (2. Find the smallest o-algebra containing U (i.e. the o-
algebra Hy, generated by U).
b) Define X : 2 — R by

Is X measurable with respect to Hy?
c¢) DefineY : 2 — R by

Find the o-algebra Hy generated by Y.

Let (£2,F,u) be a probability space and let p € [1,00]. A sequence
{fn}52, of functions f,, € LP(p) is called a Cauchy sequence if

an_fm”p_’o as n,m — 0.

The sequence is called convergent if there exists f € LP(u) such that
fu — f in LP(u).

Prove that every convergent sequence is a Cauchy sequence.

A fundamental theorem in measure theory states that the converse
is also true: Every Cauchy sequence in LP(u) is convergent. A normed
linear space with this property is called complete. Thus the LP(u) spaces
are complete.

Let B; be 1-dimensional Brownian motion, ¢ € R be constant and
0 < s <t Use (2.2.2) to prove that

E[exp(o(Bs — By))] = exp (30%(t — s)). (2.2.18)
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Ito Integrals

3.1 Construction of the I1to6 Integral

We now turn to the question of finding a reasonable mathematical interpre-
tation of the “noise” term in the equation of Problem 1 in the Introduction:

Cil—]l\: = (r(t) + “noise” )N (t)

or more generally in equations of the form

dX

— = b(t, Xt) + o(t, X¢) - “noise” | (3.1.1)

where b and o are some given functions. Let us first concentrate on the case
when the noise is 1-dimensional. It is reasonable to look for some stochastic
process Wy to represent the noise term, so that

dX

E = b(f, Xt) + U(t,Xt) . Wt . (312)

Based on many situations, for example in engineering, one is led to assume
that W; has, at least approximately, these properties:

(i) 1 # ta = Wy, and Wy, are independent.

(ii) {W:} is stationary, i.e. the (joint) distribution of {W4, 4+, ..., Wi, 1+ does
not depend on ¢.

(iii) E[W] =0 for all ¢.

However, it turns out there does not exist any “reasonable” stochastic
process satisfying (i) and (ii): Such a W; cannot have continuous paths. (See
Exercise 3.11.) If we require E[W?] = 1 then the function (t,w) — W;(w)
cannot even be measurable, with respect to the o-algebra B x F, where B is
the Borel o-algebra on [0, 00]. (See Kallianpur (1980, p. 10).)

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_3, © Springer-Verlag Berlin Heidelberg 2013
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Nevertheless it is possible to represent W; as a generalized stochastic pro-
cess called the white noise process.

That the process is generalized means that it can be constructed as a prob-
ability measure on the space S’ of tempered distributions on [0, 00), and not
as a probability measure on the much smaller space R[?°) | like an ordinary
process can. See e.g. Hida (1980), Adler (1981), Rozanov (1982), Hida, Kuo,
Potthoff and Streit (1993), Kuo (1996) or Holden, @ksendal, Ubge and Zhang
(1996).

We will avoid this kind of construction and rather try to rewrite equation
(3.1.2) in a form that suggests a replacement of W; by a proper stochastic

process: Let 0 = tg < t; < -+ < t,, = t and consider a discrete version of
(3.1.2):

Xip1 — X = b(tk,Xk)Atk + U(tk,Xk)WkAtk , (3.1.3)
where

X;=X(t;), Wip=W, Aty =1tp1—1tx.

We abandon the Wy-notation and replace Wy Aty by AVy =V, — V4, , where
{Vi}1>0 is some suitable stochastic process. The assumptions (i), (ii) and (iii)
on W; suggest that V; should have stationary independent increments with
mean 0. It turns out that the only such process with continuous paths is the
Brownian motion B;. (See Knight (1981) or Kallenberg (2002), Thm. 13.4).
Thus we put V; = B, and obtain from (3.1.3):

k—1
X =Xo+ Y _b(t;, X;)At; + Y o(t;, X;)AB; . (3.1.4)
i=0 j

N
[u

<
Il
o

Is it possible to prove that the limit of the right hand side of (3.1.4) exists,
in some sense, when At; — 07 If so, then by applying the usual integration
notation we should obtain

¢ ¢
X, = Xo + /b(s,XS)ds + “/J(S,XS)dBS” (3.1.5)
0 0
and we would adopt as a convention that (3.1.2) really means that X; = X;(w)
is a stochastic process satisfying (3.1.5).

Thus, in the remainder of this chapter we will prove the existence, in a
certain sense, of

¢ /t f(s,w)dBs(w)”
0

where Bi(w) is 1-dimensional Brownian motion starting at the origin, for a
wide class of functions f: [0, 00] x {2 — R.. Then, in Chapter 5, we will return
to the solution of (3.1.5).
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Suppose 0 < S < T and f(t,w) is given. We want to define

/ £t w)dBi(w) - (3.1.6)
S

It is reasonable to start with a definition for a simple class of functions f and
then extend by some approximation procedure. Thus, let us first assume that
f has the form

=6 Ajon Grna-m (8, (3.1.7)

j>0

where X' denotes the characteristic (indicator) function and n is a natural
number. For such functions it is reasonable to define

T
[ otwiiBi) = s, — Bilw). (3.1.8)
Z >0
where
kE-27m if S<k-27"<T
=t ={ 8§ if k-2"<S
T if k-27">T
However, without any further assumptions on the functions e;(w) this leads
to difficulties, as the next example shows.
Here — and in the following — E means the same as E°, the expectation

w.r.t. the law P° for Brownian motion starting at 0. And P means the same
as PO.

Example 3.1.1 Choose

ZBJQ n Xjo-n (j+1)2-m) ()

72>0

w) = Z Bji1yz-n (W) - Xja—n (r1)2-n)(t) -

j=0
Then
|:/¢1 t, w dBt :| ZE Bt] Bt]+1 Btj )] =0
7=>0

since {B;} has independent increments. But

|:/(;52 t w dBt :| ZE Bt]+1 : (Bt]+1 Btj)]

7>0

=> E[(Bi,,, — By, =T, by (22.10).
j=0
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So, in spite of the fact that both ¢; and ¢ appear to be very reasonable
approximations to

f(tvw) = Bt(w) )
their integrals according to (3.1.8) are not close to each other at all, no matter
how large n is chosen.

This only reflects the fact that the variations of the paths of B; are too
big to enable us to define the integral (3.1.6) in the Riemann-Stieltjes sense.
In fact, one can show that the paths ¢ — B; of Brownian motion are nowhere
differentiable, almost surely (a.s.). (See Breiman (1968)). In particular, the
total variation of the path is infinite, a.s.

In general it is natural to approximate a given function f(¢,w) by

D FEw) Xy, ) ()
J

where the points ¢} belong to the intervals [t;,;11], and then define

T

[ f(t,w)dB(w) as the limit (in a sense that we will explain) of

5

> f(t},w)[By,,— By](w) as n — co. However, the example above shows that

J
— unlike the Riemann-Stieltjes integral — it does make a difference here what
points ¢7 we choose. The following two choices have turned out to be the most
useful ones:

1) t7 = t; (the left end point), which leads to the It6 integral, from now on
denoted by

T
/ft(UdBt )
S

and
2) t7 = (tj+tj+1)/2 (the mid point), which leads to the Stratonovich integral,
denoted by

T
/f(t,w) o dBi(w) .
S

(See Protter (2004, Th. V. 5.30)).

In the end of this chapter we will explain why these choices are the best
and discuss the relations and distinctions between the corresponding integrals.

In any case one must restrict oneself to a special class of functions f(¢,w)
n (3.1.6), also if they have the particular form (3.1.7), in order to obtain
a reasonable definition of the integral. We will here present Itd’s choice
t; = tj. The approximation procedure indicated above will work out success-
tully provided that f has the property that each of the functions w — f(¢;,w)
only depends on the behaviour of Bs(w) up to time t;. This leads to the fol-
lowing important concepts:
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Definition 3.1.2 Let Bi(w) be n-dimensional Brownian motion. Then we
define Fy = ft(n) to be the o-algebra generated by the random wvariables
{Bi(s)}1<i<n_’0<s<t. In other words, F; is the smallest o-algebra containing
all sets of the form

{W;Btl(w) eFla"'aBtk(w) GFk},

where t; <t and F; C R™ are Borel sets, j <k =1,2,... (We assume that
all sets of measure zero are included in F ).

One often thinks of F; as “the history of B up to time ¢”. A function
h(w) will be Fi-measurable if and only if h can be written as the pointwise
a.e. limit of sums of functions of the form

gl(Btl)QQ(Btz) o 'gk(Btk) )

where g1,...,g; are bounded continuous functions and ¢; < ¢t for j < k&,
k=1,2,.... (See Exercise 3.14.) Intuitively, that h is F;-measurable means
that the value of h(w) can be decided from the values of Bs(w) for s < t. For
example, hy(w) = By/s(w) is Fi-measurable, while hy(w) = Bai(w) is not.

Note that Fy C F, for s <t (i.e. {F;} is increasing) and that F, C F for
all ¢.

Definition 3.1.3 Let {N;}:>0 be an increasing family of o-algebras of subsets
of 2. A process g(t,w): [0,00) x 2 — R™ is called N;-adapted if for eacht > 0
the function

w — g(t, w)

is Ni-measurable.

Thus the process hi (t,w) = By/s(w) is Fi-adapted, while hy(t,w) = Bat(w)
is not.

We now describe our class of functions for which the It6 integral will be
defined:

Definition 3.1.4 Let V = V(S,T) be the class of functions
ft,w):[0,00) x 2 = R
such that
(i) (t,w) — f(t,w) is Bx F-measurable, where B denotes the Borel o-algebra
on [0, 00).

(i) f(t,w) is Fi-adapted.

T
(iii) E[ [ f(t,w)?dt] < cc.

S
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The It6 Integral

For functions f € V we will now show how to define the It6 integral

T
/fthBt s
S

where B; is 1-dimensional Brownian motion.

The idea is natural: First we define Z[¢] for a simple class of functions ¢.
Then we show that each f € V can be approximated (in an appropriate sense)
by such ¢’s and we use this to define [ fdB as the limit of [ ¢dB as ¢ — f.

We now give the details of this construction: A function ¢ € V is called
elementary if it has the form

P(t,w) = Z e (W) Xt 101 (1) - (3.1.9)

Note that since ¢ € V each function e; must be F; -measurable. Thus in
Example 3.1.1 above the function ¢, is elementary while ¢5 is not.

For elementary functions ¢(¢,w) we define the integral according to (3.1.8),
ie.

T
/qﬁ(t,w)dBt (w) =Y ej()[Bi,,, — By,](w) . (3.1.10)
S

j=0
Now we make the following important observation:

Lemma 3.1.5 (The Itd isometry) If ¢(t,w) is bounded and elementary

then ., 2 .,
EKS/gb(t,w)dBt(w)) } = E[S/¢(t,w) dt] . (3.1.11)

Proof. Put AB; = By,,, — By;. Then

J+1

Eleie;AB;AB;] = {E[ef] St —ty) i =

using that e;e; AB; and AB; are independent if ¢ < j. Thus

T

E[(/¢d3)2] = ZE[eiejABiAB ZE (tjs1 —t;)
4 iJ

| S/T¢zdt]. -
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The idea is now to use the isometry (3.1.11) to extend the definition from
elementary functions to functions in V. We do this in several steps:

Step 1. Let g € V be bounded and g(-,w) continuous for each w. Then there
exist elementary functions ¢, € V such that

T
E{ (g—¢n)2dt]—>0 as n— oo .
/

Proof. Define ¢,,(t,w) = > g(t;,w) - X, ,,,)(t). Then ¢, is elementary since
J
g€V, and

T
/g bn)?dt — 0 as n — oo, for each w
s

T

since g(-,w) is continuous for each w. Hence E[[(g — ¢y,)?dt] — 0 as n — oo,
5

by bounded convergence. a

Step 2. Let h € V be bounded. Then there exist bounded functions g, € V
such that gy (-,w) is continuous for all w and n, and

[/ ] 0.

Proof. Suppose |h(t,w)| < M for all (¢, w). For each n let ¢, be a non-negative,
continuous function on R such that

(i) Yn(z)=0forz<—Landz>0

and
f Un(z)dz =1
Define

gn(tvw) = /¢n(5 — t)h(S,W)dS .
0

Then g, (-,w) is continuous for each w and |gy(t,w)| < M. Since h € V we
can show that g,(t,-) is F;-measurable for all ¢. (This is a subtle point; see
e.g. Karatzas and Shreve (1991), p. 133 for details.) Moreover,

T
/ gn(s,w) (5,w))%ds — 0 as n — oo, for each w
s
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since {t¢n}, constitutes an approximate identity. (See e.g. Hoffman (1962,
p. 22).) So by bounded convergence

T
[/ — gn(t,w))?dt| — 0 as n— oo,
5

as asserted. O

Step 3. Let f € V. Then there exists a sequence {h,} CV such that hy, is
bounded for each n and

T
E[ (f—hn)th] —0asn — oco.
/

Proof. Put
-n i ft,w)<-n
hn(taw) = f(tvw) if —n < f(taw) <n
n if ft,w)>n.

Then the conclusion follows by dominated convergence.
That completes the approximation procedure. a

We are now ready to complete the definition of the It integral

T
/ftdet forfeV.
s

If f € V we choose, by Steps 1-3, elementary functions ¢, € V such that

T
E[/|f—¢n|2dt} —0.
S

Then define
T

T
/f (t,w)dBiy(w):= lim [ ¢, (t,w)dBi(w) .
S

n—oo

S

T
The limit exists as an element of L?(P), since { [ ¢n(t,w)dB;(w)} forms a
s

Cauchy sequence in L?(P), by (3.1.11).
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We summarize this as follows:

Definition 3.1.6 (The It6 integral) Let f € V(S,T). Then the Itd inte-
gral of f (from S to T) is defined by

T T
/ f(t,w)dBy(w) = lim [ 6, (t,w)dBi(w)  (imit in L3(P))  (3.1.12)
S S

where {¢n} is a sequence of elementary functions such that

E{/T(f(t,w) - gbn(t,w))th} —0 asn—oo. (3.1.13)
S

Note that such a sequence {¢,} satisfying (3.1.13) exists by Steps 1-3
above. Moreover, by (3.1.11) the limit in (3.1.12) exists and does not depend
on the actual choice of {¢,}, as long as (3.1.13) holds. Furthermore, from
(3.1.11) and (3.1.12) we get the following important

Corollary 3.1.7 (The Itd isometry)

T ) T
E[(/f(t,w)dBJ ] ZE[/fQ(t,w)dt} forall f €V(S,T). (3.1.14)
S 5
Corollary 3.1.8 If f(t,w) € V(S,T) and fn(t,w) € V(S,T) forn=1,2,...
T

and E| [(fa(t,w) — f(t,w))?dt] — 0 as n — oo, then
s

T T
/fn(t,w)dBt(w) — /f(t,w)dBt(w) in L?(P) asn — oo .
s s

We illustrate this integral with an example:

Example 3.1.9 Assume By = 0. Then

Proof. Put ¢,(s,w) =" Bj(w) - &] y(s), where B; = By,. Then

E[O/(qﬁn - Bs)2ds} = E[; / (Bj — BS)st}

tjt1

:Z /(S—tj)dS:Z%(tj_i_l—tj)2—>0 as Atj—>0.
- :

J i J
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So by Corollary 3.1.8

t
/ B.dB, = [lim / dndB, = lim OZBjABj :
0 J

(See also Exercise 3.13.) Now

A(BJQ') B.72+1 B - (BjJrl - Bj)Q + 2Bj(Bj+1 - Bj)

= (AB))* +2B;AB; ,
and therefore, since By = 0,

ZA (B?) :Z (AB))’>+2)  B;AB;
J

or

ZBjABj: ’ —§Z
J J

Since Y~ (AB;)? — t in L?(P) as At; — 0 (Exercise 2.17), the result follows.
J
O

The extra term —%t shows that the It6 stochastic integral does not behave
like ordinary integrals. In the next chapter we will establish the Ité formula,
which explains the result in this example and which makes it easy to calculate
many stochastic integrals.

3.2 Some properties of the It integral

First we observe the following;:

Theorem 3.2.1 Let f,g € V(0,T) and let 0 < S <U < T. Then
T U T
(i) [ fdB,= [ fdB,+ [ fdB; for a.a. w
S S U
T T T
(ii) [(cf +g)dBy=c- [ fdB,+ [ gdB; (c constant) for a.a. w
s s s
T
(iii) E[ [ fdB:] =0
S
T
(iv) [ fdBy is Fr-measurable.
s

Proof. This clearly holds for all elementary functions, so by taking limits we
obtain this for all f, g € V(0,T).
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An important property of the It6 integral is that it is a martingale:

Definition 3.2.2 A filtration (on (£2,F)) is a family M = {M;i}i>0 of o-
algebras My C F such that

0<s<t=M,C M,

(i.e. {M,} is increasing). An n-dimensional stochastic process {M;}1>0 on
(2, F, P) is called a martingale with respect to a filtration {M;}i>0 (and
with respect to P) if

(i) My is Mi-measurable for all t,
(i) E[|M]] < oo for all t

and
(1ii) E[MsM,] = M, for all s > t.

Here the expectation in (ii) and the conditional expectation in (iii) are
taken with respect to P = P°. (See Appendix B for a survey of conditional
expectation).

Example 3.2.3 Brownian motion B; in R" is a martingale w.r.t. the o-
algebras F; generated by {Bs;s < t}, because

E[|Bi|)> < E[|B:|*] = |Bo|* +nt  and if s >t then
E[Bs|Fi] = E[Bs — By + Bi| Fi]
= E[Bs - Bt|.7:t] + E[Bt|.7:t] =0+ Bt = Bt .

Here we have used that E[(Bs — B:)|F:] = E[Bs — B;] = 0 since Bs; — By is
independent of F; (see (2.2.11) and Theorem B.2.d)) and we have used that
E[B|F;] = B, since B, is F;-measurable (see Theorem B.2.c)).

For continuous martingales we have the following important inequality due
to Doob: (See e.g. Stroock and Varadhan (1979), Theorem 1.2.3 or Revuz and
Yor (1991), Theorem I1.1.7)

Theorem 3.2.4 (Doob’s martingale inequality) If M; is a martingale
such that t — My(w) is continuous a.s., then for all p > 1,T > 0 and all
A>0

1
P[ sup |M;| > A < — - E[|[M7|"].
0<t<T AP

We now use this inequality to prove that the It6 integral

O/ f(s,w)dB,

can be chosen to depend continuously on ¢ :
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Theorem 3.2.5 Let f € V(0,T). Then there exists a t-continuous version of
¢
/f s,w)dBs( 0<t<T,
0

i.e. there exists a t-continuous stochastic process Jy on (£2,F, P) such that

PlJ, = /de] =1 forall ,0<t<T. (3.2.1)
Proof. Let ¢, = ¢n(t,w) = Zegn)( )X[t<n) ) )( ) be elementary functions
j 1
such that
T
[/f bn)? ]—»O when n — oo .
0
Put .
I,(t,w) = /(bn(s,w)st(w)
0
and

It:I(t,w):/f(s,w)st(w); 0<t<T.

Then I, (-,w) is continuous, for all n. Moreover, I, (¢,w) is a martingale with
respect to JFy, for all n :

ElL(s,w)|F] = K/qsndBJr/qsndB) ‘}‘t]

- / ¢ndB+ E > e§">ABj|ft]
0

(n) <, (n)
<™ <) <s

J

t
_ / 6udB + 3" BBl AB;\F,00]| 7]
0

t
_ / ondB + > B[\ E[AB;|F,m)| 7]

J

= /gbndB = I,(t,w) (3.2.2)
0
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when ¢ < s, using Theorem B.3. and Theorem B.2.d).
Hence I,, — I,,, is also an JF;-martingale, so by the martingale inequality
(Theorem 3.2.4) it follows that

P[ sup |I,(t,w) — I, (t,w)| > e} < ;2~E[|In(T,w)—Im(T,w)|2]

0<t<T
T
[/ ds]—>0 as m,n — 0o .
0

Hence we may choose a subsequence ny T 0o s.t.

P| sup I,

t,w) — In, (tw)| > 277 <277,
0<t<

k+1(

By the Borel-Cantelli lemma

P[ sup |In,,,(t,w) — In, (t,w)] > 27%  for infinitely many k] =0.
0<t<T

So for a.a. w there exists ki (w) such that

sup [ Loy, (B w) = Iy, (t,w)| < 2~k for k > ki (w) .
0<t<

Therefore I, (t,w) is uniformly convergent for ¢ € [0, 7], for a.a. w and so the
limit, denoted by Ji(w), is t-continuous for ¢ € [0,7], a.s. Since I, (t,:) —
I(t,-) in L%[P] for all ¢, we must have

I, = J; as. for all ¢ € [0,77].
That completes the proof. a
¢
From now on we shall always assume that [ f(s,w)dBs(w) means a t-

continuous version of the integral.

Corollary 3.2.6 Let f(t,w) € V(0,T) for all T. Then

w) = /tf(SM)dB
0

is a martingale w.r.t. Fp and

P[ sup |[M|> Al <— E{/fsw }; AT >0. (3.2.3)
0<t<T

Proof. This follows from (3.2.2), the a.s. t-continuity of M; and the martingale
inequality (Theorem 3.2.4), combined with the It6 isometry (3.1.14).
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3.3 Extensions of the It6 integral

The It6 integral [ fdB can be defined for a larger class of integrands f than
V. First, the measurability condition (ii) of Definition 3.1.4 can be relaxed to
the following:

(ii)” There exists an increasing family of o-algebras H;;t > 0 such that
a) By is a martingale with respect to H; and
b) fi is Hi-adapted.

Note that a) implies that F; C H;. The essence of this extension is that we
can allow f; to depend on more than F; as long as B; remains a martingale
with respect to the “history” of fs; s < t. If (ii)” holds, then F[Bs;— B;|H:] = 0
for all s > ¢ and if we inspect our proofs above, we see that this is sufficient
to carry out the construction of the It integral as before.

The most important example of a situation where (ii)” applies (and (ii)
doesn’t) is the following:

Suppose Bi(w) = By(t,w) is the k’th coordinate of n-dimensional Brown-
ian motion (By, ..., B,). Let .7-"15(") be the o-algebra generated by By (s1, ),

B,(sn,*); sk < t. Then By(t,w) is a martingale with respect to ft(") because

)

By(s,) — Bg(t,+) is independent of ]—"t(") when s > t. Hence we can choose
¢

H, = ]—"t(") in (ii)” above. Thus we have now defined [ f(s,w)dBy(s,w) for
0

ffn)—adapted integrands f(¢,w). That includes integrals like
/ BydB;  or / sin(B? + B3) dBs

involving several components of n-dimensional Brownian motion. (Here we
have used the notation dBy = dB;(t,w) etc.)
This allows us to define the multi-dimensional It6 integral as follows:

Definition 3.3.1 Let B = (B1, Bo, ..., B,) be n-dimensional Brownian mo-
tion. Then Vi ™" (S, T) denotes the set of m x n matrices v = [v;;(t,w)] where
each entry v;;(t,w) satisfies (i) and (iii) of Definition 3.1.4 and (i)’ above,
with respect to some filtration H = {H;}i>o0.

If v e Vi7*"(S,T) we define, using matriz notation

A T [vin o Vg dBy
/UdB = / : : :
S S \Uni “** Unn dB,

to be the m x 1 matriz (column vector) whose i’th component is the following
sum of (extended) 1-dimensional Ito integrals:

Z/v”sde (s,w) .
i=1%
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IfH = F) = {ft(n)}tzo we write V™*"(S,T) and if m = 1 we write
VI(S,T) (respectively V*(S,T)) instead of V;;"(S,T) (respectively
yixn(S . T)). We also put

pymxn _ men(()’()o) _ ﬂ men(()’T) )
T>0

The next extension of the It6 integral consists of weakening condition (iii)
of Definition 3.1.4 to

(iii)’ [/fsw ds<oo}=1.

Definition 3.3.2 Wy(S,T) denotes the class of processes f(t,w) € R satis-

fying (i) of Definition 3.1.4 and (i)’, (iii)” above. Similarly to the notation for

V we put Wy = (| Wi (0,T) and in the matriz case we write Wiy "(S,T)
T>0

ete. If H = F we write W(S,T) instead of W) (S, T) etc. If the dimen-
sion is clear from the context we sometimes drop the superscript and write F
for F™) and so on.

Let B, denote 1-dimensional Brownian motion. If f € Wy one can show
that for all ¢ there exist step functions f,, € Wy such that ft |fn — f|?ds — 0
in probability, i.e. in measure with respect to P. For such aosequence one has
that j fn(s,w)dBs converges in probability to some random variable and the

0
limit only depends on f, not on the sequence {f,}. Thus we may define

n—oo

/f s,w)dBs(w) = lim fn(s w)dBs(w) (limit in probability) for feWy .

(3.3.1)
As before there exists a t-continuous version of this integral. See Friedman
(1975, Chap. 4) or McKean (1969, Chap. 2) for details. Note, however, that
this integral is not in general a martingale. See for example Dudley’s Theorem
(Theorem 12.1.5). It is, however, a local martingale. See Karatzas and Shreve
(1991), p. 146. See also Exercise 7.12.

A comparison of Ité6 and Stratonovich integrals

Let us now return to our original question in this chapter: We have argued
that the mathematical interpretation of the white noise equation
dX

E = b(t,Xt) + O'(t, Xt) . Wt (332)
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is that X; is a solution of the integral equation

t t
X, = Xo+ / b(s, Xo)ds + ¢ / o(s, Xo)dBy" | (3.3.3)
0 0

for some suitable interpretation of the last integral in (3.3.3). However, as
indicated earlier, the It interpretation of an integral of the form

[ fs.)B. ) )
0

is just one of several reasonable choices. For example, the Stratonovich in-
tegral is another possibility, leading (in general) to a different result. So the
question still remains: Which interpretation of (x) makes (3.3.3) the “right”
mathematical model for the equation (3.3.2)7 Here is an argument that indi-
cates that the Stratonovich interpretation in some situations may be the most
appropriate: Choose t-continuously differentiable processes Bt(n) such that for
a.a. w

B™(t,w) — B(t,w) as n — oo
uniformly (in ¢) in bounded intervals. For each w let Xt(n) (w) be the solution
of the corresponding (deterministic) differential equation

dX,

dB™
dt '

dt

=b(t, Xy) + o(t, X) (3.3.4)
Then Xt(n) (w) converges to some function X;(w) in the same sense: For a.a.

w we have that Xt(")(w) — X¢(w) as n — oo, uniformly (in t) in bounded
intervals.

It turns out (see Wong and Zakai (1969) and Sussman (1978)) that this so-
lution X; coincides with the solution of (3.3.3) obtained by using Stratonovich
integrals, i.e.

t t
X, = X, +/b(s,Xs)ds+/o(s,Xs) o dB, . (3.3.5)
0 0

This implies that X; is the solution of the following modified Ité equation:

¢ t ¢
X =Xg +/b(s,Xs)ds + %/0/(5,Xs)a(s,Xs)ds +/O’(S,Xs)st , (3.3.6)
0 0 0

where o’ denotes the derivative of o (¢, z) with respect to x. (See Stratonovich
(1966)).
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Therefore, from this point of view it seems reasonable to use (3.3.6) (i.e.
the Stratonovich interpretation) — and not the It6 interpretation

t

t
X, = Xo + / b(s, Xo)ds + / o (s, X )dB, (3.3.7)
0 0

as the model for the original white noise equation (3.3.2).

On the other hand, the specific feature of the It6 model of “not looking
into the future” (as explained after Example 3.1.1) seems to be a reason for
choosing the It6 interpretation in many cases, for example in biology (see the
discussion in Turelli (1977)). The difference between the two interpretations
is illustrated in Example 5.1.1. Note that (3.3.6) and (3.3.7) coincide if o (¢, x)
does not depend on z. For example, this is the situation in the linear case
handled in the filtering problem in Chapter 6.

In any case, because of the explicit connection (3.3.6) between the two
models (and a similar connection in higher dimensions — see (6.1.3)), it will
for many purposes suffice to do the general mathematical treatment for one
of the two types of integrals. In general one can say that the Stratonovich
integral has the advantage of leading to ordinary chain rule formulas under a
transformation (change of variable), i.e. there are no second order terms in the
Stratonovich analogue of the It6 transformation formula (see Theorems 4.1.2
and 4.2.1). This property makes the Stratonovich integral natural to use for
example in connection with stochastic differential equations on manifolds (see
Elworthy (1982) or Tkeda and Watanabe (1989)).

However, Stratonovich integrals are not martingales, as we have seen that
Ito integrals are. This gives the Ito integral an important computational ad-
vantage, even though it does not behave so nicely under transformations (as
Example 3.1.9 shows). For our purposes the It6 integral will be most conve-
nient, so we will base our discussion on that from now on.

Exercises

Unless otherwise stated B; denotes Brownian motion in R, By = 0.
3.1.* Prove directly from the definition of It6 integrals (Definition 3.1.6) that

t t

/sst =tB; — /Bsds .

0 0

(Hint: Note that

ZA(Sij) = ZSjABj + ZBjJrlASj )
F - -

J J
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3.2.

3.3.*

3.4.%

3.5.*

3.6.*

3.7.

3. 1to Integrals

Prove directly from the definition of It6 integrals that

t
/B%zB /B ds .

If X: 2 — R is a stochastic process, let H; = H,EX) denote the o-

algebra generated by {X(:); s <t} (i.e. {HEX)}tEO is the filtration of

the process {X}i>0).

a) Show that if X; is a martingale w.r.t. some filtration {N;};>0, then
X; is also a martingale w.r.t. its own filtration {ng)}tzo .

b) Show that if X, is a martingale w.r.t H,EX), then

E[X,] = F[X0] forall t>0. (%)

c¢) Give an example of a stochastic process X satisfying (*) and which
is not a martingale w.r.t. its own filtration.

Check whether the following processes X; are martingales w.r.t. {F;}:
(i) Xt By + 4t
i) Xi=B¢

(i
(iii) X; =t2B; — 2fsB ds
(iv) X; = B1(t)B2 (t), where (Bi(t), Bz2(t)) is 2-dimensional Brownian

motion.

Prove directly (without using Example 3.1.9) that
M, =B? -t
is an Fy-martingale.

Prove that N; = BE’ — 3tB; is a martingale.

A famous result of Itd (1951) gives the following formula for n times
iterated Ito integrals:

n!/-..(/(/ dBy,)dBy,) - dB., = t® hy, <§%) (3.3.8)

0<uy <--<un <t
where h,, is the Hermite polynomial of degree n, defined by
22 d"r =2
hn(a:):(—l)"e2dx—n(e K n=20,1,2,...

(Thus ho(z) = 1, hi(x) = z, ha(x) = 22 — 1, hz(z) = 2® — 3x.)
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a) Verify that in each of these n It6 integrals the integrand satisfies the
requirements in Definition 3.1.4.

b) Verify formula (3.3.8) for n = 1,2,3 by combining Example 3.1.9
and Exercise 3.2.

c¢) Use b) to give a new proof of the statement in Exercise 3.6.

3.8.*% a) Let Y be a real valued random variable on (2, F, P) such that
EllY]] <.

Define

Show that M; is an Fi-martingale.
b) Conversely, let My; t > 0 be a real valued Fi-martingale such that

sup E[|M|P] < o0 for some p > 1.
>0

Show that there exists Y € L!(P) such that
M, =E[Y|F].
(Hint: Use Corollary C.7.)

3.9.* Suppose f € V(0,T) and that ¢t — f(¢,w) is continuous for a.a. w. Then
we have shown that

T
/f(t,w)dBt = hm Zf ; in L2(P) .
0

Similarly we define the Stratonovich integral of f by

/ft w)odBi(w)= lim Zf w)AB;, where t}= Lt +tj),

At;—0

whenever the limit exists in L?(P). In general these integrals are dif-
ferent. For example, compute

T

/Bt o dBt

0

and compare with Example 3.1.9.

3.10. If the function f in Exercise 3.9 varies “smoothly” with ¢ then in fact
the Ito and Stratonovich integrals of f coincide. More precisely, assume
that there exists K < oo and € > 0 such that

E[lf(s,) = f(t, )P < K|s—t]'t*;  0<s, t<T.
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Prove that then we have
T
/f(t,w)dBt = Alti];EOZf(t;,w)ABj (limit in L'(P))
0 J

for any choice of ¢, € [t;,¢;11]. In particular,

T
/ftdet /ftoJOdBt
0

(Hint: Consider E| > [, w)AB; — Zf(t;-,w)ABjH.)

3.11. Let W; be a stochastic process satisfying (i), (ii) and (iii) (below
(3.1.2)). Prove that W; cannot have continuous paths. (Hint: Consider

E[(W™ — w2 where
W = (=N)V(NAW,), N=1,2,3,...).

3.12.*% As in Exercise 3.9 we let odB; denote Stratonovich differentials.

(i) Use (3.3.6) to transform the following Stratonovich differential
equations into It6 differential equations:
(a) dXt = ’}/Xtdt + CYXt 9 dBt
(b) dX; = sin X; cos X;dt + (t? + cos X;) o dB;

(ii) Transform the following It6 differential equations into
Stratonovich differential equations:
(a) dXt = TXtdt + CYXtdBt
(b) dXt = 2€_Xt dt + XEdBt

3.13. A stochastic process X;(-): 2 — R is continuous in mean square if
E[X?] < oo for all t and

lim B[(X, — X;)?]=0  forall t>0.

s—t

a) Prove that Brownian motion B; is continuous in mean square.
b) Let f:R — R be a Lipschitz continuous function, i.e. there exists
C < oo such that

[f(@) = fy)l < Cle —y[  forall z,y cR.

Prove that
Yii= f(By)

is continuous in mean square.
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¢) Let X; be a stochastic process which is continuous in mean square
and assume that X; € V(S,T), T < co. Show that

T
/ X,dB, = lim [ ¢n(t,w)dB,(w)  (limit in L2(P))
5
where
w) = ;Xtyl)(w)X[t§7l)7t§_1)l)(t) , T <.
(Hint: Consider
T tﬁi)l
[/ dt} E[Z /(Xt—Xt;m)?dt}).
s J (v
J

3.14. Show that a function h(w) is F;-measurable if and only if & is a point-
wise limit (for a.a. w) of sums of functions of the form

gl(Btl) 'gQ(Btz) o 'gk(Btk)

where g1, ..., gr are bounded continuous functions and ¢; <t for j < k,

k=1,2,...

Hint: Complete the following steps:

a) We may assume that h is bounded.

b) For n = 1,2,... and j = 1,2,... put ¢; = t;") = j-27" For
fixed n let H,, be the o-algebra generated by {B,(-)}+;<¢. Then by
Corollary C.9

h = E[h|F] = lim E[h|H,] (pointwise a.e. limit)

c¢) Define hy:= E[h|H,]. Then by the Doob-Dynkin lemma (Lemma
2.1.2) we have

hn(w) = Gn(Bt1 (W)v -, By, (w))

for some Borel function G,;R¥— R, where k =max{j;;j-27"<t}.
Now use that any Borel function G: R¥F — R can be approximated
pointwise a.e. by a continuous function F:R* — R and complete
the proof by applying the Stone-Weierstrass theorem.

3.15.* Suppose f,g € V(S,T) and that there exist constants C, D such that

T T
C+/f (t,w)dBi(w) = D + /g(t,w)dBt(w) for a.a. w e 2.
S 5
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Show that
C=D

and
ft,w) = g(t,w) for a.a. (t,w) € [S,T] x £2.

3.16. Let X:2 — R be a random variable such that F[X?] < oo and let
H C F be a o-algebra. Show that

E[(B[XH))*] < B[X?].

(See Lemma 6.1.1. See also the Jensen inequality for conditional expec-
tation (Appendix B).)

3.17. Let (£2,F, P) be a probability space and let X: {2 — R be a random
variable with F[|X]|] < oo. If G C F is a finite o-algebra, then by

Exercise 2.7 there exists a partition {2 = J G; such that G consists of
i=1

() and unions of some (or all) of Gy, ...,Gy,.

a) Explain why E[X|G](w) is constant on each G;. (See Exercise 2.7 c).)

b) Assume that P[G;] > 0. Show that

E[X|G Jo XdP G
[ | ](W) = W or we Gj;.
¢) Suppose X assumes only finitely many values a1, .. ., @y, Then from

elementary probability theory we know that (see Exercise 2.1)
E[X|Gi] =) arP[X = ax|G;] .
k=1

Compare with b) and verify that
E[X|G;] = E[X|G](w) for we G .

Thus we may regard the conditional expectation as defined in Ap-
pendix B as a (substantial) generalization of the conditional expec-
tation in elementary probability theory.
3.18. Let B; be 1-dimensional Brownian motion and let ¢ € R be constant.
Prove directly from the definition that

My := exp(ocB; — %0'2t); t>0

is an Fy-martingale.

(Hint: If s > ¢ then Elexp(cB; — 025)|F;] = Elexp(o(Bs — By)) x
exp(0B; — 10%5)|F;]. Now use Theorem B.2 e), Theorem B.2 d) and
Exercise 2.20.)
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The It6 Formula and the Martingale
Representation Theorem

4.1 The 1-dimensional Itd formula

Example 3.1.9 illustrates that the basic definition of It0 integrals is not very
useful when we try to evaluate a given integral. This is similar to the situation
for ordinary Riemann integrals, where we do not use the basic definition but
rather the fundamental theorem of calculus plus the chain rule in the explicit
calculations.

In this context, however, we have no differentiation theory, only integration
theory. Nevertheless it turns out that it is possible to establish an It6 integral
version of the chain rule, called the It6 formula. The It6 formula is, as we will
show by examples, very useful for evaluating It6 integrals.

From the example

/Bsst =1iB?-3t or iIB}=13t+ /Bsst , (4.1.1)

t
we see that the image of the Ito integral B; = [ dB; by the map g(z) = 1a?
0

is not again an It6 integral of the form

t
O/fsde (@)

but a combination of a dBs-and a ds-integral:

t t
iB; :/%ds—i—/Bsst. (4.1.2)
0 0

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_4, © Springer-Verlag Berlin Heidelberg 2013
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It turns out that if we introduce Itd processes (also called stochastic integrals)
as sums of a dBgs-and a ds-integral then this family of integrals is stable under
smooth maps. Thus we define

Definition 4.1.1 (1-dimensional Itd processes)

Let B, be 1-dimensional Brownian motion on (£2,F,P). A (1-dimensional)
It6 process (or stochastic integral) is a stochastic process Xy on (£2,F, P) of
the form

¢ ¢
X =Xo + /u(s,w)ds—l— /v(s,w)dBS ) (4.1.3)
0 0
where v € Wy, so that
¢
P{/v(s,wﬁds < oo forallt > O] =1 (4.1.4)

(see Definition 3.3.2). We also assume that u is Hy-adapted (where Hy is as
in (i1)’, Section 3.3) and

¢
P{/ lu(s,w)|ds < oo for all ¢ > 0} =1. (4.1.5)
0

If X, is an It6 process of the form (4.1.3) the equation (4.1.3) is sometimes
written in the shorter differential form

dX; = udt + vdB; . (4.1.6)

For example, (4.1.1) (or (4.1.2)) may be represented by
d(3B}) = 1dt + BdB; .

We are now ready to state the first main result in this chapter:
Theorem 4.1.2 (The 1-dimensional It6 formula)
Let X; be an Ito process given by

dXt = udt + ’UdBt .
Let g(t,x) € C%*([0,00) x R) (i.e. g is twice continuously differentiable on
[0,00) X R). Then

}/t = g(tv Xt)

18 again an Ito process, and

dg dg d%g
dYy = 5 (8 Xo)dt + =7 (8, Xo)d X + %@(t,Xt) (dXy)?, (4.1.7)
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where (dX;)? = (dX;) - (dX;) is computed according to the rules
dt-dt=dt-dBy =dB;-dt =0, dB;-dB;=dt. (4.1.8)
Before we prove It6’s formula let us look at some examples.

Example 4.1.3 Let us return to the integral

t

I = /BSdBS from Chapter 3 .
0
Choose X; = B, and g(t,z) = 12%. Then
Y, =g(t,B)) = 3B} .

Then by Ito’s formula,

2
v, = P4+ 99 4p, 4 1979

5 B 3502 (dBy)* = BydBy + $(dB;)* = BydBy + %dt .

Hence
d(3B}) = BidB; + idt .

In other words,
t
%Bf = /BSdBS + %t, as in Chapter 3 .
0

Example 4.1.4 What is
t

/ sdByg ?

0

From classical calculus it seems reasonable that a term of the form ¢B; should
appear, so we put
gt x) =ta

and
}/t = g(t,Bt) = tBt .

Then by Ito’s formula,
dY, = Bydt +tdB; + 0

i.e.
d(tB;) = B.dt + tdB;

t t
tB; :/Bsds—i-/sst
0 0

or
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or
t t

/sdBS =tB; — /Bsds ,

0 0
which is reasonable from an integration-by-parts point of view.

More generally, the same method gives

Theorem 4.1.5 (Integration by parts) Suppose f(s,w) is continuous and
of bounded variation with respect to s € [0,t], for a.a. w. (See Ezercise 2.17.)

Then
t

t
O/f s)dB, = )Bt—/BSde.

0

Note that it is crucial for the result to hold that f is of bounded variation.
(See Exercise 4.3 for the general case.)

Sketch of proof of the Ité formula. First observe that if we substitute
dXt = udt + ’UdBt

in (4.1.7) and use (4.1.8) we get the equivalent expression

t
_ 9g 9g 1,2, d%g
olt.X) = 900, X0) + [ (G250 + w G630 4 o2 G005, X s
0
t
99
+ [ vs- a—(s,XS)dBS where us; = u(s,w), vs = v(s,w) . (4.1.9)
x
0

Note that (4.1.9) is an It6 process in the sense of Definition 4. 1.1.

We may assume that g, (g‘i, % and are bounded, for if (4.1.9) is proved
in this case we obtain the general case by approximating by C? functions

gn such that g, aagt",%% and 8892" are bounded for each n and converge

uniformly on compact subsets of [0,00) X R to g, %, %, %, respectively.

(See Exercise 4.9.) Moreover, from (3.3.1) we see that we may assume that
u(t,w) and v(t,w) are elementary functions. Using Taylor’s theorem we get

g(t, X1) = g(0, Xo) + > Ag(t;, X;) = 9(0, Xo) +ZgiAt +ZagAX
J
QZW (At)) +Zata (At;)(AX;) 228 S (AX)) +ZRJ,

where %, % etc. are evaluated at the points (¢, Xy,),
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JEE tha Ag(tijj) = g(tj+17th+1) - g(tijj)

and R; = o(|At; |2 + |AX;|?) for all j.
If At; — 0 then

Atj = thrl — tj, AXJ = Xt

t
Z A=) 5 (tjan)Afj—’/E(SaXs)ds (4.1.10)
J 0

t
9g 9g dg
> 5% = g6, X0a% - [ e Xgax.. @)
0

Moreover, since u and v are elementary we get

&g 0? og 0%g
ga7 (AXi)* = ) o515 (At) +2;@Ujvj(ﬂfj)(43j)
+Z 33:2 J Bj)?, where u; = u(t;,w), v; = v(tj,w). (4.1.12)

The first two terms here tend to 0 as At; — 0. For example,
829 2
E[( S uianay) | -

2
—ZEK ujvj) }(Atj)g—ﬂ) as At; — 0.
We claim that the last term tends to

829 vds  in L2(P), as At; — 0
922 S in ,as At .
0

To prove this, put a(t) = %(f, X )v2(t,w), a; = a(t;) and consider

EKZ% (AB;) ZaJAtﬂ > Elaia;((ABi)® - At;)((AB;)? - At;)] .

4,J

If i < j then a;a;((AB;)? — At;) and (AB;)? — At; are independent so the
terms vanish in this case, and similarly if ¢ > j. So we are left with
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Y Ela;((AB;)* - At)’) = Y Ela;] - E[(AB))* — 2(AB;° At; + (At;)?]

=Y Elaf]- (3(A4)° - 2(At;)* + (At)*) =2 Elaj] - (At;)?
— OJ as At; — 0. J

In other words, we have established that

t
Zaj(ABj)2 — /a(s)ds in L?(P) as At; — 0
J 0

and this is often expressed shortly by the striking formula

(dB;)* = dt . (4.1.13)
The argument above also proves that )" R; — 0 as At; — 0. That completes
the proof of the It6 formula. a

Remark. Note that it is enough that g(¢,z) is C? on [0,00) x U, if U C R is
an open set such that X, (w) € U for all t > 0,w € £2. Moreover, it is sufficient
that g(t,z) is C! w.r.t. t and C? w.r.t. o

4.2 The Multi-dimensional Ito6 Formula

We now turn to the situation in higher dimensions: Let B(t,w)= (B (t,w),. ..,
B, (t,w)) denote m-dimensional Brownian motion. If each of the processes
u;(t, w) and v;;(t, w) satisfies the conditions given in Definition 4.1.1 (1<i<n,
1 < j < m) then we can form the following n It6 processes

Xm = ’U,ldt + ’UlldBl —+ -+ ’UlmdBm

: : : (4.2.1)
dX,, = u,dt + v,1dB1 + - - - + U d B,
Or, in matrix notation simply
dX (t) = udt + vdB(t) , (4.2.2)
where
X (t) Uy V11t Vi dB(t)
X(t) = : yu=]| |, v=] : c |, dB(t) = : (4.2.3)

Such a process X (t) is called an n-dimensional Ité process (or just an Ito
process).



4.3 The Martingale Representation Theorem 49

We now ask: What is the result of applying a smooth function to X? The
answer is given by

Theorem 4.2.1 (The general Ité6 formula)
Let
dX (t) = udt + vdB(t)

be an n-dimensional It process as above. Let g(t,z) = (g1(t, x),. .., gp(t,x))
be a C? map from [0,00) x R" into RP. Then the process

Y(t,w) = g(t, X(t))
18 again an Ito process, whose component number k, Yy, is given by

9? gk
0x;0x

dy;, = 29 axa+2fmtxwx+223 mxmxuy

ot

where dBldB] = 6ijdt, dBidt = dtdBl =0.

The proof is similar to the 1-dimensional version (Theorem 4.1.2) and is
omitted.

Example 4.2.2 Let B = (Bjy,..., B,) be Brownian motion in R™, n > 2
and consider

3

R(t,w) = |B(t,w)| = (B3(t,w) + - - - + B2(t,w))?

i.e. the distance to the origin of B(t,w). The function g(t,z) = |z| is not C?
at the origin, but since B; never hits the origin, a.s. when n > 2 (see Exercise
9.7) Ito’s formula still works and we get

BdB —1
L0

The process R is called the n-dimensional Bessel process because its generator
(Chapter 7) is the Bessel differential operator Af(z) = £ f"(z) + =L f(x).
See Example 8.4.1.

4.3 The Martingale Representation Theorem

Let B(t) = (Bi(t),...,Bn(t)) be n-dimensional Brownian motion. In Chap-
ter 3 (Corollary 3.2.6) we proved that if v € V" then the Itd integral

¢
X =Xo+ /v(s,w)dB(s) ; t>0
0
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is always a martingale w.r.t. filtration ft(n) (and w.r.t. the probability measure

P). In this section we will prove that the converse is also true: Any .7-',5(")—
martingale (w.r.t. P) can be represented as an It6 integral (Theorem 4.3.4).
This result, called the martingale representation theorem, is important for
many applications, for example in mathematical finance. See Chapter 12. For
simplicity we prove the result only when n = 1, but the reader can easily
verify that essentially the same proof works for arbitrary n.

We first establish some auxiliary results.
Lemma 4.3.1 Fiz T > 0. The set of random variables
{¢(By,,...,B,); t: €0, T], ¢ € CR"), n=1,2,...}
is dense in L*(Fr, P).
Proof. Let {t;}32, be a dense subset of [0,T] and for each n = 1,2,... let H,
be the o-algebra generated by By, (+),..., By, (+). Then clearly
H,, C Hn+1

and Fr is the smallest o-algebra containing all the H,,’s. Choose
g € L*(Fr, P). Then by the martingale convergence theorem Corollary C.9
(Appendix C) we have that

9 = Elg|Fr] = lim Elg|H,] .

The limit is pointwise a.e. (P) and in L?(Fr, P). By the Doob-Dynkin Lemma
(Lemma 2.1.2) we can write, for each n,

E[Q|Hn] :gn(Btlv'-'vBt )

n

for some Borel measurable function g,: R™ — R. Each such ¢, (B, ,...,B,)
can be approximated in L?(Fr, P) by functions ¢, (By,, ..., B, ) where
¢n € C§°(R™) and the result follows. O

For an alternative proof of the next result see Exercise 4.17.

Lemma 4.3.2 The linear span of random variables of the type

T T
-1 2 ; 2 eterminaistic 3.
exp{O/h(t)dBt(w) L O/h (t)dt}, he L2[0,T) (det tic)  (4.3.1)

is dense in L?(Fr, P).

Proof. Suppose g € L?(Fr, P) is orthogonal (in L?(Fr, P)) to all functions
of the form (4.3.1). Then in particular

G(\):= /exp{)\lBtl(w) +-+ A\ By, (w)}g(w)dP(w) =0 (4.3.2)
[0}
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forall A = (\1,...,\y) € R™ and all ¢4,...,¢, € [0,T]. The function G()) is
real analytic in A € R™ and hence G has an analytic extension to the complex
space C™ given by

G(z) = /exp{let1 (W)+ -+ 2z, B, (w)}g(w)dP(w) (4.3.3)
2

for all z=(z1,...,2,) € C™. (See the estimates in Exercise 2.8 b).) Since G=0
on R™ and G is analytic, G = 0 on C™. In particular, G(iy1, iy2, . .. ,iyn) = 0
for all y = (y1,...,yn) € R™. But then we get, for ¢ € C§°(R"),

/ 6(Bur.. ... Bi,)g(w)dP(w)
(93
-/ m)—"ﬂ( / $<y>ei<an+~'+yan>dy)g<w>dp<w>
(9] R”

= ene [ $<y>( / e“leH+"'+y"3fn>g<w>dp<w>)dy

R (93
— (2m) "2 / (y)Cliy)dy =0, (4.3.4)
Rn

where
y) = (@m) 2 / o(x)e Tz
R’Vl

is the Fourier transform of ¢ and we have used the inverse Fourier transform
theorem

oa) = (20) " [ Gl)et= vy
R’Vl
(see e.g. Folland (1984)).
By (4.3.4) and Lemma 4.3.1 g is orthogonal to a dense subset of L?(Fr, P)

and we conclude that g = 0. Therefore the linear span of the functions in
(4.3.1) must be dense in L?(Fr, P) as claimed. O

Suppose B(t) = (B1(t),...,Bn(t)) is n-dimensional. If v(s,w) € V*(0,T)
then the random variable

T
V(w)::/v(t,w)dB(t) (4.3.5)
0
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is f;")—measurable and by the [to6 isometry
T
/E 2(t,)]dt < oo,  so Ve LAFM, P).
0

The next result states that any F' € L? (f;"), P) can be represented this way:

Theorem 4.3.3 (The Itd representation theorem)

Let F ¢ L2(.7:§"),P). Then there exists a unique stochastic process f(t,w) €
V" (0,T) such that

T
Fw Fl+ [ f(t,w)dB(t (4.3.6)
e

Proof. Again we consider only the case n = 1. (The proof in the general case
is similar.) First assume that F has the form (4.3.1), i.e

T T
_exp{/h )d B (w %/hQ(t)dt}
0 0

for some h(t) € L?[0,T].

Define
t t
—exp{/h %/hz(s)ds}; 0<t<T.
0 0

Then by It6’s formula

dY; = Yi(h(t)dB, — Lh*(t)dt) + 2Yi(h(t)dB:)? = Y;h(t)dB,

so that
t
Ytzl—l—/Ysh(s)st; tel0,T].
Therefore
T
F=Yr=1+ /Ysh(s)st
0

and hence E[F] = 1. So (4.3.6) holds in this case. If F' € L?(Fr, P) is arbitrary,
we can by Lemma 4.3.2 approximate F in L?(Fr, P) by linear combinations
F,, of functions of the form (4.3.1). By linearity (4.3.6) also holds for linear
combinations of functions of the form (4.3.1). Then for each n we have
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T
F,(w) = E[F,] + /fn(s,w)st(w), where f, € V(0,T) .
0

By the It6 isometry

E[(F, — F,)? = E[( +/T — fm)dB) }
0

T
= (E[Fn—Fm])2+/E[(fn—fm)2]dt—>O as m,m — oo
0

so {fn} is a Cauchy sequence in L?([0,T] x £2) and hence converges to some
f € L*([0,T] x £2). Since f, € V(0,T) we have f € V(0,T). (A subsequence
of {fn(t,w)} converges to f(t,w) for a.a. (t,w) € [0,T] x 2. Therefore f(t,-)
is Fi-measurable for a.a. t. So by modifying f(¢,w) on a t-set of measure 0 we
can obtain that f(t,w) is Fi-adapted.) Again using the Itd isometry we see

that
T T
F = lim F, = lim (E[Fn] —i—/fndB) = E[F] +/de,
0 0

the limit being taken in L?(Fr, P). Hence the representation (4.3.6) holds for
all F € L*(Fr, P).
The uniqueness follows from the It6 isometry: Suppose

F(w /fltdet /fgtdet w)

with fi1, fo € V(O, T) Then

T T
/ filtw) = fa(t,w))dB(w))?] = /E[(fl(tM) — fa(t,w))?]dt
0 0

and therefore fi(t,w) = fa(t,w) for a.a. (t,w) € [0,T] x £2. O

Remark. The process f(t,w) can be expressed in terms of the Fréchet deriva-
tive and also in terms of the Malliavin derivative of F/(w). See Clark (1970/71),
Davis (1980) and Ocone (1984).

Theorem 4.3.4 (The martingale representation theorem)

Let B(t) = (Bi(t),...,Bn(t)) be n-dimensional. Suppose M, is an .7-',5(")—
martingale (w.r.t. P) and that My € L*>(P) for all t > 0. Then there exists a
unique stochastic process g(s,w) such that g € V™ (0,t) for all t > 0 and
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t
M(w) = E[Mo] + /g(s,w)dB(s) a.s., for all t > 0.
0

Proof (n=1). By Theorem 4.3.3 applied to T = ¢, F = M;, we have that for
all t there exists a unique f)(s,w) € L*(F;, P) such that

M (w) = E[M,] + / D (s,w)dBy(w) = E[Mo] + / F(s,w)dBg(w) .
0 0

Now assume 0 < t1 < to. Then

to

M,, = E[My,|F,] = E[Mo] + E[ / f(t2)(s,w)st(w)|}}l]
0

= E[M,] +/0t1 £ (s5,w)dBs(w) . (4.3.7)

But we also have
1
M,, = E[Mo] + / 8 (s,w)dBs(w) . (4.3.8)

Hence, comparing (4.3.7) and (4.3.8) we get that

o:E[(i(ﬂfz £ dBH /E FU2) = f)2)ds

and therefore
F®)(s,w) = £ (s,w) for a.a. (s,w) € [0,t1] x 2.
So we can define f(s,w) for a.a. s € [0,00) x §2 by setting
f(s,w) = fMN(s,w) if s €[0,N]

and then we get

t
M, = E[M,] /f(tsde —i—/fsde forallt>0.
0 O
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Exercises

4.1.* Use Itd’s formula to write the following stochastic processes Y; in the
standard form
dY: = u(t,w)dt + v(t,w)dBy

for suitable choices of u € R™, v € R™"*™ and dimensions n, m:

a) Y; = B?, where B; is 1-dimensional

b) Yt = 2 +t+ eBt (B, is 1-dimensional)

c) Y; = B3(t) + B3(t) where (By, By) is 2-dimensional

d) Y; (to + ¢, Bt) (B is 1-dimensional)

) }/t (Bl( ) + BQ(t) + Bg(t), B% (t) - Bl (t)Bg(t)), where
(B1, Bz, Bs) is 3-dimensional.

e

4.2.* Use It0’s formula to prove that

t t
/deBS =1iB} - /Bsds.
0 0

4.3.*% Let X;,Y; be Ito processes in R. Prove that
d(X.Yy) = X,dY, + V,dX, + dX, - dY; .

Deduce the following general integration by parts formula

t
/XSdYS:Xth—XOYO—/YSdXS—/dXS~dYS.
0

4.4. (Exponential martingales)
Suppose 0(t,w) = (61(t,w),...,0,.(t,w)) € R™ with ,(¢t,w) € V[0, T]
for k=1,...,n, where T < 0o. Define

¢ t
Zt:exp{/H(s,w)dB(s)—%/ﬁz(s,w)ds}; 0<t<T
0 0

where B(s) € R" and 6% = 6 - 6 (dot product).
a) Use Itd’s formula to prove that

dZt = Ztﬁ(t,w)dB(t) .
b) Deduce that Z; is a martingale for ¢ < T, provided that

Z0y(t,w) € V[0, T for 1<k <n.
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Remark. A sufficient condition that Z; be a martingale is the Kazamaki
condition

E[exp (%O/H(S,W)dB(s))} oo forall t<T. (4.3.9)

This condition is implied by the following (stronger) Novikov condition

T
E[exp (%()/6‘2(5,w)ds)} <. (4.3.10)

See e.g. Ikeda & Watanabe (1989), Section II1.5, and the references
therein. See also Section 8.6.

4.5.*% Let B; € R, By = 0. Define

Be(t) = E[Bf];  k=0,1,2,...; t>0.

Use It6’s formula to prove that
t
Br(t) = $k(k —1) /ﬁk72(8)d8 ; k>2.
0

a) Deduce that

E[B}] =3t>  (see (2.2.14))
and find

b) Show that

and

(21t~
2k oo

(Compare with Exercise 2.8.)

B[B(t)*] =

4.6. a) For ¢, constants, B; € R define

Xt _ ectJraBt .
Prove that

dXt = (C + %a2)Xtdt + CYXtdBt .
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b) For ¢,aq,...,ay constants, By = (Bi(t),...,By(t)) € R™ define

e (a3,

j=1
Prove that

dX; = (c—f—%Za )Xtdt—i—Xt(Za]dB )
j=1 j=1
4.7. Let X; be an It0 integral
dX; =v(t,w)dBy(w) wherev e V*(0,T), B¢ R", 0<¢t<T.

a) Give an example to show that X7 is not in general a martingale.
b) Prove that if v is bounded then

¢
M= X2 — /|vs|2ds is a martingale .

¢

The process (X, X);:= [ |vg|?ds is called the quadratic variation
0

process of the martingale X;. For general processes X; it is defined

by

(X, X)o = lim Z|th+1 X;.)? (limit in probability) (4.3.11)

t<t

where 0 = t1 < ty--- < t, =t and Aty = tg4+1 — tg. The limit can
be shown to exist for continuous square integrable martingales X;.
See e.g. Karatzas and Shreve (1991).

4.8. a) Let B; denote n-dimensional Brownian motion and let
f:R™ — R be C?. Use Itd’s formula to prove that

¢ t
£(B) = f(Bo) + [ ViBIaB+} [ Ards
0 0
where A = Z is the Laplace operator.

b) Assume that g R — R is C! everywhere and C? outside finitely
many points z1,...,zy with |¢”(z)] < M for = ¢ {z1,...,2n}.
Let B; be 1-dimensional Brownian motion. Prove that the 1-
dimensional version of a) still holds, i.e.

t 1 t
9(Bi) = g(Bo) + | ¢'(Bs)dBs + 5 [ ¢"(Bs)ds .
[
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(Hint: Choose fi, € C*(R) s.t. fr — g uniformly, f, — ¢ uniformly
and |f)/| < M, f! — ¢"” outside z1,...,2n. (See Appendix D.)
Apply a) to fi and let k — o0).

4.9. Prove that we may assume that ¢ and its first two derivatives are
bounded in the proof of the It6 formula (Theorem 4.1.2) by proceeding
as follows: For fixed t > 0 and n = 1,2, ... choose g, as in the statement
such that g,(s,x2) = g(s,x) for all s < ¢t and all |z| < n. Suppose we
have proved that (4.1.9) holds for each g,. Define the stochastic time

Tn = Tn(w) = inf{s > 0; | Xs(w)| > n}

(1, is called a stopping time (See Chapter 7)) and prove that

(

Agn

—— (s, X5)Xs<r dBs: =
0 5, X)X, B = )

o

tATR tATh

9gn _ 99
/ ’U%(S,Xs)st = U[)_x(s’XS)dBS
0 0
for each n. This gives that
g(t A Tn, Xt/\‘rn) = 9(07 XO)
tATH a a 9 tATH a
g 9 1,299 g
—= — 4z = |d —=dB;
+ / <a tuge T2 8332) st / Vo
and since
Plr, >t —1 as m — 00

we can conclude that (4.1.9) holds (a.s.) for g.

4.10. (Tanaka’s formula and local time).
What happens if we try to apply the It6 formula to g(B;) when By is
1-dimensional and g(z) = |z|? In this case g is not C? at z = 0, so we
modify g(z) near z = 0 to g.(x) as follows:

(2) = || if |z|>e
I = e+ 2 i ol <e
where € > 0.
a) Apply Exercise 4.8 b) to show that

9B = g(Bo) + [ (BB + 5 |{5 € 0.6 B. € (~e.0)]
0

where |F'| denotes the Lebesgue measure of the set F.
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s
A Y

Y

b) Prove that

t t
B,
/QQ(BS) : XBse(fe,e)dBS = / 'XBse(féyé)dBS —0
0 0

in L2(P) as € — 0.
(Hint: Apply the Itd isometry to

t B 2
E|:</_S ' XBSE(_E)E)dBS) :| .
€
0

¢) By letting ¢ — 0 prove that

t
B = |Bo| + / sign(B.)dBs + Lo(w) | (4.3.12)
0

where

1
Ly = lim - [{s €[0,t]; Bs € (—¢,€)}| (limit in L*(P))
€e— €

and

. —1 for =<0
sign(z) = 1 for >0 °

Ly is called the local time for Brownian motion at 0 and (4.3.12)
is the Tanaka formula (for Brownian motion). (See e.g. Rogers and
Williams (1987)).

4.11.* Use It6’s formula (for example in the form of Exercise 4.3) to prove
that the following stochastic processes are {F;}-martingales:
a) X, = ex' cos B, (B € R)
b) X; =e2'sinB;, (B, €R)
C) X = (Bt + t)exp(—Bt — %t) (Bt S R)
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4.12. Let dX; = u(t,w)dt + v(t,w)dB; be an It6 process in R™ such that

t

¢
E{/ |u(r,w)|dr] + E[/ lovT (7, w)|dr} < 00 forallt>0.
0

0

Suppose X; is an {ffn)}—martingale. Prove that

u(s,w) =0 for a.a. (s,w) € [0,00) x £2. (4.3.13)
Remarks:

1) This result may be regarded as a special case of the Martingale
Representation Theorem.

2) The conclusion (4.3.13) does not hold if the filtration ft(n) is replaced
by the o-algebras M; generated by X (-); s < ¢, i.e. if we only
assume that X; is a martingale w.r.t. its own filtration. See e.g. the
Brownian motion characterization in Chapter 8.

Hint for the solution:
If X; is an ffn)—martingale, then deduce that

E[/u(r,w)dﬂff")] =0 forall s >t .

Differentiate w.r.t. s to deduce that

Efu(s,w)|F™] =0  as., foraa. s>t.
Then let ¢ T s and apply Corollary C.9.

4.13. Let dX; = u(t,w)dt +dB; (u € R, B; € R) be an It6 process
and assume for simplicity that u is bounded. Then from Exercise 4.12
we know that unless v = 0 the process X; is not an F;-martingale.
However, it turns out that we can construct an F;-martingale from X;
by multiplying by a suitable exponential martingale. More precisely,
define

Y, = Xi M,

where
t t

M; = exp <— O/u(r,w)dBT - go/zﬂ(r,w)dr) :

Use It6’s formula to prove that

Y; is an Fi-martingale .
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Remarks:

a) Compare with Exercise 4.11 ¢).

b) This result is a special case of the important Girsanov Theorem.
It can be interpreted as follows: {X;}:<7 is a martingale w.r.t the
measure @ defined on Fr by

dQ = MpdP (T < ) .

See Section 8.6.

4.14.* In each of the cases below find the process f(t,w) € V[0, T] such that
(4.3.6) holds, i.e.

T
F —|— f t w dBt
0/
T
a) F(w) = Bp(w) b) F(w) = ({Bt
O Pw) = B (w) d)F()BB()
e) F(w)= P f) F(w) = sin Br(w)

4.15. Let x > 0 be a constant and define

X, =3 +1iB)*;  t>0.
Show that

dXy = 1xPat + x}%dB,;  Xo=1=.

4.16. By Exercise 3.8 we know that if Y is an Fp-measurable random variable
such that E[|Y|?] < oo then the process
M, .= E[Y|F] ; 0<t<T
is a martingale with respect to {_7:,5}0<t<T.

a) Show that E[M?] < oo for all ¢ € [0,T]. (Hint: Use Exercise 3.16.)

b) According to the martingale representation theorem (Theorem 4.3.4)
there exists a unique process g(t,w) € V(0,T') such that

M, = E[Mo] +/g(s,w)dB(s) . tefo,T]
0
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Find g in the following cases:
(i) Y(w)=B*(T)
(i) V(w)=B*T)
(iii) Y(w) = exp(6B(T)); 0 € R is constant.
(Hint: Use that exp(cB(t) — 202t) is a martingale.)

4.17. Here is an alternative proof of Theorem 4.3.3 which, in particular, does
not use the complex analysis argument of Lemma 4.3.2. The idea of the
proof is taken from Davis (1980), where it is extended to give a proof
of the Clark representation formula. (See the Remark before Theorem
4.34.):

In view of Lemma 4.3.1 it is enough to prove the following:

Let Y = ¢(Byy,...,By;,) where 0 < t; < t3 < -+ < t, < T and
¢» € C5°(R™). We want to prove that there exists f(t,w) € V(0,7T)
such that
T
Y = E[Y] +/f(t)dB(t). (4.3.14)
0
a) Use the It6 formula to prove that if w = w(t, z1, ..., 2%) : [tk—1, tk] X

RF — R is once continuously differentiable with respect to t and
twice with respect to xy, then

w(tv B(tl)u cee 7B(tk—1)u B(t))
= w(tk,l, B(tl), ceey B(tkfl), B(tkfl))

+/§_;1;(S,B(t1), ’B(tk—l)aB(S))dB(s)

t

ow 0%w
+/(E + %8—{5%)(8,3@1), - ,B(tk_l),B(S))dS; te [tk—latk]-

th—1

b) Fork = 1,...,n define functions vy, : [tx_1, ;] x R¥ — R inductively

as follows:
vy 4 10%v, _ )
ottt =0 ottty 395
Un(tnuxlu"'uxn):(b(xla"'uxn) 3
and, fork=n—-1,n—-2,...,1,
2
a—gf"f‘%%—é&:o ot <t <tg
vk(tk,xl,...,xk):karl(tk,:z:l,...,xk,:zrk)

(4.3.16)



Exercises 63
Verify that the solution of (4.3.16) is, for ¢ € [tx_1, ti]
vg(t, 21, ..., Tk) (4.3.17)

2 —1)2
= (2m(ty — t))—1/2/vk+1(tk,x1, ce oy Xk, Y) EXD ( — (Q(ﬁkf’z) )dy
R

(=E vk (tr, 21, ..., Tk, B,E:fz)] (compare with Theorem 8.1.1)).
In particular, w = vy, satisfies the smoothenss conditions of a).

¢) Show that the representation (4.3.14) holds with
— (¢, B(t1),...,B(tg-1), B(t)) for t € [tr—1,tk).

[Hint: By (4.3.15) and a) we have

O(B(t1), ..., B(tn)) = vn(tn, B(t1), ...
= ’Un(tnfl, B(tl), ey B(tnfl), B(tnfl))

tn
vy,

+ / T%(S’B(tﬂ""’B(tnfl)vB(S))dB(s)

oo
—~

~
3
~
=

tn—1
=Up—1(tn—1,B(t1),...,B(tn-1))

2

+ / g_;}:(s’B(tl)"B(tn—l)aB(S))dB(s)

tn—1

Now repeat the procedure with v,,—1(t,—1, B(t1), ..., B(tn—1)) and
proceed by induction.]
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Stochastic Differential Equations

5.1 Examples and Some Solution Methods

We now return to the possible solutions X;(w) of the stochastic differential
equation

dX,

W = b(t,Xt) + O'(t, Xt)Wt, b(t,.I) S :R,7 O'(t, ZZ?) S R (511)

where W; is 1-dimensional “white noise”. As discussed in Chapter 3 the Ito
interpretation of (5.1.1) is that X, satisfies the stochastic integral equation

t t
X = Xo+ /b(s, Xs)ds+ [ o(s, Xs)dBs
0 0
or in differential form
dXt = b(t,Xt)dt-i-U(t,Xt)dBt . (512)

Therefore, to get from (5.1.1) to (5.1.2) we formally just replace the white

noise Wy by dﬁt in (5.1.1) and multiply by dt. It is natural to ask:

(A) Can one obtain existence and uniqueness theorems for such equations?
What are the properties of the solutions?
(B) How can one solve a given such equation?

We will first consider question (B) by looking at some simple examples,
and then in Section 5.2 we will discuss (A).

It is the It6 formula that is the key to the solution of many stochastic
differential equations. The method is illustrated in the following examples.

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_5, © Springer-Verlag Berlin Heidelberg 2013
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Example 5.1.1 Let us return to the population growth model in Chapter 1:

dN, .
d_tt = a;Ny , Ny given

where a; = r + aW;, W; = white noise, o = constant.
Let us assume that r; = r = constant. By the It6 interpretation (5.1.2)
this equation is equivalent to (here o(t,z) = ax)

dN; = rNydt + aNdB; (5.1.3)
or
@ =rdt + adB; .
Hence t
t
/dfv\f —rt+aB, (By=0). (5.1.4)
0

To evaluate the integral on the left hand side we use the Ito formula for the
function

g(t,x) =lnx; x>0
and obtain
1 1 )
d(In N;) = N dN; + %( - N_E> (dNy)
dNy 1 212 dN: | o
=— - ca*Nidt = — — 5a°dt .
N, an? ¢ N, 2“
Hence N
¢ 2
Tt = d(ln Nt) + %Oé dt
so from (5.1.4) we conclude
N, 1
ln F; = (T’ — 50[2)t —|— O[Bt
or
N = Noexp((r — 2a®)t + aBy) . (5.1.5)

For comparison, referring to the discussion at the end of Chapter 3, the
Stratonovich interpretation of (5.1.3),

dN, =rN,dt + aN, o dB, ,
would have given the solution
N; = Nyexp(rt + aBy) . (5.1.6)
The solutions Ny, N; are both processes of the type
X: = Xoexp(pt + aBy) (4, a constants) .
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Such processes are called geometric Brownian motions. They are important
also as models for stochastic prices in economics. See Chapters 10, 11, 12.

Remark. It seems reasonable that if By is independent of Ny we should have
E[N,] = E[Nole™, (%)

i.e. the same as when there is no noise in a;. To see if this is indeed the case,
we let
th _ eaBt

and apply It6’s formula:
dY; = ae*PtdB, + 1a”ePrdt

or
t

t
Yt:Yo—l—a/eo‘Bsst—i—%az/eo‘Bsds.
0 0

t
Since E[[ e*B:dBy] = 0 (Theorem 3.2.1 (iii)), we get
0

t
EY) = ElYa) + o [ EY.Jds
0
i.e. J
SE[Y] = Ja* Y], B[y = 1.
SO 1.2
E[Y't] — €§a t ,
and therefore — as anticipated — we obtain
E[N{] = E[Nole™ .
For the Stratonovich solution, however, the same calculation gives

E[N;] = E[Nyert2edt

Now that we have found the explicit solutions N; and N; in (5.1.5), (5.1.6)

we can use our knowledge about the behaviour of B; to gain information on

these solutions. For example, for the It6 solution N; we get the following:

(i) Ifr> 1a? then N, — 0o as t — oo, as.

(i) If r < 1a? then N; — 0 as t — oo, a.s.

(iii) If r = %oﬂ then N; will fluctuate between arbitrary large and arbitrary
small values as t — oo, a.s.
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These conclusions are direct consequences of the formula (5.1.5) for N;
together with the following basic result about 1-dimensional Brownian motion
Btl

Theorem 5.1.2 (The law of iterated logarithm)

B
lim sup —t =1 as.

t—oo /2t loglogt

For a proof we refer to Lamperti (1977), §22.

For the Stratonovich solution N; we get by the same argument that Ny — 0
a.s. if r <0 and N; — oo a.s. if r > 0.

Thus the two solutions have fundamentally different properties and it is an
interesting question what solution gives the best description of the situation.

Example 5.1.3 Let us return to the equation in Problem 2 of Chapter 1:

1
LQ) + RQ; + 5Qu = Fy = G+ aWy . (5.1.7)

We introduce the vector

X =X(tw) = [Xl] = [gi] and obtain

Xo
X =Xz
{Lxg =-RXy— $ X1+ G, + oW, (5:1.8)
or, in matrix notation,
dX =dX(t) = AX(t)dt + H(t)dt + KdB; (5.1.9)

where

o= (f) (4 L) o= () - (2). o

and B; is a 1-dimensional Brownian motion.
Thus we are led to a 2-dimensional stochastic differential equation. We
rewrite (5.1.9) as

exp(—At)dX (t) — exp(—At)AX (t)dt = exp(—At)[H (t)dt + KdB;], (5.1.11)
where for a general n x n matrix F' we define exp(F) to be the n x n matrix

o0
given by exp(F) = Y. -LF™. Here it is tempting to relate the left hand side
n=0

to
d(exp(—AH) X (¢)) .

To do this we use a 2-dimensional version of the Ité formula (Theorem 4.2.1).
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Applying this result to the two coordinate functions g1, g2 of
g:[0,00) x R?* — R? given by g(t,z1,22) = exp(—At) (il) )
2

we obtain that

d(exp(—At) X (t)) = (—A) exp(—At) X (t)dt 4 exp(—At)d X (¢) .
Substituted in (5.1.11) this gives

exp(—At) X (t) — X(0) = /exp(—As)H(s)ds + /eXp(—AS)KdBS
0 0

or

X (t) = exp(At)[X(0) + exp(—At) K B;

-I—/exp(—As)[H(s) + AK B,|ds] , (5.1.12)
0

by integration by parts (Theorem 4.1.5).

Example 5.1.4 Choose X; = B;, 1-dimensional Brownian motion, and
g(t,r) = " = (cosz,sinz) € R? for x e R.

Then

Y (t) = g(t, X;) = e'B* = (cos By, sin By)
is by It0’s formula again an It0 process.
Its coordinates Y7, Y satisfy
dY1(t) = —sin(By)dB; — % cos(By)dt
dYa(t) = cos(B;)dB; — % sin(By)dt .

Thus the process Y = (Y1, Y2), which we could call Brownian motion on the
unit circle, is the solution of the stochastic differential equations

dY, = —1Y,dt - Y»dB
{ o . (5.1.13)

dYs = —3Yadt + Y1dB; .

Or, in matrix notation,

dY (t) = —1Y (t)dt + KY (t)dB; ,  where K = ((1) _01> :
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Other examples and solution methods can be found in the exercises of this
chapter.

For a comprehensive description of reduction methods for 1-dimensional
stochastic differential equations see Gard (1988), Chapter 4.

5.2 An Existence and Uniqueness Result

We now turn to the existence and uniqueness question (A) above.

Theorem 5.2.1 (Existence and uniqueness theorem for stochastic

differential equations).
Let T > 0 and b(-,-):[0,T] x R® — R™,0(-,-):[0,T] x R™ — R"™ ™ be

measurable functions satisfying
b(t,2)| + |o(t,2)] < C(1+|z]);  z€R", t€[0,T] (5.2.1)
for some constant C, (where |o|?> =" |044]?) and such that
|b(t,z) —b(t,y)| + |o(t,z) —o(t,y)] < Dz —y|; =z,yeR" t€]0,T] (5.2.2)

for some constant D. Let Z be a random variable which is independent of the
o-algebra Fim generated by Bs(+), s > 0 and such that

E|Z]*] < .
Then the stochastic differential equation
dX; = b(t, Xy)dt + o(t, X;)dBy , 0<t<T, Xog=Z (5.2.3)
has a unique t-continuous solution X;(w) with the property that

Xi(w) is adapted to the filtration FZ generated by Z and Bs(+); s <t
(5.2.4)

and

E[/T|Xt|2dt} <00. (5.2.5)
0

Remarks. Conditions (5.2.1) and (5.2.2) are natural in view of the following
two simple examples from deterministic differential equations (i.e. o = 0):

a) The equation
dX,

— = X2 Xo=1 (5.2.6)
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corresponding to b(x) = z? (which does not satisfy (5.2.1)) has the (unique)

solution .

Tt =ts
Thus it is impossible to find a global solution (defined for all ¢) in this case.
More generally, condition (5.2.1) ensures that the solution X;(w) of (5.2.3)

does not explode, i.e. that | X;(w)| does not tend to oo in a finite time.

b) The equation

dX 2/3
=3X;
dt

has more than one solution. In fact, for any a > 0 the function

<
Xt:{ 0 for t<a

Xo=0 (5.2.7)

(t—a)® for t>a
solves (5.2.7). In this case b(z) = 3z%/% does not satisfy the Lipschitz
condition (5.2.2) at = = 0.
Thus condition (5.2.2) guarantees that equation (5.2.3) has a unique so-
lution. Here uniqueness means that if X;(t,w) and X3(¢,w) are two t-
continuous processes satisfying (5.2.3), (5.2.4) and (5.2.5) then

X1(t,w) = Xo(t,w) forall t<T, as. (5.2.8)

Proof of Theorem 5.2.1. The uniqueness follows from the It6 isometry
(Corollary 3.1.7) and the Lipschitz property (5.2.2): Let X;(t,w) = X¢(w)
and Xo(t,w) = X;(w) be solutions with initial values Z, Z respectively, i.e.
X1(0,w) = Z(w), X5(0,w) = Z(w),w € £2. For our purposes here we only need
the case Z = Z , but the following more general estimate will be useful for us
later, in connection with Feller continuity (Chapter 8).

Put a(s,w) = b(s, X,) — b(s, X,) and v(s,w) = o(s, X,) — o(s, X;). Then

E[ X, — X% _E{<Z—2+/ads+/t”yst>2}

0

< 3B(|Z - ZP) +3E[<jad5) ]”EKZWBS)Z]

0
t t
< 3E[|Z - Z]? +3tE[/a2ds} +3E{/72ds]
0 0

<3E[|Z - ZP)+ 31 +t)D* | E[|Xs — X,|*]ds .

o—_ .
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So the function

v(t) = B[ X, — X,[];  0<t<T
satisfies
t
v(t) < F+ A/v(s)ds ) (5.2.9)
0

where F = 3E[|Z — Z|?] and A =3(1+T)D?.
By the Gronwall inequality (Exercise 5.17) we conclude that

v(t) < Fexp(At) . (5.2.10)

Now assume that Z = Z. Then F = 0 and so v(t) = 0 for all ¢ > 0. Hence

P[|Xt—)?t|:0 forall te QN[0,T]]=1,

where Q denotes the rational numbers.
By continuity of ¢ — |X; — X¢| it follows that

PIX1(t,w) — Xa(t,w)| =0  forall te[0,T]] =1, (5.2.11)

and the uniqueness is proved.

The proof of the existence is similar to the familiar existence proof for ordi-
nary differential equations: Define Yt(o) = Xo and Yt(k) = Yt(k) (w) inductively
as follows

t t
v, = x, +/b(s,§g<k>)ds+/o(s,Y;’f))st . (5.2.12)
0 0

Then, similar computation as for the uniqueness above gives

t
B[V —v¥PR) < (14 1)3D? / E[Y® — Y*D2)ds
0

for k>1,t<T and

B, - v71?) < 2022 E[(1 + | Xo|)?]
+2C%t(1 + E[| Xo[*)) < At
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where the constant A; only depends on C,T and E[|Xo|?]. So by induction
on k we obtain
A§+1tk+l

k+1 k
EHY;E( +1) —Y;( )|2] <

< W ; k>0,tel0,7T) (5.2.13)

for some suitable constant A, depending only on C, D, T and E[|Xo|?].
Hence, if A denotes Lebesgue measure on [0,7] and m > n > 0 we get

m—1
HYt(m) _ Yt(n)Hp(AxP) - H 3 (v Y;f(k))‘
k=n

L2(Ax P)
2N [y )y N (g Ty<k+1> OIS
—ZHt ot HLZ(AXP)_Z([ Y, RO D

k=n k=n 0

1

T

m— k+1 k+1 m— k+1mk+2

t 1/2 ASTHT 1/2

< E = E 2 - — 2.14

o / (k+1)! = ( (k+2)! ) 0 (5 )
0 =n

=n

as m,n — oo.
Therefore {Yt )}n o is a Cauchy sequence in L?(Ax P). Hence {Yt }
is convergent in L?(\ x P). Define

n=0
X, = lim ;"™ (limit in Z2(\ x P)).

Then X; is FZ-measurable for all ¢, since this holds for each Yt("). We prove
that X satisfies (5.2.3):
For all n and all ¢ € [0,T] we have

t t
Y;(nJrl) - X, +/b(&y's(n))ds_i_/O-(S’Y'S(n))dBS .
0 0

Now let n — oo. Then by the Holder inequality we get that

t

t
/b(s, Y™)ds — /b(s,XS)ds in L?(P)
0 0

and by the Ito isometry it follows that

t

t
/a(s,}fS("))st - /a(s,XS)dBS in L?(P).
0

0
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We conclude that for all ¢ € [0, T] we have

t t

X = X0+/b(s,XS)ds—i-/a(s,Xs)st a.s. (5.2.15)
0 0
i.e. X satisfies (5.2.3).

It remains to prove that X; can be chosen to be continuous. By Theorem
3.2.5 there is a continuous version of the right hand side of (5.2.15). Denote

this version by Xt. Then )N(t is continuous and

¢ ¢
X, = Xo+ /b(s,Xs)ds + /O’(S,Xs)st for a.a. w

(=)
(=)

¢
=Xo+ /b(s,)?s)ds + /a(s,)?s)st for a.a. w.
0 0

-~

5.3 Weak and Strong Solutions

The solution X; found above is called a strong solution, because the version
B; of Brownian motion is given in advance and the solution X; constructed
from it is FZ-adapted. If we are only given the functions b(¢,z) and o(t, )
and ask for a pair of processes ((Xy, By), H;) on a probability space (£2, H, P)
such that (5.2.3) holds, then the solution X; (or more precisely (X, B;)) is
called a weak solution. Here H; is an increasing family of o-algebras such that
Xt is H;-adapted and Bt is an ‘Hy-Brownian motion, i.e. By is a Brownian
motion, and B; is a martingale w.r.t. H; (and so E[Bt+h — Bt|Ht] =0 for all
t,h > 0). Recall from Chapter 3 that this allows us to define the It6 integral
on the right hand side of (5.2.3) exactly as before, even though )N(t need not
be FZ-adapted.

A strong solution is of course also a weak solution, but the converse is not
true in general. See Example 5.3.2 below.

The uniqueness (5.2.8) that we obtain above is called strong or pathwise
uniqueness, while weak uniqueness simply means that any two solutions (weak
or strong) are identical in law, i.e. have the same finite-dimensional distri-
butions. See Stroock and Varadhan (1979) for results about existence and
uniqueness of weak solutions. A general discussion about strong and weak
solutions can be found in Krylov and Zvonkin (1981).

Lemma 5.3.1 If b and o satisfy the conditions of Theorem 5.2.1 then we
have
A solution (weak or strong) of (5.2.3) is weakly unique .
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Sketch of proof. Let ((Xy, By),Hy) and (X, By), Hy) be two weak solutions.
Let X; and Y; be the strong solutions constructed from Et and Et, respectively,
as above. Then the same uniqueness argument as above applies to show that
X = )N(t and Y; = )A(t for all ¢, a.s. Therefore it suffices to show that X; and
Y; must be identical in law. We show this by proving by induction that if
Xt(k), Yt(k) are the processes in the Picard iteration defined by (5.2.12) with
Brownian motions Et and Et, then

(X", By) and (v, By)
have the same law for all k. O

This observation will be useful for us in Chapter 7 and later, where we will
investigate further the properties of processes which are solutions of stochastic
differential equations (It diffusions).

From a modelling point of view the weak solution concept is often natural,
because it does not specify beforehand the explicit representation of the white
noise. Moreover, the concept is convenient for mathematical reasons, because
there are stochastic differential equations which have no strong solutions but
still a (weakly) unique weak solution. Here is a simple example:

Example 5.3.2 (The Tanaka equation) Consider the 1-dimensional sto-
chastic differential equation

dX; =sign(X,)dB;;  Xo=0. (5.3.1)

where
+1if >0

sign(z) = {—1 if 2<0.

Note that here o(t,2) = o(x) = sign(z) does not satisfy the Lipschitz con-
dition (5.2.2), so Theorem 5.2.1 does not apply. Indeed, the equation (5.3.1)
has no strong solution. To see this, let Et be a Brownian motion generating
the filtration F; and define

t

Y, = /sign(és)dﬁs .
0

By the Tanaka formula (4.3.12) (Exercise 4.10) we have
Y, = | B| — | By| — Ly(w)

where L;(w) is the local time for By(w) at 0. It follows that Y; is measurable
w.r.t. the o-algebra G; generated by |l§5()|, s < t, which is clearly strictly
contained in ]?t. Hence the c-algebra N; generated by Yi(-); s < t is also
strictly contained in Fe.
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Now suppose X; is a strong solution of (5.3.1). Then by Theorem 8.4.2
it follows that X; is a Brownian motion w.r.t. the measure P. (In case the
reader is worried about the possibility of a circular argument, we point out
that the proof of Theorem 8.4.2 is independent of this example!) Let M; be
the o-algebra generated by X(-); s < t. Since (sign(z))? = 1 we can rewrite
(5.3.1) a

dBt = sign(Xt)dXt .

By the above argument applied to Et = Xy, Y; = B; we conclude that F; is
strictly contained in M.

But this contradicts that X; is a strong solution. Hence strong solutions
of (5.3.1) do not exist.

To find a weak solution of (5.3.1) we simply choose X; to be any Brownian
motion Et. Then we define Et by

t t
/ s1gn / sign(X
0 0

dét = sign(Xt)dXt .

i.e.

Then _
dXt = sign(Xt)dBt N

so X; is a weak solution.
Finally, weak uniqueness follows from Theorem 8.4.2, which — as noted

above — implies that any weak solution X; must be a Brownian motion w.r.t.
P.

Exercises

5.1. Verify that the given processes solve the given corresponding stochastic
differential equations: (B; denotes 1-dimensional Brownian motion)
(l) Xt = Bt solves dXt 1Xtdt + XtdBt

i) X; = ; Bg = 0 solves
1+t

1
Xtdt + —dBt y XO =0

dX; = —
¢ 1+t 1+1¢

(iii) X; = sin B; with By = a € (=%, §) solves

dth—%Xtdt—i— \/1—X2dB; for t< inf{s>0;BS¢ [—%, %}}
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5.3.%

5.4.%

5.5.
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) solves

(iv) (Xu1(t), Xa(t)) =

dX, 0
dXJ || x| am

(t,e

(v) (X1(t), X2(t)) = (cosh(B;),sinh(By)) solves
d
dX

X4 11X, Xo |
| =g e [ e

X3

A natural candidate for what we could call Brownian motion on the
ellipse

22 g2
{(x’y);ﬁ—i_b_z:l} where a > 0,0 >0

is the process X; = (X1(t), X2(¢)) defined by

X1(t) =acosBy, Xa(t)=bsinB;

where By is 1-dimensional Brownian motion. Show that X; is a solution
of the stochastic differential equation

dX; = —1X;dt + MX,dB,

0 —o
where M = [ y L ] :

20

a
Let (Bi,...,B,) be Brownian motion in R", «1,...,q, constants.
Solve the stochastic differential equation

dX, = rX,dt + Xt(z akdBk(t)); Xo>0.
k=1
(This is a model for exponential growth with several independent white
noise sources in the relative growth rate).

Solve the following stochastic differential equations:
. dx;| |1 1 0 dBy
0[] = o)+ o 5] [35]
(i) dX; = Xdt+ dB;
(Hint: Multiply both sides with “the integrating factor” e~

compare with d(e™tX}))
(111) dXt = —Xtdt + €_tdBt.

t and

a) Solve the Ornstein-Uhlenbeck equation (or Langevin equation)
dXt = /LXtdt + UdBt

where p, o are real constants, B, € R.
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5.7.%

5.8.%

5.9.

5.10.
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The solution is called the Ornstein-Uhlenbeck process. (Hint: See
Exercise 5.4 (ii).)
b) Find E[X;] and Var[X,]: = E[(X; — E[X,])?].

Solve the stochastic differential equation

dY; = rdt + aY,dB;
where 7, o are real constants, B; € R.
(Hint: Multiply the equation by the ’integrating factor’
Fy, = exp ( —aB; + %oﬁt) )
The mean-reverting Ornstein-Uhlenbeck process is the solution X; of
the stochastic differential equation
dXt = (m — Xt)dt + O'dBt

where m, o are real constants, B, € R.

a) Solve this equation by proceeding as in Exercise 5.5 a).
b) Find E[X;] and Var[X,]: = E[(X; — E[X}])?].

Solve the (2-dimensional) stochastic differential equation

Xm (t) = X2 (t)dt + OédBl (t)
dX5(t) = — X1 (t)dt + BdBs(t)

where (Bj(t), B2(t)) is 2-dimensional Brownian motion and «, 3 are
constants.

This is a model for a vibrating string subject to a stochastic force. See
Example 5.1.3.

Show that there is a unique strong solution X; of the 1-dimensional
stochastic differential equation

dX; =In(1+ X})dt + X

{Xx¢>0}

XidBy , Xo=a€eR.

Let b, o satisfy (5.2.1), (5.2.2) and let X; be the unique strong solution
of (5.2.3). Show that
E[|X:?] < Ky -exp(Kat)  for t <T (5.3.2)

where K1 = 3E[|Z|?] + 6C2T(T + 1) and K, = 6(1 + T)C2.
(Hint: Use the argument in the proof of (5.2.10)).
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Remark. With global estimates of the growth of b and ¢ in (5.2.1) it is
possible to improve (5.3.2) to a global estimate of E[|X;|?]. See Exercise 7.5.

5.11.* (The Brownian bridge).
g
For fixed a,b € R consider the following 1-dimensional equation

b-Y,

dy; =
T

dt+dB;; 0<t<l1l, Yy=a. (5.3.3)

Verify that

B,
1—5"

t
Yt:a(l—t)+bt+(1—t)/ 0<t<l1 (5.3.4)
0

solves the equation and prove that }m%Y} = b a.s. The process Y; is

called the Brownian bridge (from a to b). For other characterizations
of Y; see Rogers and Williams (1987, pp. 86-89).

5.12.* To describe the motion of a pendulum with small, random perturba-
tions in its environment we try an equation of the form

v+ A +eW)y=0;  y(0),y(0) given,

where W; = dftt is 1-dimensional white noise, € > 0 is constant.

a) Discuss this equation, for example by proceeding as in Exam-
ple 5.1.3.
b) Show that y(t) solves a stochastic Volterra equation of the form

t t

y(t) = y(0) + 4/ (0) -t + / alt,r)y(r)dr + / (¢, 7)y(r)dB,

0 0
where a(t,r) =r —t, y(t,r) = e(r — t).
5.13. As a model for the horizontal slow drift motions of a moored floating

platform or ship responding to incoming irregular waves John Grue
(1989) introduced the equation

x4+ apx} + wrzy = (Tp — apxl)nWy (5.3.5)
where W; is 1-dimensional white noise, ag, w, Ty, ap and n are constants.

(i) Put X; = [if} and rewrite the equation in the form
t

dX; = AXydt + KX:dB; + MdB; ,
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where

0 1 0 0 0
A—{_wz —ao}’ K—aon[o _1] and M—Ton[l}.

ii) Show that X; satisfies the integral equation
(ii) gral eq
t t
X, = / eI K X, dB, + / eASIMdAB,  if Xo=0.
0 0

(ili) Verify that

eAt = 65 {(Ecos €t + Asin &6)T + Asin €t}

2
where A = 2 ¢ = (w? — %2)2 and use this to prove that

2 1
/ 0 — QYs)gi—sdBs (5.3.6)
0
and
t
77/ To — aoys)hi—sdBs , with y: = a} | (5.3.7)
0
where

1 = glm(ec!)
hy = %Im(geft) ., C==A+iE (i=V-1).

So we can solve for y; first in (5.3.7) and then substitute in (5.3.6)
to find ;.

5.14. If (B1, Bs) denotes 2-dimensional Brownian motion we may introduce
complex notation and put

B(t):= B1(t) +iB2(t) (i=+v-1).
B(t) is called complex Brownian motion.
(i) If F(2) = u(z) + iv(z) is an analytic function i.e. F satisfies the
Cauchy-Riemann equations
Oou Ov Ou ov

9 oy’ 8_y:_%; =T+
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and we define

prove that
dZ; = F'(B(t))dB(t) , (5.3.8)

where F” is the (complex) derivative of F. (Note that the usual
second order terms in the (real) It6 formula are not present in
(5.3.8)!)

(ii) Solve the complex stochastic differential equation

dZ, = aZdB(t) (a constant) .

For more information about complex stochastic calculus involving
analytic functions see e.g. Ubge (1987).

(Population growth in a stochastic, crowded environment)
The nonlinear stochastic differential equation

is often used as a model for the growth of a population of size X; in
a stochastic, crowded environment. The constant K > 0 is called the
carrying capacity of the environment, the constant » € R is a measure
of the quality of the environment and the constant 8 € R is a measure
of the size of the noise in the system.

Verify that

1
X, _ exp{(rK — 358%)t + 8B} : t>0 (5.3.10)

=1+ rftexp{(rK — 3B%)s + BB,}ds
0

is the unique (strong) solution of (5.3.9). (This solution can be found by
performing a substitution (change of variables) which reduces (5.3.9)
to a linear equation. See Gard (1988), Chapter 4 for details.)

5.16.* The technique used in Exercise 5.6 can be applied to more general

nonlinear stochastic differential equations of the form
dXt = f(t, Xt)dt + C(t)XtdBt 5 XQ =X (5311)

where f: RxR — R and ¢: R — R are given continuous (deterministic)
functions. Proceed as follows:
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Define the ’integrating factor’

t

F; = Fy(w) = exp (— /tc(s)st +1 /cz(s)ds> . (5.3.12)
0 0

Show that (5.3.11) can be written

d(FyX:) = Fy - f(t, Xy)dt . (5.3.13)
Now define
Yi(w) = Fy(w)Xt(w) (5.3.14)
so that
X, =F'Y;. (5.3.15)

Deduce that equation (5.3.13) gets the form

dYi(w)
dt
Note that this is just a deterministic differential equation in the
function ¢ — Yi(w), for each w € 2. We can therefore solve (5.3.16)
with w as a parameter to find Yy(w) and then obtain X;(w) from
(5.3.15).
Apply this method to solve the stochastic differential equation

= R f6F @Y%) Yo—a.  (5.3.16)

1
dX; = ?dt-i- aXidB; N Xo=2>0 (5317)
t

where « is constant.
Apply the method to study the solutions of the stochastic differential
equation

where a and v are constants.
For what values of v do we get explosion?

5.17. (The Gronwall inequality)
Let v(t) be a nonnegative function such that

¢
v(t)SC—i-A/v(s)ds for 0<t<T
0

for some constants C, A where A > 0. Prove that

v(t) < Cexp(At) for0<t<T. (5.3.19)
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¢
[Hint: We may assume A # 0. Define w(t) = [v(s)ds . Then w'(t) <

0
C + Aw(t). Deduce that
C
w(t) < Z(exp(At) -1) (5.3.20)
by considering f(t): = w(t) exp(—At).
Use (5.3.20) to deduce (5.3.19.)]

The geometric mean reversion process X; is defined as the solution of
the stochastic differential equation

dXt = Ii(O& — 10gXt)Xtdt + O'XtdBt 3 XO =xz>0 (5321)

where k, a, 0 and x are positive constants.
This process was used by J. Tvedt (1995) to model the spot freight rate
in shipping.

a) Show that the solution of (5.3.21) is given by

X; :=exp (ef"tlnx—k (a 5 )(l—e D)

¢ (5.3.22)
+oe "t [erdB, )

0

[Hint: The substitution
Y =log X,
transforms (5.3.21) into a linear equation for Y]
b) Show that
2 2 1— —2kt
E[X;] = exp (ef’“t lnz+ (a - ;—K) (1—e ") + %).

Let Y( ) be the process defined inductively by (5.2.12). Show that

(n)
R
Yt(n) is continuous, this gives a direct proof that X; can be chosen to

be continuous in Theorem 5.2.1.
[Hint: Note that

is uniformly convergent for ¢ € [0, 7], for a.a. w. Since each

sup [V —y ) < /|b (s, Y)Y —b(s, Y *=D|ds
o<t<T

+ sup ’/ 5, YO (5)) — o(s, YF~1))dB,
0<t<T
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Hence
P[ sup D/t(k‘f‘l) _ }/t(k)| > 9~k
0<t<T
T
< P[ [ 1bGs. ) = bGs, Y 0)ds > 2]
0

+P[ sup ’/ 5, Y M) _ (s,Y;k*l)))dBS’ >2*’H]
0<t<T

Now use the Chebychev inequality, the Holder inequality and the
martingale inequality (Theorem 3.2.4), respectively, combined with
(5.2.13), to prove that
A T)k+1
Pl sup (YD _y®)| 5 9=k (A3
O§t£T| ! ol - (k+ 1)

for some constant A < oo. Therefore the result follows by the Borel-
Cantelli lemma.]
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The Filtering Problem

6.1 Introduction

Problem 3 in the introduction is a special case of the following general filtering
problem:

Suppose the state X; € R™ at time ¢ of a system is given by a stochastic
differential equation

dX,

W = b(t,Xt) + O'(t,Xt)Wt 5 t Z 0 5 (611)

where b: R — R, o: R — R"*? satisfy conditions (5.2.1), (5.2.2) and
Wy is p-dimensional white noise. As discussed earlier the It6 interpretation of
this equation is

(system) dXt = b(t, Xt)dt + O'(t, Xt)dUt 5 (612)

where U, is p-dimensional Brownian motion. We also assume that the distri-
bution of X is known and independent of U;. Similarly to the 1-dimensional
situation (3.3.6) there is an explicit several-dimensional formula which ex-
presses the Stratonovich interpretation of (6.1.1):

dXt = b(t, Xt)dt + O'(t, Xt) e} dUt

in terms of It6 integrals as follows:

dXt = E(t, Xt)dt + O'(t, Xt)dUt y where
P n
~ 90+
— b 1 Y g ;
bi(t,z) = bi(t,z) + 5 jgzl ,}Zl D, O 1<i<n. (6.1.3)

(See Stratonovich (1966)). From now on we will use the It6 interpretation
(6.1.2).

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_6, © Springer-Verlag Berlin Heidelberg 2013
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In the continuous version of the filtering problem we assume that the
observations H; € R™ are performed continuously and are of the form

Ht = C(f, Xt) + ’Y(t,Xt) . Wt 5 (614)

where c: R"t! — R™, v:R"T! — R™*" are functions satisfying (5.2.1) and
W; denotes r-dimensional white noise, independent of U; and Xj.
To obtain a tractable mathematical interpretation of (6.1.4) we introduce

t
Z, = /Hsds (6.1.5)
0

and thereby we obtain the stochastic integral representation
(observations)  dZ; = c(t, Xy)dt +y(t, X)dVi, Zy=0 (6.1.6)

where V; is r-dimensional Brownian motion, independent of U; and Xj.

Note that if H, is known for 0 < s < ¢, then Z, is also known for 0 <
s <t and conversely. So no information is lost or gained by considering Z; as
our “observations” instead of H;. But this allows us to obtain a well-defined
mathematical model of the situation.

The filtering problem is the following:

Given the observations Z; satisfying (6.1.6) for 0 < s < ¢, what is the best
estimate X; of the state X; of the system (6.1.2) based on these observations?

As we have pointed out earlier, it is necessary to find a precise mathemat-
ical formulation of this problem: By saying that the estimate X; s based on
the observations {Zs; s <t} we mean that

X.(-) is Gi-measurable,
where G; is the o-algebra generated by {Z,(-),s <t}.  (6.1.7)

By saying that )A(t is the best such estimate we mean that
/|Xt — X, 2dP = E[|X; - X,|?] = inf{E[| X, - Y[*; Y €K} . (6.1.8)
Q

Here — and in the rest of this chapter — (2, F, P) is the probability space
corresponding to the (p + r)-dimensional Brownian motion (U, V;) starting
at 0, F denotes expectation w.r.t. P and

K:i=Kiy=K(Z,t):={YV:2—R"; YEL?*(P) and Y is Gi-measurable} ,
(6.1.9)
where L%(P) = L*(12, P).
Having found the mathematical formulation of our problem, we now start
to study the properties of the solution X;.
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We first establish the following useful connection between conditional ex-
pectation and projection:

Lemma 6.1.1 Let H C F be a o-algebra and let X € L?(P) be F-measurable.
Put N ={Y € L?(P);Y is H-measurable} and let Py denote the (orthogonal)
projection from the Hilbert space L?(P) into the subspace N'. Then

Prv(X) = E[X|H] .

Proof. Recall (see Appendix B) that E[X|H] is by definition the P-unique
function from {2 to R such that

(i) E[X]|H] is H-measurable

(i) [E[X|H]dP = [ XdP for all A€ H.
A A
Now Py (X) is H-measurable and

/Y(X —Py(X))dP =0 forall Y € N.
2

In particular,

/(X _Pu(X))dP =0 forall A€H
A

i.e.

/PN(X)dP = /XdP forall AeH.
A A

Hence, by uniqueness, Py (X) = E[X|H]. O

From the general theory of Hilbert spaces we know that the solution X,
of the problem (6.1.8) is given by the projection Pi,(X}). Therefore Lemma
6.1.1 leads to the following useful result:

Theorem 6.1.2 R
Xt =P, (Xt) = E[X¢|Gy] .

This is the basis for the general Fujisaki-Kallianpur-Kunita equation of fil-
tering theory. See for example Bensoussan (1992), Davis (1984) or Kallianpur
(1980).

6.2 The 1-Dimensional Linear Filtering Problem

From now on we will concentrate on the linear case, which allows an explicit
solution in terms of a stochastic differential equation for X, (the Kalman-Bucy

filter):
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In the linear filtering problem the system and observation equations have
the form:

(linear system) dX;=F(t) X dt+C(t)dUy;
F(t)eR™", C(t)eR™™P (6.2.1)

(linear observations)  dZ;=G(t) X:dt+ D(t)dVy;
G@t)eR™ ", D(t)eR™*" (6.2.2)

To be able to focus on the main ideas in the solution of the filtering
problem, we will first consider only the 1-dimensional case:

(linear system) dX, = F(t)X,dt + C(¢t)dUy; F(t), C(t) e R (6.2.3)
(linear observations) dZ, = G(t)X,dt + D(t)dVy; G(t), D(t) e R (6.2.4)

We assume (see (5.2.1)) that F,G,C, D are bounded on bounded intervals.
Based on our interpretation (6.1.5) of Z; we assume Zg = 0. We also assume
that X is normally distributed (and independent of {U:},{Vi}). Finally we
assume that D(t) is bounded away from 0 on bounded intervals.

The (important) extension to the several-dimensional case (6.2.1), (6.2.2)
is technical, but does not require any essentially new ideas. Therefore we shall
only state the result for this case (in the next section) after we have discussed
the 1-dimensional situation. The reader is encouraged to work out the nec-
essary modifications for the general case for himself or consult Bensoussan
(1992), Davis (1977) or Kallianpur (1980) for a full treatment.

From now on we let Xy, Z; be processes satisfying (6.2.3), (6.2.4). Here is
an outline of the solution of the filtering problem in this case.

Step 1. Let £ = £(Z,t) be the closure in L?(P) of functions which are linear
combinations of the form

co+ 1 Zsy (W) + -+ s, (W), with s; <t,¢; €R.

Let
P denote the projection from L2(P) onto L .

Then, with K as in (6.1.9),

Xy = Pr(Xy) = E[X|Gi] = Pr(X) -

Thus, the best Z-measurable estimate of X; coincides with the best Z-linear
estimate of X;.

Step 2. Replace Z; by the innovation process Ni:

¢
Ny =27, — /(GX)st , where (GX)} =Pz, (G(5)Xs) = G(s)Xs .
0

Then
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(i) N has orthogonal increments, i.e.
E[(Nt, — Ng,)(N¢, — Ng,)] = 0 for non-overlapping intervals [sq, 1],
[82, tg]. R

(ll) E(N, t) = E(Z, t), SO Xt = PE(N,t)(Xt)'

Step 3. If we put

1
dRy = ——dN,
Rt D(t) t

then R; is a 1-dimensional Brownian motion. Moreover,

L(N,t)=L(R,t)  and

t
~ 0
Xt =Prnve)(Xe) = Prra (Xe) = E[X¢] + / &E[XtRs]dRs -
0

Step 4. Find an expression for X, by solving the (linear) stochastic differ-
ential equation

dX; = F(t)Xdt + C(t)dU; .
Step 5. Substitute the formula for X; from Step 4 into E[X:Rs] and use
Step 3 to obtain a stochastic differential equation for X;:

32
0tds

%, = L BIX,R.).sdR, + (/
0s
0

E[XtRs]dRs)dt ete.
Before we proceed to establish Steps 1-5, let us consider a simple, but moti-
vating example:

Example 6.2.1 Suppose X, Wi, Ws, ... are independent real random vari-
ables, E[X] = E[W;] = 0 for all j, E[X?] = a®, E[W?] = m? for all j. Put
Z; =X +W;.

What is the best linear estimate X of X based on {Z;;j < k}? More
precisely, let

L=L(Zk)={anZ1+  +crZk;c1,...,c €R}.
Then we want to find R
X =Pr(X),

where Py, denotes the projection into L(Z, k).
We use the Gram-Schmidt procedure to obtain random variables A;, Ao, . ..
such that

(i) E[A;Aj]=0for i #j
(ii) L(A, k)= L(Z, k) for all k.
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Then

> E[X Aj]
Xp=)_ B A for k=1,2,.... (6.2.5)

j=1

We obtain a recursive relation between X, . and X k—1 from this by observing
that N
Aj=27;— X1, (6.2.6)

which follows from
Aj = Zj — Pj_l(Zj) = Zj — Pj_l(X) y since Pj_l(Wj) =0.
By (6.2.6)
E[X Aj] = EIX(Z; — X;1)] = EIX(X — X;1)] = E[(X - X;1)?]

and

Hence

)A(k = )?kfl +

If we introduce

then this can be simplified to

~ a2 —
= Zy, . 6.2.8
P e 1 -m? § ( )
(This can be seen as follows:
Put
_ Gi—aZ
ap = s =« .
RS T2 k kZk
Then

(i) Ur€ L(Z,k)
(ii) X — U, LL(Z, k), since

E(X —Ux)Zi) = E[X Z;] — anE[Zy Z4)
= E[X(X +W;)] - ak% > E(Z;Z)]

=a* - %ak ZE[(X+Wj)(X+Wi)] =a® - %ak[kaz—kmz] =0.)



6.2 The 1-Dimensional Linear Filtering Problem 91

The result can be interpreted as follows:

For large k we put X, ~ Zj, while for small k the relation between a’
and m? becomes more important. IfAm2 > a?, the observations are to a large
extent neglected (for small k) and X}, is put equal to its mean value, 0. See

also Exercise 6.11.

This example gives the motivation for our approach:

We replace the process Z; by an orthogonal increment process N; (Step 2)
in order to obtain a representation for X, analogous to (6.2.5). Such a represen-
tation is obtained in Step 3, after we have identified the best linear estimate
with the best measurable estimate (Step 1) and established the connection
between N; and Brownian motion.

Step 1. Z-Linear and Z-Measurable Estimates

Lemma 6.2.2 Let X, Zs; s < t be random variables in L*(P) and assume
that
(X, Zsy Zsys -1 Zs,) € RMHY

has a normal distribution for all s1,82,...,8, <t, n>1. Then
Pr(X) = E[X|G] = Pe(X) .

In other words, the best Z-linear estimate for X coincides with the best Z-
measurable estimate in this case.

Proof. Put X = Pz(X), X = X — X. Then we claim that X is independent of
G: Recall that a random variable (Y7, ...,Y%) € R¥ is normal iff ¢; Y7 + - +
¢1Y} is normal, for all choices of ¢1,...,c; € R. And an L2?-limit of normal
variables is again normal (Appendix A). Therefore

()Z,Zsl,...,ZSn) is normal for all sq,...,8, <t.

Since E[)N(Zsj] =0, X and Zs, are uncorrelated, for 1 < j < n. It follows
(Appendix A) that

X and (Z,, ..., Zs,) are independent .
So X is independent from G as claimed. But then
ElXa(X — X)] = E[XgX] = E[Xg] - E[X] =0 forall GeG
i.e. [ XdP = [ XdP. Since X is G-measurable, we conclude that
el

. G
X = BIX|g). 0
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There is a curious interpretation of this result: Suppose X, {Z;}1er are
L?(P)-functions with given covariances. Among all possible distributions of

(X, Zs,y .y Zs,)

with these covariances, the normal distribution will be the “worst” w.r.t.
estimation, in the following sense: For any distribution we have

E[(X - E[X|G)*"] < B[(X - P£(X))?],

with equality for the normal distribution, by Lemma 6.2.2. (Note that the
quantity on the right hand side only depends on the covariances, not on the
distribution we might choose to obtain these covariances). For a broad discus-
sion of similar conclusions, based on an information theoretical game between
nature and the observer, see Topsoe (1978).

Finally, to be able to apply Lemma 6.2.2 to our filtering problem, we need
the following result:

Lemma 6.2.3

Xy

=y

] € R? s a Gaussian process .

Proof. We may regard M; as the solution of a 2-dimensional linear stochastic
differential equation of the form

dM; = H(t)Mdt + K (t)dB;, My = H)O] ; (6.2.9)

where H(t) € R?*?, K(t) € R**? and B; is 2-dimensional Brownian motion.
Use Picard iteration to solve (6.2.9), i.e. put

t t
MO = Mo—f—/H(s)MS(")dS—f—/K(s)st, n=0,1,2,... (6.2.10)
0 0

Then M™ is Gaussian for all n and M™ — M, in L2(P) (see the proof of
Theorem 5.2.1) and therefore M, is Gaussian (Theorem A.7). O
Step 2. The Innovation Process

Before we introduce the innovation process we will establish a useful repre-
sentation of the functions in the space

L(Z,T) = the closure in L?(P) of all linear combinations
CO+01Zt1+"'+Cthk; 0<t; <T, CjGR.
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If f € L?[0, T, note that

el froaz) | =] [ rocomar) | ] romoa
s f oot [ nomto)

Since

{( / f(@®) Xtdt> ] <A / f(t)?dt by the Cauchy-Schwartz inequality,

T
[(/f dV}) ] /f t)dt by the Itd isometry
0

and {X;},{V;} are independent, we conclude that

FAtyde < EK/f dZt) ] SAz/Tf2 (6.2.11)
0

for some constants Ag, A1, Az not depending on f. We can now show

Ao

Ot~

T
Lemma 6.2.4 £(Z,T) = {co+ [ f(t)dZs; f € L*[0,T],¢co € R}.
0

Proof. Denote the right hand side by N (Z,T). It is enough to show that

a) N(Z,T)C L(Z,T)
b) N(Z,T) contains all linear combinations of the form

co+ 1y, + -+ cply, 0t <T

¢) N(Z,T) is closed in L*(P)

a): This follows from the fact that if f is continuous then

T
/f (t)dZ; = lim Zf] 27" - (Z(jy1ya-n — Zja-n) -
0
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b): Suppose 0 <t <ty < --+ < tx <T. We can write

k k—1 1 bt T g1
S ez & AZ; = / didz, = / C»X[tj)tjﬂ)(t))dZt,
=1 7=0 7=0 t; 0 7=0
where AZ; = 7, — Zy;.
c): This follows from (6.2.11) and the fact that L?[0,T] is complete. O

Now we define the innovation process N; as follows:
t
/ (GX)0ds, where (GX)2 = Pr(z2.4)(G(5)X,) = G(5)X, .
0

i.e.

dN; = G(t)(X; — X;)dt + D(t)dV; . (6.2.13)
Lemma 6.2.5 (i) N; has orthogonal increments
¢
(i) EINZ] = [ D2(s)ds

0
(iii) L(N,t) = L(Z,t) for allt >0
(iv) N; is a Gaussian process

Proof. (i): If s<tandY € L(Z,s) we have

t

E[(N,—N,)Y]=E K/G(r)(xr - X,)dr + /tD(r)dw>Y]

S

- /tG(r)E[(XT ~ X,)Y]dr + E[(/Ddé) Y] =0,

since X, — X, LL(Z,7) D L(Z,s) for r > s and V has independent increments.

(ii): By It6’s formula, with g(t,x) = 22,

we have

d(N?) = 2N, dN; + 32(dNy)? = 2N,dN; + D*dt .

So
t t

E[N?] = E[/stst} +/D2(s)ds.

Now
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so since N has orthogonal increments we have

t
E{/NSdNS} =0, and (ii) follows .
0

(iii): It is clear that L(N,t) C L(Z,t) for all ¢ > 0. To establish the opposite
inclusion we use Lemma 6.2.4. So choose f € L?[0,t] and let us see what
functions can be obtained in the form

/t f(s)dN, = / f(s)dZ, — / F)G(r) X, dr
0 0 0

:/tf(s)dZs —/tf(r){/rg(r, s)dZs}dr—/tf(T)C(r)dr
0 0 0

0

. / [ﬂs) - / 7l s>dr] iz, - / Fr)e(r)dr
0 S 0

where we have used Lemma 6.2.2 and Lemma 6.2.4 to write, for each r,

T

(GX)) =c(r) + /g(r, s)dZs for some g(r,-) € L2[0,7], c¢(r) € R.
0

From the theory of Volterra integral equations (see e.g. Davis (1977), p. 125)
there exists for all h € L?[0,¢] an f € L?[0,¢] such that

£(s) - / F()g(r, s)dr = h(s).

So by choosing h = X[ ;,) where 0 <t; <, we obtain

jf(r)c(r)dr +/tf(s)st = /t/'\,’[o)tl](s)dZS =7y ,
0 0 0

which shows that L(N,t) D L(Z,t).
(iv): X; is a limit (in L2(P)) of linear combinations of the form
M=co+c1Zs, +--+cpls, , where s, <t.

Therefore ~ R
(Xtyy-, Xt,,)
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is a limit of m-dimensional random variables (M™) ... M) whose com-
ponents M) are linear combinations of this form. (M™ ... M) has a
normal distribution since {Z,} is Gaussian, and therefore the limit has. Hence
{X,} is Gaussian. It follows that

t
Nt = Zt - /G(S))?Sds
0
is Gaussian, by a similar argument. O
Step 3. The Innovation Process and Brownian Motion

t A~
Let Ny = Z; — f G(s)Xsds be the innovation process defined in Step 2. Recall
0

that we have assumed that D(t) is bounded away from 0 on bounded intervals.
Define the process R;(w) by

1

=B

dN;(w);  t>0, Ry=0. (6.2.14)

Lemma 6.2.6 R; is a 1-dimensional Brownian motion.
Proof. Observe that

(i) R has continuous paths
(ii) R has orthogonal increments (since Ny has)
(iii) R is Gaussian (since Ny is)
(iv) E[R:] =0 and E[R:Rs] = min(s,t).
To prove the last assertion in (iv), note that by It6’s formula
d(R?) = 2RydR; + (dR;)* = 2R;dR; + dt ,

so, since R; has orthogonal increments,

t
E[R}) = E[/ds] =t.
0
Therefore, if s < t,

E[RtRs] = E[(Rt - RS)RS] + E[R?] = E[Rg] =Ss.

Properties (i), (iii) and (iv) constitute one of the many characterizations of a 1-
dimensional Brownian motion (see Simon (1979), Theorem 4.3). (Alternatively,
we could easily deduce that R; has stationary, independent increments and
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therefore — by continuity — must be Brownian motion, by the result previously
referred to in the beginning of Chapter 3. For a general characterization of
Brownian motion see Corollary 8.4.5.) O

Since
L(N,t) = L(R,t)

we conclude that R
Xt =Prrn(Xt) -

It turns out that the projection down to the space L(R,t) can be described
very nicely: (compare with formula (6.2.5) in Example 6.2.1)

o
/3_ . (6.2.15)
0

Proof. From Lemma 6.2.4 we know that

Lemma 6.2.7

t
X =colt) + /g(s)dRs for some g € L2[0,], co(t) € R.
0

Taking expectations we see that co(t) = E[X;] = E[X;]. We have
(X, — )?t)J_/f(s)dRS for all f e L2[0,1] .

Therefore

[Xt/f dR} [)? O/tf(s)dRs} _E[O/tg(s)dstf(s)dRs}

t

— 5| [ )] - / 9(5)f(s)ds,  forall f e L20,1],

0

where we have used the It6 isometry. In particular, if we choose f = &g , for

some r < t, we obtain
T

EIX.R,] = / o(s)ds
0

g(r) = %E[Xth] , as asserted .

This completes Step 3. a
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Step 4. An Explicit Formula for X;

This is easily obtained using It6’s formula, as in the examples in Chapter 5.
The result is

t
In particular, we note that E[X;] = E[Xo]exp([ F(s)ds).
0

More generally, if 0 < r < ¢, (see Exercise 6.12)

t t t

X, = exp ( / F(s)ds)Xr—i— / exp ( / F(u)du)C(s)dUs. (6.2.16)

T T S

Step 5. The Stochastic Differential Equation for )/(\t

We now combine the previous steps to obtain the solution of the filtering prob-
lem, i.e. a stochastic differential equation for X;. Starting with the formula
from Lemma 6.2.7

&:Eug+/ﬂmmm,
0

where 5
f(s,t) = 5 E[X¢Ri] (6.2.17)

we use that

= S G(T‘) — X T rom an
RS—O/D(T) (X, — X,)dr+V,  from (6.2.13) and (6.2.14))

and obtain
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where
X, =X, - X,. (6.2.18)
Using formula (6.2.16) for X;, we obtain
t t
E[X.X,] = exp < / F(v)dv> E[X,X,] = exp < / F(v)dv) S(r),
where
S(r) = E[(X,)?], (6.2.19)

i.e. the mean square error of the estimate at time r > 0. Thus

E[X,R,] = /
0

t

gg >) exp < / F(v)dv) S(r)dr

T

so that

F(s,t) = gg exp <jF(v)dv) S(s) . (6.2.20)

S

We claim that S(t) satisfies the (deterministic) differential equation

s G3(t)

- = t)S(t) — D7(0) S%(t) + C*(t)  (The Riccati equation) . (6.2.21)

To prove (6.2.21) note that by the Pythagorean theorem, (6.2.15) and the It
isometry

S(t) = E[(X, — X,)%] = E[X?] - 2E[X,X,] + E[X?] = E[X}] - E[X?]

t

=T(t) — /f(s,t)st - EB[X,)?, (6.2.22)
0

where

T(t) = E[X?] . (6.2.23)
Now by (6.2.16) and the It6 isometry we have

T(t) = exp (2 ] F(s)ds)E[Xg] + j exp <2 j F(u)du> C?%(s)ds ,
0 0

S
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using that Xy is independent of {Us}s>0. So

% = 2F(t) - exp (2 / F(s)ds)E[Xg] + C2(t)
0

—i—/t2F(t) exp (Q/tF(u)du> C?(s)ds
0 s

i.e.

% =2F()T(t) + C*(t) . (6.2.24)
Substituting in (6.2.22) we obtain, using Step 4,
ds dr / 0
- = 2 — R — 2
o / 2f(5,) 5 (s, t)ds — 2F () EIX]
0
t
=2F()T(t) + C*(t) — -2 / (s, ds — 2F (t) B[ X{)?
0
G2(t )52( )
— 20y GT0)07(1) o
=2F(t)S(t) + C*(¢) D) which is (6.2.21) .
We are now ready for the stochastic differential equation for Xy
From the formula
t
t)+ /f(s,t)dRs where ¢q(t) = E[X¢]
0
it follows that
dX; = ¢y(t)dt + f(t,t)dR, + (/ (s,t)dR )d (6.2.25)

since

So
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dX, = cy(t)dt + %d& + </f(s,t)dRS>F(t)dt
0
dX; = c(t)dt + F(t) - (X; — colt))dt + %d&
= F(t)X,dt + %ﬁ;wd& , (6.2.26)
since ¢ (t) = F(t)co(t) (Step 4).
If we substitute )
dR; = W[dzt — G(t) X, dt]
we obtain
S G*(H)S(t), & G(t)S(t)
dX; = (F(t) — DQ—(t))Xtdt + DQ—(t)dZt . (6.2.27)

So the conclusion is:

Theorem 6.2.8 (The 1-dimensional Kalman-Bucy filter)

The solution Xy = E[X;|G:] of the 1-dimensional linear filtering problem
(linear system) dX,; = F(t) X dt + C(t)dUy; F(t), C(t) e R (6.2.3)
(linear observations) dZ, = G(t)X,dt + D(t)dV;; G(t), D(t) e R (6.2.4)

(with conditions as stated earlier) satisfies the stochastic differential equation

_GMS®)

dX, = (F(t) 2I0)

))?tdt + %‘Z(;)dzt . Xo=E[Xo] (6.2.28)

where
S(t) = E[(X: — )?t)2] satisfies the (deterministic) Riccati equation

ds G3(t)
— =2F(MS(1) - 0]

S%(t) + C3(t), S(0) = E[(Xo — E[X0])?]. (6.2.29)

Example 6.2.9 (Noisy observations of a constant process)
Consider the simple case

(system) dX, =0, ie X; = Xo; E[Xo] = X0, E[X2] = a2
(observations)  dZy = Xydt + mdVy; Zy =0

(corresponding to

dz
H, = ok X; + mW,, W, = white noise) .
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First we solve the corresponding Riccati equation for

S(t) = Bl(X: — X)?):

s 1, o,
- s S0=a
i.e. 5 5
a~m
t) = ——; t>0.
S m? +a?t’ 20

This gives the following equation for )A(t:

2 2

a ~
Xodt + —
t +m2—|—a2t

m2 + a2t

t t
~ a? a2 a2
d(Xt exp (/mdS)) = exp (/ m2 T a2$d8> m2 T aztdZt
0 0

which gives

dX, = — dZ; ;.  Xo=E[X]=0

or

=~ m2 -~ a2

X = X Zy ; t>0. 2.
YT m? 4 a2t O+m2+a2t b =0 (6:2.30)

This is the continuous analogue of Example 6.2.1.

Example 6.2.10 (Noisy observations of a Brownian motion)
If we modify the preceding example slightly, so that

(system) dX; = cdUy; E[Xo] =0, E[XE] =a?, c constant
(observations)  dZ; = Xydt + mdV;,

the Riccati equation becomes

ds 1 0 9
%:—ms +c¢%,50)=a
or
m2dS
mzdt,(S#mc)
This gives
mc—+ s 2ct me + a?
o () - 2
mc— s m mc—a
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mc% ; if S(0) < me
S(t) = ¢ mc (constant)  if S(0) = mc
mc%ﬁ;—i if S(0) > mec.
Thus in all cases the mean square error S(¢) tends to mc as t — oo .
For simplicity let us put a =0, m = ¢ = 1. Then
2t) -1
S(t) = exp(2f) = 1 = tanh(t) .
exp(2t) + 1
The equation for )A(t is
dX; = —tanh(t)X;dt + tanh(¢)dZ, , X0 =0
or
d(cosh(t)X;) = sinh(t)dZ; .
So
¢
X ! / inh(s)dZ
= sin s -
©™ cosh(t) ’
0
If we return to the interpretation of Z; :
¢
Zy = / Hgds
0
where H; are the “original” observations (see (6.1.4)), we can write
t
5 1
Xy = ———= inh(s)Hgds , 6.2.31
"™ cosh(t) /sm (s)Hsds ( )
0

so X is approximately (for large t) a weighted average of the observations

H,, with increasing emphasis on observations as time increases.

Remark. It is interesting to compare formula (6.2.31) with established for-
mulas in forecasting. For example, the exponentially weighted moving average

X, suggested by C.C. Holt in 1958 is given by

5('71 = (1 — Oé)nZO + « Z(l - Oé)n_ka 5
k=1

where « is some constant; 0 < a < 1. See The Open University (1981), p. 16.
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This may be written
Xn=B"Zo+(B-1)"Y B2,
k=1

where § = —=— (assuming « < 1), which is a discrete version of (6.2.31), or —

—Q

more prec1sely — of the formula corresponding to (6.2.31) in the general case
when a # 0 and m, ¢ are not necessarily equal to 1.

Example 6.2.11 (Estimation of a parameter)
Suppose we want to estimate the value of a (constant) parameter 6, based on
observations Z; satisfying the model

dZ, = 6 M(t)dt + N(t)dB; ,

where M (t), N(t) are known functions. In this case the stochastic differential
equation for 6 is of course

so the Riccati equation for S(t) = E[(6 — 8;)?] is

25

which gives

S(t) = <501 jL/tM(s)QN(s)—st)1

and the Kalman-Bucy filter is

&> M(@)S(t) 5
This can be written
(s +/M 2ds) by, + M(t)>N(t)"20,dt = M(t)N(t)~2dZ; .

We recognize the left hand side as
(s + / M(s 2ds) 0;)

N t
00Sy* + fM(s)N(s)*QdZS

so we obtain

t
So '+ [ M(s)2N(s)"2ds
0
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This estimate coincides with the maximum likelihood estimate in classical
estimation theory if Sy ! = 0. See Liptser and Shiryaev (1978).

For more information about estimates of drift parameters in diffusions and
generalizations, see for example Aase (1982), Brown and Hewitt (1975) and
Taraskin (1974).

Example 6.2.12 (Noisy observations of a population growth)
Consider a simple growth model (r constant)

dX; = rXdt, E[Xo] =b> 0, E[(Xo —b)?] = a?,
with observations
dZy = Xidt + mdV; m constant .

The corresponding Riccati equation

ds

— 9 __2 _ 2
- =S S S(0) = a?,

gives the logistic curve
2

— . 27“m2
S(t)—m, where K = —1.

So the equation for )A(t becomes
N IS IS N
dXp = |r—— Xtdt—i— —dZ; ; Xo=E[Xo]=0b.
m?2

For simplicity let us assume that a? = 2rm?2, so that
S(t) = 2rm? for all ¢ .

(In the general case S(t) — 2rm? as t — oo, so this is not an unreasonable

approximation for large ¢). Then we get
d(exp(rt) X;) = exp(rt)2rdZ, , Xo=b
or

t
Xt = exp(— [/2rexp rs)dZs + b]
0

As in Example 6.2.10 this may be written

¢
¢
X, = exp(— [/27‘ exp(rs)Hqds + b} if Z, = [Hsds. (6.2.32)
0
0
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For example, assume that H; = (8 (constant) for 0 < s < ¢, i.e. that our
observations (for some reason) give the same value g for all times s < ¢. Then

X, =28 — (28— b) exp(—rt) — 28 as t — 00.

If H; = 8 -exp(as), s > 0 («a constant), we get

X, = exp(—rt) f_:ﬁ (exp(r+a)t—1)+0b

(e

2
~ rp exp at for large ¢ .
r+ o

Thus, only if a = r, i.e. Hy = Sexp(rs); s > 0, does the filter “believe” the
observations in the long run. And only if « = r and 8 = b, i.e. Hg = bexp(rs);
s > 0, does the filter “believe” the observations at all times.

Example 6.2.13 (Constant coefficients — general discussion)
Now consider the system

dX; = FXdt + CdU; ; F,C constants # 0
with observations
dZy = GXudt + DAV, G, D constants # 0 .

The corresponding Riccati equation
S'=2FS - —8?+(C?, S(0) = a?

has the solution )
a1 —Kay exp(—(arg%)G )

S(t) = ;
®) 1-— Kexp(—(arg%)Gzt)

where

oy = G72(FD? — D\/F2D? 4 G2C?)

ay = G *(FD? + D\ F2D? + G2C?)
and

K:ﬁ_m.
a” — (g

This gives the solution for X, of the form

t

X, = exp (/tH(s)ds) Xo+ %/texp (/H(u)du)S(s)dZs ,
0 0

S
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where

2
H(s)=F — %S(s) .

For large s we have S(s) & aq. This gives

t
PO G? G G?
X, ~ X, exp(<F - D‘;Q)t) 4 2% /exp(<F - 0‘2) (t — s))dZ,

t
= Xgexp(—ft) + % exp(—pt) /exp(ﬂs)dZS (6.2.33)
0

where 8 = D™ F2D2 + G2C? . So we get approximately the same behaviour
as in the previous example.

6.3 The Multidimensional Linear Filtering Problem

Finally we formulate the solution of the n-dimensional linear filtering problem
(6.2.1), (6.2.2):

Theorem 6.3.1 (The Multi-Dimensional Kalman-Bucy Filter)
The solution X; = E[X:|G:] of the multi-dimensional linear filtering problem

(linear system,) dX;=F(t) X dt+C(t)dUy;
F(t)eR"™ ", C(t)eR"*P (6.3.1)

(linear observations)  dZy=G(t)Xdt+ D(t)dVy;
Gt)eR™ ™, D(t)eR™*" (6.3.2)

satisfies the stochastic differential equation

dX, = (F - SGT(DDT)'G)X,dt + SGT(DDT)'dZ, ; X, = E[Xy)
(6.3.3)
where S(t):= E[(X; — X;)(X; — X;)T] € R™*" satisfies the matriz Riccati
equation
as T T Ty—1 T
E:FS—{-SF - SG"(DD")""GS +CC"
S(0) = E[(Xo — E[Xo])(Xo — E[Xo])"] . (6.3.4)

The condition on D(t) € R™*" is now that D(t)D(t)T is invertible for all t
and that (D(t)D(#)T)~1 is bounded on every bounded t-interval.
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A similar solution can be found for the more general situation

(system) dXy = [Fo(t) + F1(t) X + Fa(t) Z:]dt + C(t)dU; (6.3.5)
(observations) dZ; = [Go(t) + G1(t)X: + G2(t)Z]dt + D(t)dV; , (6.3.6)

where X; € R", Z; € R™ and B; = (U;, V;) is n + m~dimensional Brownian
motion, with appropriate dimensions on the matrix coefficients. See Bensous-
san (1992) and Kallianpur (1980), who also treat the non-linear case. An ac-
count of non-linear filtering theory is also given in Pardoux (1979) and Davis
(1984).

For the solution of linear filtering problems governed by more general
processes than Brownian motion (processes with orthogonal increments) see
Davis (1977).

For various applications of filtering theory see Bucy and Joseph (1968),
Jazwinski (1970), Gelb (1974), Maybeck (1979) and the references in these
books.

Exercises

6.1. (Time-varying observations of a constant)
Prove that if the (1-dimensional) system is

dX; =0, E[Xo] =0, E[X3] = a*
and the observation process is
dZ, = G(t) X dt + dVy | Zp=20

then S(t) = E[(X; — X;)?] is given by
1

. (6.3.7)
ﬁ + fot G?(s)ds

S(t) =

We say that we have exact asymptotic estimation if S(t) — 0 ast — oo,

ie. if -
/GQ(s)ds =00.
0
Thus for 1
G(s) = (D (p > 0 constant)

. . . . 1
we have exact asymptotic estimation iff p < 5 .

6.2. Consider the linear 1-dimensional filtering problem with no noise in the
system:
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(system) dX; = F(t)X,dt (6.3.8)
(observations) dZ, = G(t)Xdt + D(t)dV; (6.3.9)

Put S(t) = E[(X; — X;)?] as usual and assume S(0) > 0 .

a) Show that
1

satisfies the linear differential equation

2
R/(t) = —2F(H)R(t) + gQ—g . R(0)= % (6.3.10)

b) Use (6.3.10) to prove that for the filtering problem (6.3.8), (6.3.9)
we have

¢ ¢ ¢
1 1 G?(s)
—_— = —2[ F(s)d -2 F(u)du) ——=ds .
S(t)  5(0) exP( / 2 S>+/6Xp< / ) u> D*(s)”
0 0 s
(6.3.11)
6.3. In Example 6.2.12 we found that

S(t) — 2rm? as t — oo,

so exact asymptotic estimation (Exercise 6.1) of X; is not possible.
However, prove that we can obtain exact asymptotic estimation of Xy,
in the sense that

E[(Xo — E[X0|G])*] =0 ast—oco.

(Hint: Note that Xo = e "X, and therefore E[X(|G;] = e X, so
that
E[(Xo — E[X0|Gi])?] = e " S(1)) .

6.4. Consider the multi-dimensional linear filtering problem with no noise
in the system:

(system) dX: = F(t)X,dt ;

X, eR", F(t) e R™*" (6.3.12)
(observations)  dZ; = G(t)Xidt + D(t)dV; ;

G(t) e R™*™ | D(t) € R™*" (6.3.13)

Assume that S(t) is nonsingular and define R(t) = S(t)~!. Prove that
R(t) satisfies the Lyapunov equation (compare with Exercise 6.2)

R(t)=—-Rt)Ft)-Ft)"Rt)+G)T(Dt)D®)")*G(t) . (6.3.14)
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6.5.

6.6.

6.7.

6. The Filtering Problem

(Hint: Note that since S(t)S~!(t) = I we have
S'(t)S~(t) + S(t)(S71) (t) = 0, which gives

(S =-5"HS' ST (B) )

(Prediction)

In the prediction problem one seeks to estimate the value of the system
X at a future time T based on the observations G; up to the present
time t < T

Prove that in the linear setup (6.2.3), (6.2.4) the predicted value

E[Xr|G], T>t

is given by

~

E[X7|G] = exp (/TF(s)ds> - Xy . (6.3.15)

(Hint: Use formula (6.2.16).)

(Interpolation/smoothing)

The interpolation or smoothing problem consists of estimating the value
of the system X at a time s < t, given the observations up to time ¢, G;.
With notation as in (6.2.1), (6.2.2) one can show that M,: = E[X,|G]
satisfies the differential equation

{ M, = F(s)M, +C(s)C ()5 (s)(Ms = Xo) s s <t (6.3.16)

M, =X, .
(See Davis (1977, Theorem 4.4.4).)
Use this result to find E[X;|G;] in Example 6.2.9.

Consider the system
_ldxi@)] |0 |0
%= ) = [o] + B = o]
with observations

o] =[x [t

Apply (6.3.14) from Exercise 6.4 to prove that
S(t) = E[(Xt — Xt)(Xt — Xt)T] is given by

S = 571(0) + B ﬂ ¢



Exercises 111
if S(t) is invertible for all ¢t. Then show that

2 1
11

1 1

dX, = —S(t) [ -

} X, dt + S(t) [ } dZ; .

6.8. Transform the following Stratonovich equation

dXt = b(f, Xt)dt + U(t, Xt) e} dBt

into the corresponding It6 equation

dX, = b(t, X;)dt + o(t, X;)dB,

using (6.1.3):
a)

[jﬁj _ {XQ JrleQXl} dt + L?{l} odB; (B;€R)
[gj = [2} dt + [ﬁﬂ odB;  (B;€R)
6.9. Transform the following It6 equation
dX, = b(t, X, )dt + o(t, X, )dB,
into the corresponding Stratonovich equation
dX; = b(t, X;)dt + o(t, X;) o dB;
using (the converse of) (6.1.3):

a) dXt = —%Xtdt + KXtdBt, where

_ |0 -1 _ | Xa(®) 2
K_[l 0}, Xt_[Xz(t)]eR and B, € R

(i.e. X; is Brownian motion on the unit circle (Example 5.1.4)).
b) Xm o X1 _X2 d/Bl
dXo| | X2 X1 | |dB2]’
6.10. (On the support of an It6 diffusion)

The support of an Itd diffusion X in R™ starting at z € R"™ is the
smallest closed set F' with the property that

Xi(w) e F for all t >0, for a.a. w.
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In Example 5.1.4 we found that Brownian motion on the unit circle,
Xy, satisfies the (Itd) stochastic differential equation

) =[] [t V)[R an war)

From this equation it is not at all apparent that its solution is situ-
ated on the same circle as the starting point. However, this can be
detected by proceeding as follows: First transform the equation into its
Stratonovich form, which in Exercise 6.9 is found to be

{328] - [(1) _01} [28] odB, . (6.3.18)

Then (formally) replace odB; by ¢'(t)dt, where ¢ is some smooth (de-
terministic) function, ¢(0) = 0. This gives the deterministic equation

ot ) ECER G

1f (X'?(0), X{?(0)) = (1,0) the solution of (6.3.19) is

[X00] = [cmet).

So for any smooth ¢ the corresponding solution X (?)(¢) of (6.3.19) has
its support on this unit circle. We can conclude that the original solution
X (t,w) is supported on the unit circle also, in virtue of the Stroock-
Varadhan support theorem. This theorem says that, quite generally, the
support of an Ito diffusion Xy(w) coincides with the closure in R™ of
{X(®)(.); ¢ smooth}, where X (#)(t) is obtained by replacing odB; by
@'(t)dt in the same way as above. See e.g. Tkeda and Watanabe (1989,
Th. VI. 8.1). (In this special case above the support could also have
been found directly from (6.3.18)).

Use the procedure above to find the support of the process X; € R?
given by

0 1

dX; = $X.dt + [1 0

} X dBy .
Consider Example 6.2.1, but now without the assumption that
E[X] = 0. Show that

~ m2 a? —

Xp=—" BX|+—% 7. k=12,...
"7 ka? + m2 [ ]+a2+%m2 b o

where a? = E[(X — E[X])?]. (Compare with (6.2.8).)
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(Hint: Put £ = X — F[X], x = Zr — E[X]. Then apply (6.2.8) with X
replaced by & and Zj, replaced by (j.)

Prove formula (6.2.16).

S

(Hint: exp ( — [ F(u)du) is an integrating factor for the stochastic dif-

ferential equation (6.2.3).)

Consider the 1-dimensional linear filtering problem (6.2.3), (6.2.4). Find
E[X;] and E[(X})?.

(Hint: Use Theorem 6.1.2 and use the definition of the mean square

error S(t).)

Let B; be 1-dimensional Brownian motion.

a) Give an example of a process Z; of the form

dZt = ’U,(t, W)dt + dBt

such that Z; is a Brownian motion w.r.t. P and u(t,w) € V is not
identically 0.
(Hint: Choose Z; to be the innovation process (6.2.13) in a linear
filtering problem with D(t) = 1.)

b) Show that the filtration {Z;};>¢ generated by a process Z; as in a)
must be strictly smaller than {F;};>0, i.e. show that

Z CF for all ¢t and Z; # F; for some ¢ .

(Hint: Use Exercise 4.12.)

6.15.* Suppose the state X; € R at time ¢ is a geometric Brownian motion

given by the equation
dX; = /J,Xtdt + o0 X;dBy ; Xo=2>0. (6320)

Here 0 # 0 and = are known constants. The parameter u is also con-
stant, but we do not know its value, only its probability distribution,
which is assumed to be normal with mean fi and variance a?. We assume
that 4 is independent of { B, }s>0 and that E[u?] < cc.

We assume that we can observe the value of X; for all t. Thus we have
access to the information “(c-algebra)” M; generated by Xg; s < t.
Let N; be the o-algebra generated by &, s < t, where

dé = pdt +odBy; & = . (6.3.21)

a) Prove that M; = M.
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b) Prove that

E[pN] = 0+ 07 2%) Y (ab + o 2&) (6.3.22)
where
0=El(n-—pn)4"" o= Eul (6.3.23)
¢) Define
B, = /a*w — Elu|M;])ds + By . (6.3.24)
0

Prove that B; is a Brownian motion.

d) Prove that Et is M -measurable for all ¢t. Hence
Fi C M, (6.3.25)

where F; is the o-algebra generated by ES; s <t.

e) Prove that & is F;-measurable for all £. Combined with d) and a)
this gives that B
.7:15 - Mt - ./\/;5 - ft .
f) Prove that
dXt = E[/J,|Mt]Xtdt + UXtdBt .

Note that in this representation of X; all the coefficients are ob-
servable quantities.

Repeat Exercise 6.15, but this time with X; being a mean-reverting
Ornstein-Uhlenbeck process given by

dX, = (u—pX)dt+0dB,; Xo=z€R.

Here p,o0 # 0 and z are known constants, while x4 is an unknown
constant, as before. Conclude that X; can be given a representation of
the form B

dX; = (E[p|Mi] — p X (t))dt + o dB; .



7

Diffusions: Basic Properties

7.1 The Markov Property

Suppose we want to describe the motion of a small particle suspended in a
moving liquid, subject to random molecular bombardments. If b(t,z) € R?
is the velocity of the fluid at the point z and time ¢, then a reasonable mathe-
matical model for the position X; of the particle at time ¢ would be a stochastic
differential equation of the form

dX

d—tt = b(t, X;) + o(t, Xo )Wy (7.1.1)
where W, € R3 denotes “white noise” and o(t,z) € R3*3. The It6 interpre-
tation of this equation is

dXt = b(t, Xt)dt + O'(t, Xt)dBt 5 (712)

where B, is 3-dimensional Brownian motion, and similarly (with a correction
term added to b) for the Stratonovich interpretation (see (6.1.3)).
In a stochastic differential equation of the form

dXt = b(t, Xt)dt + O'(t, Xt)dBt 5 (713)

where X; € R", b(t,z) € R", o(t,z) € R™™™ and B, is m-dimensional
Brownian motion, we will call b the drift coefficient and o — or sometimes
sool — the diffusion coefficient (see Theorem 7.3.3).

Thus the solution of a stochastic differential equation may be thought of
as the mathematical description of the motion of a small particle in a moving
fluid: Therefore such stochastic processes are called (It6) diffusions.

In this chapter we establish some of the most basic properties and results
about It6 diffusions:

7.1 The Markov property.
7.2 The strong Markov property.

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_7, © Springer-Verlag Berlin Heidelberg 2013
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7.3 The generator A of X; expressed in terms of b and o.
7.4 The Dynkin formula.
7.5 The characteristic operator.

This will give us the necessary background for the applications in the
remaining chapters.

Definition 7.1.1 A (time-homogeneous) 1t6 diffusion is a stochastic process
Xi(w) = X (t,w): [s,00) x 2 — R™ satisfying a stochastic differential equation
of the form

where By is m-dimensional Brownian motion and b:R" — R", o:R" —
R™ ™ satisfy the conditions in Theorem 5.2.1, which in this case simplify to:

b(z) = b(y)| +|o(x) —o(y)| < Dlx —y|; @,y eR", (7.1.5)
i.e. that b(-) and o(-) are Lipschitz continuous.

We will denote the (unique) solution of (7.1.4) by X; = X" t > s. If
s = 0 we write X7 for X;"*. Note that we have assumed in (7.1.4) that b and
o do not depend on ¢ but on z only. We shall see later (Chapters 10, 11) that
the general case can be reduced to this situation. The resulting process X (w)
will have the property of being time-homogeneous, in the following sense:
Note that

=z+ [ b(X2")dv + /U(ngv)dév . (u=s+v) (7.1.6)
0

where Ev = Bgty — Bs; v > 0. (See Exercise 2.12). On the other hand of
course

h h
X)C =+ / b(X0™)dv + / o(X0*)dB, .
0 0

Since {Ev}vzo and {B,},>0 have the same P°-distributions, it follows by
weak uniqueness (Lemma 5.3.1) of the solution of the stochastic differential
equation

dXt = b(Xt)dt + U(Xt)dBt ; X() =T

that
{(X2% =0 and  {X)" o
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have the same PC-distributions, i.e. {X;}:>¢ is time-homogeneous.

We now introduce some notation which is common (and convenient) in
the context of Markov processes:

From now on we let Q® denote the probability law of a given (time-
homogeneous) It6 diffusion {X,};>0 when its initial value is Xy = x € R".
The expectation with respect to Q* is denoted by E”[-]. Hence we have

EXf1(Xe) - fe(Xo)] = BUA(XE) - (X)) (7.1.7)

for all bounded Borel functions fi,..., fr and all times ¢1,...,txy > 0; k =
1,2,..., where E = Ep denotes the expectation with respect to the probability
law P = P for {B;}+>0 when By = 0 (see Section 2.2).

As before we let ft(m) be the o-algebra generated by {B,;r < t}. Similarly
we let M; be the o-algebra generated by {X,;r < t}. We have established
earlier (see Theorem 5.2.1) that X; is measurable with respect to ]—'tm), S0
M; C F™.

We now prove that X; satisfies the important Markov property: The fu-
ture behaviour of the process given what has happened up to time ¢ is the
same as the behaviour obtained when starting the process at X;. The precise
mathematical formulation of this is the following:

Theorem 7.1.2 (The Markov property for Ito diffusions)
Let f be a bounded Borel function from R™ to R. Then, for t,h >0

E[f (Xexn)| F ™) (w) = EX@[£(X),)] . (7.1.8)

(See Appendix B for definition and basic properties of conditional ex-
pectation). Here and in the following E® denotes the expectation w.r.t. the
probability measure Q*. Thus EY|[f(X},)] means E[f(X})], where E denotes
the expectation w.r.t. the measure P°. The right hand side means the function
EY[f(X})] evaluated at y = X;(w).

Proof. Since, for r > t,

we have by uniqueness
X (w) = Xﬁ’Xt(w) .

In other words, if we define
F(z,t,r,w) = X" (w) for r>t,

we have
Xr(w) = F( Xy, t,rw); 7>t (7.1.9)
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Note that w — F(x,t,7,w) is independent of f,fm). Using (7.1.9) we may
rewrite (7.1.8) as

E[f(F(Xe,t,t+ h,w))|F™] = E[f(F(x,0,h,w))la=x, - (7.1.10)

Put g(z,w) = f o F(z,t,t + h,w). Then (z,w) — g(x,w) is measurable. (See
Exercise 7.6). Hence we can approximate g pointwise boundedly by functions
of the form

> on(@)n(w) -
k=1

Using the properties of conditional expectation (see Appendix B) we get

Blo(Xi, )l F™] = B m 3 600w ()™
=1im Y ok (Xy) - Eln(w)| 5™
= Tim Y Elen (y) (@) 7™ )y=x,
= Blg(y,w)| 7" >1y:xt = Elg(y,w)ly=x. -

Therefore, since {X;} is time-homogeneous,

E[f(F(Xy,t.t+h,w)|F™] = E[f(F(y,t,t + h,w))]y—x,
= E[f(F(yv 07 h7w))]y:Xt

which is (7.1.10). O

Remark. Theorem 7.1.2 states that X; is a Markov process w.r.t. the family
of o-algebras {F\™}i=o. Note that since M, C F™ this implies that X,
is also a Markov process w.r.t. the o-algebras {M;}i>0. This follows from
Theorem B.3 and Theorem B.2 ¢)( Appendix B):

E*[f(Xesn) M) = B [E*[f(Xern)|F™ M)
= E*[EX[f(Xn)]| M) = EX[f(Xn)]

since EX¢[f(X})] is M;-measurable.

7.2 The Strong Markov Property

Roughly, the strong Markov property states that a relation of the form (7.1.8)
continues to hold if the time ¢ is replaced by a random time 7(w) of a more
general type called stopping time (or Markov time):
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Definition 7.2.1 Let {N;} be an increasing family of o-algebras (of subsets
of 2). A function 7: 2 — [0,00] is called a (strict) stopping time w.r.t. {N;}
if

{w;T(w) <t} e N, forall t >0.

In other words, it should be possible to decide whether or not 7 < ¢ has
occurred on the basis of the knowledge of V.

Note that if 7(w) = to (constant) for all w, then 7 is trivially a stopping
time w.r.t. any filtration, because in this case

. (0 if te<t
{w'T(w)St}_{(ZJ i to >t

Example 7.2.2 Let U C R" be open. Then the first exit time
Ty:=inf{t > 0; X; ¢ U}

is a stopping time w.r.t. {M;}, since

{w;TUgt}:ﬂ U{w;XT§§Km}€Mt

m TeEQ
r<t

where {K,,} is an increasing sequence of closed sets such that U = | K, .

More generally, if H C R" is any set we define the first exit time from H,
T, as follows
Ty =inf{t >0, X, ¢ H} .

If we include the sets of measure 0 in M, (which we do) then the family {M,}
is right-continuous i.e. M; = My, where M,y = [ M; (see Chung (1982,

s>t
Theorem 2.3.4., p. 61)) and therefore 7g is a stopping time for any Borel set

H (see Dynkin (1965 II, 4.5.C.¢.), p. 111)).

Definition 7.2.3 Let 7 be a stopping time w.r.t. {N;} and let N be the
smallest o-algebra containing Ny for allt > 0. Then the o-algebra N consists
of all sets N € N, such that

Nn{r<t}teM forall t>0.

In the case when N; = My, an alternative and more intuitive description
is:
M = the o-algebra generated by { Xin(s,7); 8 > 0} . (7.2.1)
(See Rao (1977, p. 2.15) or Stroock and Varadhan (1979, Lemma 1.3.3, p. 33).)
Similarly, if MV} = f,f(m), we get

F™ = the g-algebra generated by { Biar;s > 0} .
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Theorem 7.2.4 (The strong Markov property for Ito diffusions)

Let f be a bounded Borel function on R™, T a stopping time w.r.t. ft(m),
T <00 a.s. Then

E*[f(Xr )| FU™) = EX[f(X)]  forallh>0. (7.2.2)

Proof. We try to imitate the proof of the Markov property (Theorem 7.1.2).
For a.a. w we have that X" (w) satisfies

T+h T+h
Xpp et [ [ o,

By the strong Markov property for Brownian motion (Gihman and Skorohod
(1972, p. 30)) the process

EU:BT+U—BT; v>0

is again a Brownian motion and independent of fﬁm). Therefore
h h
X7, = ot [ b7z )0+ [ o(X27)dB, .
0 0

Hence {X7*"} }n>0 must coincide a.e. with the strongly unique (see (5.2.8))
solution Y}, of the equation

h h
Y=+ /b(mdv + /J(Yv)dév .
0 0

Since {Y3}r>0 is independent of Fm), {X7",} must be independent also.
Moreover, by weak uniqueness (Lemma 5.3.1) we conclude that

{Yn}n>o0, and hence {X, }rn>0, has the same law as (X" hso . (7.2.3)

Put
F(x,t,r,w) = X" (w) forr>1t.

Then (7.2.2) can be written
E[f(F(2,0,7 + h,w))|F™] = E[f(F(x,0,h,w))],_xoe .

Now, with X, = X"
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T+h T+h

F(z,0,7+ h,w) = X;yp(w) =2+ / b(Xs)ds + / o(Xs)dBs

0 0
T T T+h T+h

:x+/b(XS)ds+/a(Xs)st+ / b(Xs)ds + / 0(Xs)dBs

0 0 T T
T+h T+h

=X, + / b(X,)ds + / o(X,)dB,

T T

=F(X;, 7,7+ hw).
Hence (7.2.2) gets the form
E[f(F(Xr, 7,7+ h,w)|IF™] = B[f(F(2,0,h,0)|o=x, -

Put g(x,t,r,w) = f(F(z,t,7,w)). As in the proof of Theorem 7.1.2 we may
assume that g has the form

g(z, t,r,w) = Z¢k Vi (t, r,w) .

Then, since X, is independent of F7 (m)

E[g(Xo, 7,7 + hyw)|F™] = ZE(bk k(7,7 + B, w) | F)

we get, using (7.2.3)

—Z S (Xr) Bl (r, 7+ R, w)| FEM] =Y Blgn (@)in (7, 7+ by w) | F oo x,

k
= Elg(x, 7,7+ h,w)|Fr m)] -x, = Elglz, 7,7+ h,w)|.=x.
= E[f (X[ ]e=x, = E[f(X")]a=x, = E[f(F(2,0,h,w))]s=x, -

We now extend (7.2.2) to the following:

If f1,---, fr are bounded Borel functions on R"™, 7 an .ﬂ(m)-stopping time,
T < 00 a.s. then

E LA (Xrpn) fo(Xriny) - fo(Xrpn )| F] = EX [ f1( X)) -+ (X))
(7.2.4)
for all 0 < hy < hg < --- < hy. This follows by induction: To illustrate the
argument we prove it in the case k = 2:

E[f1(Xr ) fo (X )IFE™] = B (B[ f1 (X ) fo (X )| FUT) JIFE™)
= B[ f1(Xr i) B [fo( Xy )| FUT NFE™)
= E°[f1(Xrin ) EX 0 [ fo( Xy, )] | F™)]

— EX 1 (X ) B [fo (X))
_ pX- [fl(Xhl)Em[f2(Xh2)|f}(:)H — gX- [f1(Xn,) f2(Xn,)], as claimed .
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Next we proceed to formulate the general version we need: Let H be the
set of all real M o.-measurable functions. For ¢t > 0 we define the shift operator

9t:H—>H

as follows:
Ifn=g1(Xe,) - 9x(Xt,) (g; Borel measurable, t; > 0) we put

0im = g1( Xty +4) - g (Xey1t) -

Now extend in the natural way to all functions in H by taking limits of sums
of such functions. Then it follows from (7.2.4) that

E*[6,9|F™] = EX[n] (7.2.5)
for all stopping times 7 and all bounded 1 € H, where

(0:n)(w) = (On)(w)  if T(w) =t.

Hitting distribution, harmonic measure and
the mean value property

We will apply this to the following situation: Let H C R™ be measurable and
let 7y be the first exit time from H for an It6 diffusion X;. Let @ be another
stopping time, g a bounded continuous function on R” and put

n=9Xry)Xirpcooy, TH=if{t>a;X; ¢ H}.

Then we have
90/’7 . X{a<oo} = g(XTg)X{T§<OO} . (726)

To prove (7.2.6) we approximate n by functions n*); k = 1,2, ..., of the form

n(k) - Zg(th>X[tjvtj+l)(TH) s =3¢ 27, j=0,1,2,...
J
Now
otX[tj,tj+1) (TH) = ot‘X{VT‘E(O,tj)XTEH&ESE[tj,tj+1)XS gH}

= X{VT‘G(O,tj)XT+tGH&ESG[tj,tj+1)XS+t¢H}
— _ t
= X{vue(t,t;+1) Xo € H&IvE 4+t 1+ X0 g HY = Xt 4+t,t,140) (TH) -

So we see that
Oin = liin 0:n*) = hgl Z 9K, 40Xt 4ty 040) (TH)
J

=9(Xrt ) Xt <00y, Which is (7.2.6) .
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In particular, if @ = 7¢ with G CC H measurable, Ty < oo a.s. @QF, then
we have 7y = 7 and so

Ora9(Xry) = 9(Xry) - (7.2.7)

So if f is any bounded measurable function we obtain from (7.2.5) and (7.2.7):
E*[f(Xry)] = B° (B [f(Xr,)]] = /Ey[f(Xm)] QX €dy] (728
oG

for z € G.

(Define u% (F) = Q*(X,, € F) and approximate f in L'(u%) by continu-
ous functions g satisfying (7.2.7)). In other words, the expected value of f at
X, when starting at x € G can be obtained by integrating the expected value
when starting at y € 0G with respect to the hitting distribution (“harmonic
measure”) of X on OG. This can be restated as follows:

Define the harmonic measure of X on 9G, ug, by
pe(F) = Q%[ X,y € F) for F C 0G, z € G.

Then the function
¢(z) = E*[f(X7y,)]

satisfies the mean value property:

o(z) = /gb(y)dumg(y) ) forall z € G (7.2.9)
te

for all Borel sets G CC H.

This is an important ingredient in our solution of the generalized Dirichlet
problem in Chapter 9.
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7.3 The Generator of an Ito Diffusion

It is fundamental for many applications that we can associate a second order
partial differential operator A to an It6 diffusion X;. The basic connection
between A and X, is that A is the generator of the process X;:

Definition 7.3.1 Let {X,;} be a (time-homogeneous) Ité diffusion in R™. The
(infinitesimal) generator A of X is defined by

_ i BIAXD)] - f(2)
Af(z) = lt%l .

The set of functions f:R™ — R such that the limit exists at x is denoted by
Da(x), while Da denotes the set of functions for which the limit exists for all
reR™.

; reR™.

To find the relation between A and the coefficients b, o in the stochastic
differential equation (7.1.4) defining X; we need the following result, which is
useful in many connections:

Lemma 7.3.2 LetY; =Y,* be an Ité process in R™ of the form

t t

Y (w) = a:—l—/u(s,w)ds—l—/v(s,w)st(w)
0 0
where B is m-dimensional. Let f € C3(R"™), i.e. f € C*(R") and f has
compact support, and let T be a stopping time with respect to {ffm)}, and

assume that E*[1] < co. Assume that u(t,w) and v(t,w) are bounded on the
set of (t,w) such that Y (t,w) belongs to the support of f. Then

P -
)+ 57| [ (w0020 + 5 00y o) 5 (1) ]
\2

.3

where E* is the expectation w.r.t. the natural probability law R* forY; starting
at x:

R°[Yy, € Fy,....Y,, € B =PlY' € F1,...,Y{" € F}y], F, Borel sets.

Proof. Put Z = f(Y) and apply Itd’s formula (To simplify the notation we
suppress the index t and let Y1,...,Y,, and By, ..., B,, denote the coordinates
of Y and B, respectively)
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af 1 0%f
7 2,7

B ‘(9f 1 0% f
= ;ula—xidt-f— 5; a’ﬂiaxj

(vdB);(vdB); + Z gg:i (vdB); .

Since
(’UdB)Z . (vdB)j = <ZvikdBk) (ngndBn)
k n
= <Zvikvjk>dt = (UUT)ijdt 5
k
this gives
t
/ >’ f
f(Yy) = f(Yo) + / (Z i5y T %;(va)ijm)ds
0 7 7,
ik { ¢
Hence
[ ) o?
B = )+ 5| [ (gl +4 Dl as
0 i ¢ i,j ¢
+ ZEm{/vik%(Y)dBk} : (7.3.2)
ik 0 !

If g is a bounded Borel function, |g| < M say, then for all integers k we have

TNk

& 0/ v, = & O/k HiocnpglV)IB| =0.

since g(Y;) and X,y are both FI™) _measurable. Moreover

TNk

EK 0/ 9(Ys)dBs — 0/ g(Ys)st) ]—E[ / g%@)ds]

TNk

< MPE[r —7Ak] =0 as k — oo .
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Therefore
TAk T
0= lim Ew[ / g(Ys)st] = E””[/g(YS)dBS]
0 0
Combining this with (7.3.2) we get Lemma 7.3.2. O

This gives immediately the formula for the generator A of an It6 diffusion:

Theorem 7.3.3 Let X; be the It6 diffusion
dXt = b(Xt)dt + U(Xt)dBt .

If f € C3(R™) then f € D4 and

2
Z bi( Z 6:2 af% (7.3.3)

Proof. This follows from Lemma 7.3.2 (with 7 = ¢) and the definition of A.
O

Example 7.3.4 The n-dimensional Brownian motion is of course the solution
of the stochastic differential equation

dX, = dB, ,

i.e. we have b = 0 and o = I,,, the n-dimensional identity matrix. So the
generator of By is

_gzaga f:f(Il,,In)GOOQ(Rn)
ie. A= %A, where A is the Laplace operator.

Example 7.3.5 (The graph of Brownian motion) Let B denote 1-di-

Xl) be the solution of the

mensional Brownian motion and let X = ( b%
2

stochastic differential equation
Xm =dt 3 Xl(O) = to
dX2 = dB, X2(0) = X0
ie.

dX =bdt +0dB;  X(0) = <t°) :

Zo
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with b = ((1) and o = ((1)) In other words, X may be regarded as the

graph of Brownian motion. The generator A of X is given by the heat operator

Af:ﬁ_i_la%f

o T2 f:f(t,ac)ECg(R").

From now on we will, unless otherwise stated, let A = Ax denote the
generator of the Ito diffusion X;. We let L = Lx denote the differential
operator given by the right hand side of (7.3.3). From Theorem 7.3.3 we know
that Ax and Ly coincide on C3(R").

7.4 The Dynkin Formula

If we combine (7.3.2) and (7.3.3) we get:

Theorem 7.4.1 (Dynkin’s formula)
Let f € CZ(R™). Suppose T is a stopping time, E*[1] < oco. Then

B*f(X,)] = f(x) + B [ / Af()@)ds} . (7.4.1)

Remarks.

(i) Note that if 7 is the first exit time of a bounded set, E*[r] < oo, then
(7.4.1) holds for any function f € C2.
(ii) For a more general version of Theorem 7.4.1 see Dynkin (1965 I), p. 133.

Example 7.4.2 Consider n-dimensional Brownian motion B = (B, ..., By)
starting at a = (a1,...,a,) € R"(n > 1) and assume |a| < R. What is the
expected value of the first exit time 75 of B from the ball

K=Kr={zeR"%|z|<R}?

Choose an integer k and apply Dynkin’s formula with X = B, 7 = o0, =
min(k, 7k ), and f € CZ such that f(z) = |z|? for |z| < R:

E(f(Boy)] = f(a) + B [7%Af<Bs>ds}
0

Ok

:|a|2+Ea{/n-ds] = la|* +n- E%oy] .
0
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Hence E%[o;] < 1(R? — |a|?) for all k. So letting k — oo we conclude that
Tk = limog < 0o a.s. and

Eofrg] = %(RQ o) . (7.4.2)

Next we assume that n > 2 and |b| > R. What is the probability that B
starting at b ever hits K?
Let ay be the first exit time from the annulus

A ={z;R < |z| < 2*R} ; k=1,2,...

and put
Tkx =inf{t >0;B; € K} .

Let f = fax be a C? function with compact support such that, if R < |z|
< 2R,

[ —loglx| whenn=2
flo) = { |z|>~™  whenn > 2.

Then, since Af =0 in Ay, we have by Dynkin’s formula
E’[f(Ba,)] = f(b) forall k. (7.4.3)

Put
pk = P"[|Bay| = R, qx = P’[|Ba,| = 2"R].

Let us now consider the two cases n = 2 and n > 2 separately:
n = 2. Then we get from (7.4.3)

—logR-pr — (log R+ k -log2)qr = —log |b] for all k . (7.4.4)
This implies that g — 0 as kK — oo, so that

P'[Tg <o) =1, (7.4.5)
i.e. Brownian motion is recurrent in R2. (See Port and Stone (1978)).
n > 2. In this case (7.4.3) gives
pe- R 4 g (2FR)PT =P

Since 0 < g < 1 we get by letting k — oo

2—n
. o Al
klirrgopk_P[TK<oo]—<R) )

i.e. Brownian motion is transient in R™ for n > 2.
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7.5 The Characteristic Operator

We now introduce an operator which is closely related to the generator A,
but is more suitable in many situations, for example in the solution of the
Dirichlet problem.

Definition 7.5.1 Let {X;} be an Ité diffusion. The characteristic operator
A= Ax of {X} is defined by

o) — i Z X)) 1)

lim o , (7.5.1)

where the U's are open sets Uy decreasing to the point x, in the sense that
Uk+1 C U and Uy = {z}, and 7, = inf{t > 0; Xy ¢ U} is the first exit

k
time from U for X;. The set of functions f such that the limit (7.5.1) exists
for all x € R™ (and all {Uy}) is denoted by Da. If E*[1,] = oo for all open
U >z, we define Af(z) =

It turns out that D4 C D4 always and that
Af = Af forall feDy.

(See Dynkin (1965 I, p. 143).)
We will only need that Ax and Lx coincide on C?. To obtain this we first
clarify a property of exit times.

Definition 7.5.2 A point x € R™ is called a trap for {X;} if
Q*{Xe ==z forallt})=1.

In other words, x is trap if and only if i,y = 0o a.s. QF. For example, if
b(xg) = o(xg) = 0, then xg is a trap for X; (by strong uniqueness of X ).

Lemma 7.5.3 If x is not a trap for Xy, then there exists an open set U 3> x
such that
E?r,] < 0.

Proof. See Lemma 5.5 p. 139 in Dynkin (1965 I).

Theorem 7.5.4 Let f € C?. Then f € D4 and

of >*f
Af:zbiai QZUU Vi g~ o (7.5.2)

Proof. As before we let L denote the operator defined by the right hand side
of (7.5.2). If = is a trap for {X;} then Af(xz) = 0. Choose a bounded open set
V such that z € V. Modify f to f, outside V such that fo € C3(R™). Then

fo € Da(z) and 0 = Afo(z) = Lfo(x) = Lf(x). Hence Af(x) = Lf(x) =
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in this case. If x is not a trap, choose a bounded open set U > x such that
E®[1,] < oo. Then by Dynkin’s formula (Theorem 7.4.1) (and the following
Remark (i)), writing 7, = 7

T

E*[f(X,)] - f(x) |E[[{(L)(Xs) = Lf(x)}ds]]

. = 0
Bl 1 BT
<sup|Lf(z)— Lf(y)|— 0 as U | x,
yeU
since Lf is a continuous function. O

Remark. We have now obtained that an Itd diffusion is a continuous, strong
Markov process such that the domain of definition of its characteristic operator
includes C?. Thus an It diffusion is a diffusion in the sense of Dynkin (1965 I).

Example 7.5.5 (Brownian motion on the unit circle) The characteris-

Yi
Y,
stochastic differential equations (5.1.13), i.e.

tic operator of the process Y = < ) from Example 5.1.4 satisfying the

dY; = —1Yidt - YodB
dYs = —3Yodt + Y1dB
is

Af(yr,y2) = %

[FE= N S SR TN |
2 oy? o0y 7t oy2 oy dyo

This is because dY = —%Ydt + KYdB, where

=V 3)

so that
dY =b(Y)dt + o(Y)dB
with
1y —
by, y2) = | 7 o olyye) = ( >
—35Y2 Y1
and

2 _
a_%aaT_%( y2 y12y2) .
—Y1Y2 Y1
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Example 7.5.6 Let D be an open subset of R™ such that 7p < oo a.s. Q7
for all z. Let ¢ be a bounded, measurable function on D and define

() = E*[d(Xrp)]

(¢ is called the X-harmonic extension of ¢). Then if U is open, z € U CC D,
we have by (7.2.8) that

E*[$(X,,)] = E*[BY0 [6(Xrp)]) = E*[6(X1,)] = 6(x) -

U

So (;NSE’DA and

Ap=0 in D,

in spite of the fact that in general 5 need not even be continuous in D (See
Example 9.2.1).

Exercises

7.1.*% Find the generator of the following It6 diffusions:

a) dX; = puXidt + 0dB; (The Ornstein-Uhlenbeck process) (B: € R;
i, o constants).

b) dX; = rX;dt + aX:dB; (The geometric Brownian motion)
(Bt € R; 7, « constants).

¢) dYy =rdt + aYidB; (B; € R; r,« constants)

d) dYt:[d

t . .
dXJ where X; is as in a)

o) [gﬂ _ HJdH L?{l]d& (B, €R)

0 ) = (o) e+ [0 x) [im)

g) X(t) = (X1,Xo, -, Xy), where

ka(t):’l”kadt—FXk'ZOékdej 5 1§k§n
j=1
((B1,- -, By) is Brownian motion in R™, r;, and ay; are constants).

7.2.* Find an It6 diffusion (i.e. write down the stochastic differential equation
for it) whose generator is the following:

a) Af(z) = f'(z) + f"(x); f € CGR)
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b) Af(t,x) = % +cxdd + 1020224 f e C2(R2),
where ¢, « are constants

c) Af($1,$2)—2172 of —l—ln(l—l—x%—!—:z:%)g—f
5(1+x1)8—m'§+x16118w2 + 3 —; f e C3(R?).

7.3. Let B; be Brownian motion on R, By = 0 and define

X, = XF =g ettobe

where ¢, « are constants. Prove directly from the definition that X; is
a Markov process.

7.4.*% Let Bf be 1-dimensional Brownian motion starting at x € R*. Put
7 =inf{t > 0; Bf =0} .

a) Prove that 7 < oo a.s. P* for all z > 0. (Hint: See Example 7.4.2,
second part).
b) Prove that E*[r] = oo for all z > 0. (Hint: See Example 7.4.2, first

part).
7.5. Let the functions b, o satisfy condition (5.2.1) of Theorem 5.2.1, with

a constant C' independent of ¢, i.e.
|b(t, z)| + |o(t, )| < C(1+ |x|) forall ze R and all t > 0.
Let X; be a solution of
dX, = b(t, X,)dt + o(t, X,)dB, .
Show that
E[IX,’] < (1 + E[|Xo])e™" —1

for some constant K independent of ¢.
(Hint: Use Dynkin’s formula with f(z) = |z|?> and 7 = t A Tg, where
T = inf {t > 0; | X¢| > R}, and let R — oo to achieve the inequality

ElIX?] < E[[Xol?) + K - / (1+ B[IX.[?))ds
which is of the form (5.2.9).)

7.6. Let g(z,w) = f o F(x,t,t + h,w) be as in the proof of Theorem 7.1.2.
Assume that f is continuous.
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a) Prove that the map z — g(z,-) is continuous from R" into L*(P)
by using (5.2.9).
For simplicity assume that n = 1 in the following.

b) Use a) to prove that (z,w) — g(x,w) is measurable. (Hint: For each
m=1,2,...put & = &™) =k-2"™ k=1,2,... Then

g(m)(xv )= Zg(&m ) X{§k§m<§k+1}
k

converges to g(z,-) in L?(P) for each x. Deduce that g™ — g
in L?(dmpg x dP) for all R, where dmp is Lebesgue measure on
{|z] < R}. So a subsequence of (™ (z,w) converges to g(z,w) for
a.a. (z,w).)

7.7. Let B; be Brownian motion on R" starting at x € R™ and let D C R"
be an open ball centered at x.

a) Use Exercise 2.15 to prove that the harmonic measure u¥, of B, is
rotation invariant (about x) on the sphere 0D. Conclude that u7,
coincides with normalized surface measure o on 9D.

b) Let ¢ be a bounded measurable function on a bounded open set
W C R™ and define
u(x) = E*[¢(Bry )] for x e W.

Prove that u satisfies the classical mean value property:

u(z) = / u(y)do(y) (7.5.3)

oD
for all balls D centered at x with D C W.
c) Let W be as in b) and let w: W — R be harmonic in W, i.e.

n
9w

AU) = 6_;53

=1

=0 in W. (7.5.4)

Prove that w satisfies the classical mean value property (7.5.3).

Remark. For a converse of this see e.g. @ksendal and Stroock (1982)
and the references therein.

7.8. Let {N;} be a right-continuous family of o-algebras of subsets of {2,
containing all sets of measure zero.



134 7. Diffusions: Basic Properties

a) Let 11, 72 be stopping times (w.r.t. ;). Prove that 7y A7 and 71 V7o
are stopping times.

b) If {7, } is a decreasing family of stopping times prove that 7: = lim 7,
is a stopping time. !

¢) If X; is an Ito diffusion in R™ and F' C R"™ is closed, prove that 7p
is a stopping time w.r.t. M;. (Hint: Consider open sets decreasing
to F).

7.9. Let X; be a geometric Brownian motion, i.e.
dXt = TXtdt + O[XtdBt 5 XO =xz>0

where By € R; r, a are constants.

a) Find the generator A of X; and compute Af(x) when f(z) = z7;
x > 0, 7y constant.

b) If r < 102 then X; — 0 as t — oo, as. Q% (Example 5.1.1).

But what is the probability p that X;, when starting from =z < R,
ever hits the value R ? Use Dynkin’s formula with f(z) = a7,

1=1- %, to prove that
T 7
=(5) -

c¢) If r > a2 then X; — oo as t — oo, a.s. Q°. Put
T =inf{t > 0; X, > R} .

Use Dynkin’s formula with f(z) =Inx, > 0 to prove that

(Hint: First consider exit times from (p,R), p > 0 and then let
p — 0. You need estimates for

(1=p(p))Inp,

where
p(p) = Q[ X reaches the value R before p],

which you can get from the calculations in a), b).)

7.10. Let X; be the geometric Brownian motion

dXt = TXtdt + O[XtdBt .
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Find E*[ X1 |F] for t <T by
a) using the Markov property
and

b) writing X; = x e"* M, where

M; = exp(aB; — %a%) is a martingale .

Let X; be an Ito diffusion in R™ and let f: R™ — R be a function such
that

EI[/|f(Xt)|dt} < 00 for all z € R™.
0

Let 7 be a stopping time. Use the strong Markov property to prove
that

E* [7f(Xt)dt] = E*[g(X7)],

where

g(y) = EY {]of(Xt)dt} -
0

(Local martingales)

An N;-adapted stochastic process Z(t) € R™ is called a local martingale
with respect to the given filtration {A;} if there exists an increasing
sequence of N;-stopping times 7 such that

T, — 00 a.s.as k — 0o

and
Z(t N\ TL) is an Mp-martingale for all % .

a) Show that if Z(t) is a local martingale and there exists a constant
T < oo such that the family {Z(7)},<r is uniformly integrable
(Appendix C) then {Z(t)}i<r is a martingale.

b) In particular, if Z(¢) is a local martingale and there exists a constant
K < oo such that

E[Z*(1)] <K
for all stopping times 7 < T, then {Z(¢)}:<7r is a martingale.

c) Show that if Z(t) is a lower bounded local martingale, then Z(t) is
a supermartingale (Appendix C).

d) Let ¢ € W(0,T). Show that
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t
/gbsde 0<tsT
0

is a local martingale.
7.13. a) Let B, € R? By =12 # 0. Fix 0 < ¢ < R < 0o and define
Xt =In[Biar| ; t>0
where
T=inf{t>0; |B)| <e or |B)>R}.

Prove that X; is an Fya,-martingale. (Hint: Use Exercise 4.8.)
Deduce that In|B;| is a local martingale (Exercise 7.12).
b) Let By € R™ for n > 3, By =z # 0. Fix € > 0, R < oo and define

Yo =B "5 120
where
T=1inf{t > 0; |By| <e or |B: > R}.

Prove that Y; is an Fya--martingale.
Deduce that |B;|?>~" is a local martingale.

7.14. (Doob’s h-transform)
Let B; be n-dimensional Brownian motion, D C R™ a bounded open
set and h > 0 a harmonic function on D (i.e. Ah =0 in D). Let X, be
the solution of the stochastic differential equation

More precisely, choose an increasing sequence { Dy} of open subsets of

D such that D C D and U Dy = D. Then for each k the equation
=1
above can be solved (Strongly) for t < 7p, . This gives in a natural way

a solution for t < 7:= khm TDy-
— 00

a) Show that the generator A of X; satisfies

Af = Ag;f) for f e C3(D).

In particular, if f = % then Af = 0.
b) Use a) to show that if there exists z¢p € D such that

lim h(x):{o %fy;éaco

z—y€dD oo ify=umxg

(i.e. h is a kernel function), then



Exercises 137

lim X; = zg a.s.

t—T1
(Hint: Consider E*[f(X7)] for suitable stopping times T and with
F=b

In other words, we have imposed a drift on B; which causes the pro-
cess to exit from D at the point z¢ only. This can also be formulated
as follows: X; is obtained by conditioning B; to exit from D at xg.
See Doob (1984).

7.15.*% Let B; be 1-dimensional and define

7.16.

F(w) = (Br(w) - K)*

where K > 0, T > 0 are constants.
By the It representation theorem (Theorem 4.3.3) we know that there
exists ¢ € V(0,T) such that

T
0

How do we find ¢ explicitly? This problem is of interest in mathematical
finance, where ¢ may be regarded as the replicating portfolio for the
contingent claim F' (see Chapter 12). Using the Clark-Ocone formula
(see Karatzas and Ocone (1991), @ksendal (1996) or Aase et al (2000))
one can deduce that

$(t,w) = ElXjc.n0)(Br)|F];  t<T. (7.5.5)

Use (7.5.5) and the Markov property of Brownian motion to prove that
for t < T we have

o(t,w) = ﬁ/e p< %)d:p. (7.5.6)

Let B; be 1-dimensional and let f:R — R be a bounded function.
Prove that if ¢ < T then

W/f exp( 2—(159__(?)))2

(Compare with (7.5.6).)

E*[f(Br)|F] = >d33 . (7.5.7)

7.17. Let B; be 1-dimensional and put

X, =P +1iB)*:;  t>0.
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Then we have seen in Exercise 4.15 that X; is a solution of the stochastic
differential equation

dXy = 1xPat + x}dB,;  Xo=1=. (7.5.8)
Define
7 =1inf{t > 0; X; = 0}
and put

Y:{Xt for t <7
K 0 for t > 7.

Prove that Y; is also a (strong) solution of (7.5.8). Why does not this
contradict the uniqueness assertion of Theorem 5.2.17
(Hint: Verify that

t t
Y, = x+/§Y;/3ds+/Y3/3st
0 0

for all ¢ by splitting the integrals as follows:
t ATt

[=]]
0 0 tAT

dXt = b(Xt)dt + O'(Xt)dBt 3 XO =T

7.18.* a) Let

be a 1-dimensional It6 diffusion with characteristic operator A. Let
f € C%(R) be a solution of the differential equation

Af(z) = b(z)f'(z) + 20*(z) f"(z) = 0; zeR. (7.5.9)
Let (a,b) C R be an open interval such that z € (a,b) and put

T=inf{t > 0; X; & (a,b)} .

Assume that 7 < oo a.s. Q* and define
p=Q%X,=1].

Use Dynkin’s formula to prove that

(7.5.10)
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In other words, the harmonic measure g, ;) of X on 9(a,b) = {a, b}
is given by

Ha,b) (b) = m v Ha,b) (a) = W . (7.5.11)

b) Now specialize to the process

Xt:!E—l—Bt; tZO
Prove that
T—a
= 7.5.12
= ( )
c¢) Find p if
Xi=x+4+ut+ 0By ; t>0

where p, 0 € R are nonzero constants.

7.19. Let Bf be 1-dimensional Brownian motion starting at = > 0. Define
7 =7(z,w) = inf{t > 0; Bf (w) =0} .
From Exercise 7.4 we know that
T<oo as. P¥and E*[1] =c0.

What is the distribution of the random variable 7(w) ?
a) To answer this, first find the Laplace transform

g(\):= E%[e 7] for A>0.
(Hint: Let M; = exp(—v/2A By — At). Then
{Mipr+}t>0 is a bounded martingale. )

[Solution: g(\) = exp(—v2X z) ]
b) To find the density f(t) of 7 it suffices to find f(¢) = f(¢,z) such
that

/e—)\tf(t>dt =exp(—V2\ x) forall A >0
0

i.e. to find the inverse Laplace transform of g(\). Verify that

x z?
f(t,x)z\/mexp 5 ) t>0.
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7.20. (Population growth in a stochastic, crowded environment (II))
As an alternative to the model in Exercise 5.15 consider the equation

dXt = TXt(K — Xt)dt + OéXt(K — Xt)dBt 3 Xo =T Z O

This equation does not satisfy the conditions for existence and unique-
ness in Theorem 5.2.1. However, we can still prove that a unique strong
solution exists by proceeding as follows:

)

For n=1,2,... define

_JyK—y) if 0<y<n
bn(y)_{n(K—n) if y>n

and

_Jay(K—y) if 0<y<n
U"(y)_{an(K—n) if y>n

and let X; = Xt") be the unique solution of
dXt = bn(Xt)dt + Un(Xt)dBt ] XQ = X.

Define
7 = inf{t > 0; X" = n}.

Show that
xM=x" 0 forall t<m,

and use this to find a unique strong solution Xy for t < 7o : lim 7,.

n—oo

Prove that 7. = 0o a.s.

Prove that

(i) Xo=0=X;,=0 forallt

(i) Xo=K=X;=K forallt

(iif) 0< X< K=0< X; <K forallt
(iv) Xo > K= X, > K forallt.

For a discussion of optimal harvesting from this population model
see Lungu and Qksendal (1997).
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Other Topics in Diffusion Theory

In this chapter we study some other important topics in diffusion theory and
related areas. Some of these topics are not strictly necessary for the remaining
chapters, but they are all central in the theory of stochastic analysis and
essential for further applications. The following topics will be treated:

8.1 Kolmogorov’s backward equation. The resolvent.
8.2 The Feynman-Kac formula. Killing.

8.3 The martingale problem.

8.4 When is an It6 process a diffusion?

8.5 Random time change.

8.6 The Girsanov formula.

8.1 Kolmogorov’s Backward Equation. The Resolvent

In the following we let X; be an It6 diffusion in R™ with generator A. If we
choose f € CZ(R"™) and 7 = t in Dynkin’s formula (7.4.1) we see that

u(t, z) = E*[f(X)]
is differentiable with respect to ¢ and

ou
Frie E°[Af(Xy)] . (8.1.1)
t
It turns out that the right hand side of (8.1.1) can be expressed in terms of u

also:

Theorem 8.1.1 (Kolmogorov’s backward equation)
Let f € CZ(R"™).
a) Define
u(t,z) = E*[f(Xy)] . (8.1.2)

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_8, © Springer-Verlag Berlin Heidelberg 2013
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Then u(t,-) € Dy for each t and

Ou n
E_Au’ t>0,zeR (8.1.3)
u(0,2) = f(z) ; zeR" (8.1.4)

where the right hand side is to be interpreted as A applied to the function
x — u(t, ).

b) Moreover, if w(t,z) € CH2(R x R™) is a bounded function satisfying
(8.1.8), (8.1.4) then w(t,x) = u(t,x), given by (8.1.2).

Proof. a) Let g(x) = u(t,z). Then since ¢ — u(t, z) is differentiable we have

FlCII=0®) _ 1 pripe ) - 217 (x0])
= L BB (X B - EUIA(X)IF]
= B (X)X
_ u(t+r,x2—u(t,x) - % w10,
Hence
Au = tim 2N Z9@) i and 2 — A, as asserted .

rl0 r

Conversely, to prove the uniqueness statement in b) assume that a function
w(t,r) € CH2(R x R") satisfies (8.1.3)—(8.1.4). Then

gw::—%—f—i—Aw:O for t >0,z € R” (8.1.5)
and
w(0,z) = f(z), reR". (8.1.6)

Fix (s,z) € R x R™. Define the process Y; in R"t! by V; = (s — t, X)),
t > 0. Then Y; has generator A and so by (8.1.5) and Dynkin’s formula we
have, for all ¢t > 0,

E> [w(Yinrg )] = w(s, ) + E>* { 7R/~1w(Yr)dT} =w(s,z)
0

where 7 = inf{t > 0;|X,| > R}.
Letting R — oo we get

w(s,z) = B> [w(Y?)] ; vt >0.
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In particular, choosing t = s we get

w(s,x) = B> lw(Yy)] = Blw(0,XJ7)] = B[f(X{")] = E°[f(X,)] .

Remark. If we introduce the operator Q:: f — E°®[f(X:)] then we have
u(t,z) = (Qcf)(x) and we may rewrite (8.1.1) and (8.1.3) as follows:

L@n=auan:  recm ®.11)

L@ =A@ feCR). (8.1.3)

Thus the equivalence of (8.1.1) and (8.1.3) amounts to saying that the oper-
ators @; and A commute, in some sense. Arguing formally, it is tempting to
say that the solution of (8.1.1) and (8.1.3)" is

Qe = et

and therefore Q:A = AQ:. However, this argument would require a further
explanation, because in general A is an unbounded operator.

It is an important fact that if a positive multiple of the identity is sub-
tracted from A then the operator A always has an inverse. This inverse can
be expressed explicitly in terms of the diffusion X;:

Definition 8.1.2 Fora > 0 and g € C,(R™) we define the resolvent operator
Rq by

R,g(x) = E* [/eo‘tg(Xt)dt] . (8.1.7)
0
Lemma 8.1.3 R,g is a bounded continuous function.

Proof. Since Rog(z) = [ e **E*[g(X,)]dt, we see that Lemma 8.1.3 is a direct
0

consequence of the next result:

Lemma 8.1.4 Let g be a lower bounded, measurable function on R™ and
define, for fizedt >0
u(z) = E*[g(Xy)] .

a) If g is lower semicontinuous, then u is lower semicontinuous.
b) If g is bounded and continuous, then u is continuous. In other words, any
It6 diffusion X; is Feller-continuous.

Proof. By (5.2.10) we have

BIXT - X/P] <y —zl*C(t) ,
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where C(t) does not depend on z and y. Let {y,} be a sequence of points
converging to x. Then

X/ — X?  in L?*(2,P)as n— o0o.
So, by taking a subsequence {z,} of {y,} we obtain that
X (w) — X (w) for a.a. w € £2.
a) If g is lower bounded and lower semicontinuous, then by the Fatou lemma

u(z) = Elg(X{)] < B[ lim g(X;")] < lim Elg(X;")] = lim u(z,) .

n—oo n—oo n—oo

Therefore every sequence {y,} converging to x has a subsequence {z,}
such that u(z) < lim u(z,). That proves that u is lower semicontinuous.
n—oo

b) If g is bounded and continuous, the result in a) can be applied both to g
and —g. Hence both u and —u are lower semicontinuous and we conclude
that v is continuous. O

We now prove that R, and o — A are inverse operators:

Theorem 8.1.5 a) If f € C3(R™) then Ro(a — A)f = f for all a > 0.
b) If g € C,(R™) then Rog € Da and (o — A)Rog = g for all a > 0.

Proof. a) If f € C3(R") then by Dynkin’s formula

Ro(a—A)f(z) = (aRaf — R Af) ()

—a / e~ B[ F(X)]dt — / e~ B[ AF(X,)]dt
0 0
0o oo d oo
= | —e B [f(X)] + [ eT M —ET[f(Xp)]dt — [ e ET[Af(X;))dt
R -

= E*[f(Xo)] = f(z) .

b) If g € Cp(R™) then by the Markov property

B*[Rag(X,)] = B*[E [/Ooe-wxs)ds]]

0
oo

= E°[E" [9t<7e_o‘sg(Xs)ds)|ft}] =E*[E [/e 9(Xiys)ds|Fi|]

0

{O/Oo 9(Xiqs)d ]—O/OO TVE"[g(Xits)]ds
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Integration by parts gives

[e'e) t+s

B lRag(X0)] =a [ e [ Blg(x)dvds

0 t

This identity implies that R,g € D and

A(Rng) = aRag—g . 0

8.2 The Feynman-Kac Formula. Killing

With a little harder work we can obtain the following useful generalization of
Kolmogorov’s backward equation:

Theorem 8.2.1 (The Feynman-Kac formula)
Let f € C3(R™) and g € C(R™). Assume that q is lower bounded.

a) Put
v(t,x) = E¥|exp | — [ ¢(Xs)ds | f(Xy)] - (8.2.1)
oo (= i) )
Then
ov _ n
ngv—qv, t>0,z€eR (8.2.2)
v(0,2) = f(z); reR" (8.2.3)

b) Moreover, if w(t,z) € CL2(R x R") is bounded on K x R" for each
compact K C R and w solves (8.2.2), (8.2.3), then w(t,z) = v(t,x), given
by (8.2.1).

¢
Proof. a) Let Y, = f(X;),Z = exp(— [q(Xs)ds). Then dY; is given by
0
(7.3.1) and
dZt = —th(Xt)dt .
So
d(}/tZt) = }/tdZt + th}/t ) since dZt . d}/t =0.

Note that since Y;Z; is an It6 process it follows from Lemma 7.3.2 that
v(t,x) = E*|Y; Z;] is differentiable w.r.t. t.
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Therefore, with v(¢,z) as in (8.2.1) we get

S(B[olt, X)) = ol ) = B EV 2 (X0)] - B 200 (X0)
= %Em[Em[f(XHT)exp (— /tq(Xerr)dS) |Fr] = E*[Z f(Xe)|F]]
o
— %EE[ZHT - exp (/Tq(Xs)ds) f(Xeqr) = Zof(X0)]
0
_ %EI[ FXeir) Ziir — F(X0)Z:)
JF%Em [f(XW)ZHT : (exp (/q(Xs)d8> - 1)]

0

— %v(f, x) + q(z)v(t,x) as r—0,

because
%f(Xt-i—r)Zt—i—r(exp (/TQ(Xs)dS) - 1) — f(X4)Ziq(Xo)
0

pointwise boundedly. That completes the proof of a).

b) Assume that w(t,z) € CH2(R x R") satisfies (8.2.2) and (8.2.3) and that
w(t, z) is bounded on K x R™ for each compact K C R. Then

~ 0
Aw(t,z): = _8_1: +Aw —qw =20 for t >0,z € R" (8.2.4)

and
w(0,z) = f(z); rzeR™. (8.2.5)
¢
Fix (s,z,z) € R x R" x R and define Z;, = z + [ ¢(X;)ds and H, = (s — ¢,
0

Xto’m, Z4). Then H; is an It6 diffusion with generator

AHqS(s,x,z):—%—i—Aqﬁ—i—q(:v)% ; 6 CZ(RxR"xR).

Hence by (8.2.4) and Dynkin’s formula we have, for all ¢ > 0, R > 0 and with
8(5,, 2) = exp(—z)u(s, 2):
tATR
E*®2[p(Hinry )] = O(s, 2, 2) + E5OF { / AHgb(HT)dr] :
0

where 7 = inf{t > 0; |H;| > R}.
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Note that with this choice of ¢ we have by (8.2.4)

Apd(s,x,2) = exp(—2) [ - ‘?9—1: + Aw — q(x)w] =0.

Hence

w(sv‘r) = ¢(S,$,0) = Es,w)ow(Ht/\TR)]

tATR
= E* [exp < —

—>Ew[exp(—

—

q(XT)dT) w(s —t A TR, Xt/\r,;)}

q(XT)dr)w(s - t,Xt)} as R — oo,

o\“o

since w(r, ) is bounded for (r,z) € K x R™. In particular, choosing t = s we
get,

w(s,z) = E* [exp ( - /Sq(XT)dr)w(O,XS’I)] =wv(s,xz), as claimed.
0

a

Remark. (About killing a diffusion)
In Theorem 7.3.3 we have seen that the generator of an It6 diffusion X; given
by

is a partial differential operator L of the form

Lf= Zaljaxax +) b 8% (8.2.7)

where [a;;] = 100, b = [b;]. It is natural to ask if one can also find processes

whose generator has the form

Lf= Zawa o7, +Zb——c (8.2.8)

where ¢(x) is a bounded and continuous function.

If ¢(z) > 0 the answer is yes and a process X; with generator (8.2.8) is
obtained by killing X; at a certain (killing) time (. By this we mean that
there exists a random time ¢ such that if we put

X, =X, ift<¢ (8.2.9)

and leave )?t undefined if ¢ > ( (alternatively, put )?t = 0 if t > (, where
0 ¢ R™ is some “coffin” state), then X is also a strong Markov process and
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- ~ - - [ c(Xs)ds
1) = F7(£(X0) - Yoo (0] = 7 [1(x) - 0 X% (3210

for all bounded continuous functions f on R”.
Let v(t, ) denote the right hand side of (8.2.10) with f € CZ(R"). Then

pig ZLEAZID 21,00 = (Ao = o = 47 (0) - @) @),

by the Feynman-Kac formula.
So the generator of X; is (8.2.8), as required. The function ¢(z) can be
interpreted as the killing rate:

c(x) = ltiﬁ)l %QI[XO is killed in the time interval (0,¢]] .
Thus by applying such a killing procedure we can come from the special case
¢ =01n (8.2.7) to the general case (8.2.8) with c¢(z) > 0. Therefore, for many
purposes it is enough to consider the equation (8.2.7).
If the function c(x) > 0 is given, an explicit construction of the killing time
¢ such that (8.2.10) holds can be found in Karlin and Taylor (1981), p. 314.
For a more general discussion see Blumenthal and Getoor (1968), Chap. III.

8.3 The Martingale Problem

If dX; = b(Xy)dt + o(X:)dB; is an Ito diffusion in R™ with generator A and
if f € CZ(R") then by (7.3.1)

f(Xe) = f(2) +/Af(Xs)ds+/VfT(XS)a(XS)dBS . (8.3.1)
0 0
Define
M; = f(Xy) —/Af(Xr)dr (= f(x)+/VfT(XT)a(XT)dBT). (8.3.2)
0 0

Then, since It6 integrals are martingales (w.r.t. the o-algebras {ft(m)}) we
have for s > ¢
E*[M,|F™] = M, .

It follows that
E*[M,|M,] = E*[E*[M,|F™]|M,] = E*[M,|M,] = M, ,

since M; is M-measurable. We have proved:
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Theorem 8.3.1 If X, is an Ité diffusion in R™ with generator A, then for
all f € C3(R™) the process

M= £ - [ AF(X)ar
0

is a martingale w.r.t. {M,}.

If we identify each w € 2 with the function
we = wlt) = XE(w)

we see that the probability space (2, M, Q%) is identified with
(R™O=),B,Q")

where B is the Borel g-algebra on (R™)[%) (see Chapter 2). Thus, regarding

the law of X as a probability measure Qx on B we can formulate Theo-
rem 8.3.1 as follows:

Theorem 8.3.1°. If va is the probability measure on B induced by the law
Q" of an Ité diffusion Xy, then for all f € CZ(R™) the process

M, = f(Xy) /Af Ydr (= f(w) /Af wp)dr) ;  we (R0 (8.3.3)

s a @x—martingale w.r.t. the Borel o-algebras B; of (R™)8, ¢ > 0. In other
words, the measure Q” solves the martingale problem for the differential op-
erator A, in the following sense:

Definition 8.3.2 Let L be a semi-elliptic differential operator of the form

L= Zb-i—FZa--a—Q
o 181171' i *J 8$18$J

b

where the coefficients b;, a;; are locally bounded Borel measurable functions on

R". Then we say that a probability measure P on ((R™)9°°) B) solves the
martingale problem for L (starting at x) if the process

t

M, = f(w) — /Lf(wr)dr Moy = f(z) as. P"

0

is a P* martingale w.r.t. By, for all f € C2(R™). The martingale problem

is called well posed if there is a unique measure P* solving the martingale
problem.
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The argument of Theorem 8.3.1 actually proves that CNQC” solves the martin-
gale problem for A whenever X; is a weak solution of the stochastic differential
equation

Conversely, it can be proved that if P? solves the martingale problem for

o o 02

starting at z, for all z € R", then there exists a weak solution X; of the
stochastic differential equation (8.3.4). Moreover, this weak solution X; is a
Markov process if and only if the martingale problem for L is well posed.
(See Stroock and Varadhan (1979) or Rogers and Williams (1987)). There-
fore, if the coefficients b, o of (8.3.4) satisfy the conditions (5.2.1), (5.2.2) of
Theorem 5.2.1, we conclude that

@x is the unique solution of the martingale problem
for the operator L given by (8.3.5) . (8.3.6)

Lipschitz-continuity of the coeflicients of L is not necessary for the uniqueness
of the martingale problem. For example, one of the spectacular results of
Stroock and Varadhan (1979) is that

2

0 0
L= sz(?_x + Zaij 8ZE18$J

%

has a unique solution of the martingale problem if [a;;] is everywhere positive
definite, a;j(z) is continuous, b(z) is measurable and there exists a constant
D such that

b(z)| + |a(z)|? < D(1+|z|) forall z € R™.

8.4 When is an Itd6 Process a Diffusion?

The Itd formula gives that if we apply a C? function ¢: U C R™ — R" to an
It6 process X; the result ¢(X;) is another Itd process. A natural question is:
If X; is an Ito diffusion will ¢(X;) be an Ito diffusion too? The answer is no
in general, but it may be yes in some cases:

Example 8.4.1 (The Bessel process) Let n > 2. In Example 4.2.2 we
found that the process

[N

Ri(w) = |B(t,w)| = (B1(t,w)? + - - - + By (t,w)?)



8.4 When is an Itd Process a Diffusion? 151

satisfies the equation

n

dR; = dt . 8.4.1
=2 R, 2R, (8-4.1)

i=1
However, as it stands this is not a stochastic differential equation of the form

(5.2.3), so it is not apparent from (8.4.1) that R is an It6 diffusion. But this
will follow if we can show that

t
vi= | 2 g5
0 =

coincides in law with (i.e. has the same finite-dimensional distributions as)
1-dimensional Brownian motion By. For then (8.4.1) can be written
n—

1 ~
dt +dB
I +

t

dR; =

which is of the form (5.2.3), thus showing by weak uniqueness (Lemma 5.3.1)
that R; is an Ito diffusion with generator

n—1

Af(e) = 41" @) + =1 @)

as claimed in Example 4.2.2. One way of seeing that the process Y; coincides
in law with 1-dimensional Brownian motion B, is to apply the following result:

Theorem 8.4.2 An Ité process

dY, = vdB; ; Yo =0 with v(t,w) € V3™

coincides (in law) with n-dimensional Brownian motion if and only if

! (t,w) =1, for a.a. (t,w) w.r.t. dt x dP (8.4.2)

where I, is the n-dimensional identity matriz.

Note that in the example above we have

vdB

=
Il
o\ﬁ

with
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and since vvT = 1, we get that Y; is a 1-dimensional Brownian motion, as
required.

Theorem 8.4.2 is a special case of the following result, which gives a neces-
sary and sufficient condition for an It6 process to coincide in law with a given
diffusion: (We use the symbol ~ for “coincides in law with”).

Theorem 8.4.3 Let X; be an Ité diffusion given by

dX; = b(X,)dt + o(X,)dB,, beR", oeR™™ Xo=uzx,

and let Yy be an Ito process given by

dY; = u(t,w)dt + v(t,w)dB;, uweR", veR™™ Yy==z.
Then {X:} ~ {Y;} if and only if

E*[u(t, )Ny = b(Y,®) and vT (t,w) = ool (V) (8.4.3)
for a.a. (t,w) w.r.t. dt x dP, where Ny is the o-algebra generated by Ys; s < t.

Proof. Assume that (8.4.3) holds. Let

0 02
A=Y b +1 ™, <
Z 8:51 + 2 Z(UU ) J 8:51890]

%,J

be the generator of X; and define, for f € CZ(R"),

0% f
Zuztw Yt 221}1} ”tw)(? wrs (1) .
ZJ ]

Then by It6’s formula (see (7.3.1)) we have, for s > t,

E[f(Y)W] = f(V2) + EF :/SHf(Taw)dTINt] +E* {/SVfTvdBrth}

= )+ 57| [ B o laniad)

—fv 4B / A f(YT)dr|/\/'t} by (843),  (3.4.4)

where E” denotes expectation w.r.t. the law R* of Y; (see Lemma 7.3.2).
Therefore, if we define
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t
M= (%) - [ Afrar (8.4.5)
0
then, for s > t,

E[M,IN] = f(Y;) + E* [ Af(n)drwt] o [ / Af(Yr)drth]
0

o\ﬁ H\m

= 100 - 5| [ asen)arng| =

Hence M; is a martingale w.r.t. the o-algebras N; and the law R®. By unique-
ness of the solution of the martingale problem (see (8.3.6)) we conclude that
Xt >~ th

Conversely, assume that X; ~ Y;. Choose f € C2. By Ito’s formula (7.3.1)
we have, for a.a. (t,w) w.r.t. dt x dP,

tin 3 (B (Vi) NG = £(%)
1 t+h 8f
_ E?&E( / B [;ui(s,w)axi (Y2)
2
+5 Z o) (s,w) 83(1ng( 5)|j\/t} ds) (8.4.6)
_ZEI wi(t o.))|/\/t] ZE”” vl (t, W)V 5= — 8f (Vi) . (8.4.7)

On the other hand, since X; ~ Y; we know that Y; is a Markov process.
Therefore (8.4.6) coincides with

ti 3 (EY (03] - ¥ [£(3%))

:ZEYt [ui((), } 2213“[% 4 )aa—af%(y)}
— Z EY: [ui(o,w)]a—%(m + 3 Z EYt[(voT); (O,w)]%éij(}/}) . (8.4.8)

Comparing (8.4.7) and (8.4.8) we conclude that

E®lu(t,w)|N;] = EY*[u(0,w)] and E%[vo? (t,w)|N;] = EY[vvT (0,w)]
(8.4.9)
for a.a. (t,w).
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On the other hand, since the generator of Y; coincides with the generator
A of X; we get from (8.4.8) that

EYt[u(0,w)] = b(Y;) and EYt[oo? (0,w)] = 0o (Y;) for a.a. (t,w).
(8.4.10)
Combining (8.4.9) and (8.4.10) we conclude that
EulN;] =b(Y;) and E*[wo” |N] = o0? (Y;) for a.a. (t,w). (8.4.11)

From this we obtain (8.4.3) by using that in fact vv®(t,-) is always N;-
measurable, in the following sense:

Lemma 8.4.4 Let dY; = u(t,w)dt + v(t,w)dB;, Yo = x be as in Theo-
rem 8.4.3. Then there exists an Ni-adapted process W (t,w) such that

vl (t,w) = W(t,w) for a.a. (t,w) .
Proof. By Itd’s formula we have (if Y;(¢,w) denotes component number i of
Y(t,w))
¢ ¢ ¢
VY, (t,w) = zxj + /Yide(s) + /deYi(s) + /(’UUT)Z'j(S,CU)dS :
0 0 0
Therefore, if we put
¢
His(t0) = V2Y;(60) — iy — [ Yy = [Viavi,  1<ij<n
0
then H;; is Ni-adapted and

H;;(t,w) = /(UUT)ij(S,w)dS .
0

Therefore

. H(t,w)—H(t—rw)

T ’ )

iJ t7 =1

(v07)i; (1, w) = lim "

for a.a. t. This shows Lemma 8.4.4 and the proof of Theorem 8.4.3 is complete.
O

Remarks. 1) One may ask if also u(t,-) must be N;-measurable. However,
the following example shows that this fails even in the case when v =n = 1:
Let By, Bs be two independent 1-dimensional Brownian motions and define

dY; = By(t)dt + dBa(t) .
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Then we may regard Y; as noisy observations of the process Bi(t). So by
Example 6.2.10 we have that

E[(Bl (ta w) - El (ta w))2] = tanh(t) )
where Bi(t,w) = E[Bi(t)|N;] is the Kalman-Bucy filter. In particular,
B (t,w) cannot be M-measurable.
2) The process v(t,w) need not be MN;-adapted either: Let B; be 1-
dimensional Brownian motion and define
dY; = sign(B;)dB; (8.4.12)

where

. 1 ifz>0
sign(2) =9 1 ir.<o.

Tanaka’s formula says that
¢
|Bi| = |Bol + /sign(Bs)st + Ly (8.4.13)
0

where Ly = Ly(w) is local time of By at 0, a non-decreasing process which only
increases when B; = 0 (see Exercise 4.10). Therefore the o-algebra A gener-
ated by {Y;; s < t} is contained in the o-algebra H; generated by {|Bs|; s < t}.
It follows that v(t,w) = sign(Bi) cannot be N;-adapted.

Corollary 8.4.5 (How to recognize a Brownian motion)
Let

dY: = u(t,w)dt + v(t,w)dBy
be an Ité process in R™. Then Y; is a Brownian motion if and only if
E%u(t,)\N]] =0 and vl (t,w) =1, (8.4.14)
for a.a. (t,w).

Remark. Using Theorem 8.4.3 one may now proceed to investigate when
the image Y; = ¢(X;) of an Ito diffusion X; by a C%-function ¢ coincides in
law with an It6 diffusion Z;. Applying the criterion (8.4.3) one obtains the
following result:

d(Xy) ~ Z; if and only if
Alfog] = Alflos (8.4.15)

for all second order polynomials f(z1,...,2,) = Y. axi + 2 ¢jzx; (and
hence for all f € CZ) where A and A are the generators of X; and Z,
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respectively. (Here o denotes function composition: (f o ¢)(z) = f(¢(z)).)
For generalizations of this result, see Csink and @ksendal (1983), and Csink,
Fitzsimmons and @ksendal (1990).

8.5 Random Time Change

Let ¢(t,w) > 0 be an Fi-adapted process (with measurable paths). Define

By = B(t,w) = /c(s,w)ds . (8.5.1)
0

We will say that §; is a (random) time change with time change rate c(t,w).
Note that 8(t,w) is also Fi-adapted and for each w the map t — [;(w) is
non-decreasing. Define oy = a(t,w) by

oy = inf{s; 55 >t} . (8.5.2)
Then «4 is a right-inverse of f3;, for each w :
Bla(t,w),w) =t forall ¢t >0. (8.5.3)

Moreover, t — a;(w) is right-continuous.
If ¢(s,w) > 0 for a.a. (s,w) then t — B;(w) is strictly increasing, ¢t — a;(w)
is continuous and «; is also a left-inverse of B;:

a(f(t,w),w) =t forall t>0. (8.5.4)
In general w — a(t,w) is an {F,}-stopping time for each ¢, since
{wyalt,w) < s} ={w;t < B(s,w)} € Fs . (8.5.5)

We now ask the question: Suppose X; is an It6 diffusion and Y; an Itd process
as in Theorem 8.4.3. When does there exist a time change 5; such that Y,, ~
X;? (Note that «; is only defined up to time S. If S < 0o we interpret
Y., ~ X; to mean that Y,, has the same law as X; up to time S).

Here is a partial answer (see QOksendal (1990)):

Theorem 8.5.1 Let X;,Y; be as in Theorem 8.4.3 and let B be a time change
with right inverse oy as in (8.5.1), (8.5.2) above. Assume that

u(t,w) = c(t,w)b(Y;) and vl (t,w) = c(t,w) - oo’ (V;) (8.5.6)

for a.a. t,w. Then

Yat ’ZXt .

This result allows us to recognize time changes of Brownian motion:
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Theorem 8.5.2 Let dY; = v(t,w)dB, v € R™*™, B, € R™ be an Ité integral
i R", Yy =0 and assume that

vl (t,w) = c(t,w) I, (8.5.7)
for some process c(t,w) > 0. Let oy, Bt be as in (8.5.1), (8.5.2). Then
Yo

. 15 an n-dimensional Brownian motion .

Corollary 8.5.3 Let dY; = > v;(t,w)dB;(t,w), Yo = 0, where
i=1
B = (Bu,...,B,) is a Brownian motion in R™. Then

By:=Y,, s a I-dimensional Brownian motion ,

where oy is defined by (8.5.2) and
Bs = / { va(r,w)}dr : (8.5.8)
5 Si=1

Corollary 8.5.4 Let Yy, Bs be as in Corollary 8.5.3. Assume that

Zv?(r,w) >0 for a.a (r,w). (8.5.9)
i=1
Then there exists a Brownian motion Et such that
Y, =By, . (8.5.10)
Proof. Let
By =Ya, (8.5.11)

be the Brownian motion from Corollary 8.5.3. By (8.5.9) f; is strictly increas-
ing and hence (8.5.4) holds, So choosing t = 3, in (8.5.11) we get (8.5.10).
O

Corollary 8.5.5 Let c(t,w) > 0 be given and define

¢
Y, = /\/c(s,w) dBs ,
0

where By is an n-dimensional Brownian motion. Then

Y., is also an n-dimensional Brownian motion .
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We now use this to prove that a time change of an Ito integral is again an
It6 integral, but driven by a different Brownian motion B;. First we construct
Btl

Lemma 8.5.6 Suppose s — a(s,w) is continuous, a(0,w) = 0 for a.a. w.
Fiz t > 0 such that B; < 00 a.s. and assume that Eloy] < oo. Fork=1,2,...
put

te— g2 df 2R <oy
J t if j-27F > a

and choose r; such that o, = t;. Suppose f(s,w) > 0 is Fs-adapted, bounded
and s-continuous for a.a. w. Then

leIBOZf(aj,w)ABaj = /f(s,w)st a.s. , (8.5.12)
J 0

where aj = o, ABq,; = B — By, and the limit is in L?(02,P).

Qj+1
Proof. For all k we have

at

B|(X flas o, - [ fs.am.)]

0
_ E[(Z 71(f(aj=W) - f(stBS)Q]
- ZE[( 71<f<aj,w) - f(s,w>>st>2}
:;EUU@,m—ﬂs,w ) - [O/f o]

where fi(s,w) =>_ f(tj7w)X[tj,tj+1) (8) is the elementary approximation to f.
J
(See Corollary 3.1.8). This implies (8.5.12). O

We now use this to establish a general time change formula for Ito integrals.
An alternative proof in the case n = m = 1 can be found in McKean (1969,
§2.8).

Theorem 8.5.7 (Time change formula for Ité6 integrals)

Suppose ¢(s,w) and as,w) are s-continuous, a(0,w) =0 for a.a. w and that
Ela:] < oo. Let By be an m-dimensional Brownian motion and let v(s,w) €
V™ be bounded and s-continuous. Define
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B, = lim Z,/c(aj,w) AB,, :/\/c(s,w) dB, . (8.5.13)
J 0

k—o0

Then By is an (m-dimensional) ]—'é, -Brownian motion (i.e. By is a Brownian
motion and Bt is a martingale w.r.t. ]—'é, ) and

at

t
/U(s,w)dB /’U oy, w)\/ o (w) dB, a.s. P, (8.5.14)
0

0
where a).(w) s the derivative of a(r,w) w.r.t. v, so that

1
al(w) = or ) for a.a. r >0, a.a. w € 2. (8.5.15)

Proof. The existence of the limit in (8.5.13) and the second identity in (8.5.13)
follow by applying Lemma 8.5.6 to the function

f(s,w) = +e(s,w) .
Then by Corollary 8.5.5 we have that B, is an féT)—Brownian motion. It

remains to prove (8.5.14):

at

/v(s,w)dBS = lim v(oj, w)ABy,

k—oo

0

= lim v(ay,w 1/ \/ (aj,w) AB,,
k—»oo Oé_],

= klin;o;v(aj,w) m ABJ
t
/ (ar,w) LB

= [ v(ap,w)y| — dB,

c(a, w)
0
and the proof is complete. a

Example 8.5.8 (Brownian motion on the unit sphere in R"; n>2)
In Examples 5.1.4 and 7.5.5 we constructed Brownian motion on the unit
circle. It is not obvious how to extend the method used there to obtain Brow-
nian motion on the unit sphere S of R™; n > 3. However, we may proceed as
follows: Apply the function ¢: R™\ {0} — S defined by

¢lx) =x-lz[7';  zeR"\{0}
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to n-dimensional Brownian motion B = (Bj, ..., By). The result is a stochas-
tic integral Y = (Y1,...,Y,,) = ¢(B) which by Itd’s formula is given by

|B|* — -1 B .
dy; = —1dB . dt ; =12,...,
[BP Z |B|3 St b
(8.5.16)
Hence !
dY = — -o(Y)dB + —b(Y)d
1Bl |B|?
where
o= [O'ij] c R™" ,  with O'ij(Y) = 5ij — Y;Yv], 1<4, 7<n
and
1 3!
b(y) = L 5 | €R", (y1,...,yn are the coordinates of y € R") .
Yn
Now perform the following time change: Define
Zt(w) = Ya(t,w) ((U)
where .
1
_pn-1 _
=B, Bltw)= / st
0
Then Z is again an [t6 process and by Theorem 8.5.7
dZ = o(Z)dB + b(Z)dt .
Hence Z is a diffusion with characteristic operator
n—1 af
i —_— i =1. (8.5.17
Af(y) = ( Zyyga ayj> 72V, 1yl (8.5.17)

Thus, ¢(B) = % i
Z living on the unit sphere S of R™. Note that Z is invariant under orthogonal
transformations in R™ (since B is). It is reasonable to call Z Brownian motion
on the unit sphere S. For other constructions see 1t6 and McKean (1965, p. 269
(§7.15)) and Stroock (1971).

More generally, given a Riemannian manifold M with metric tensor
g = [gij] one may define a Brownian motion on M as a diffusion on M
whose characteristic operator A in local coordinates xz; is given by times
the Laplace-Beltrami operator (here [¢¥/] = [g;;]7!)

s — after a suitable change of time scale — equal to a diffusion
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A=t > 9 Vdet(g) Zgiji : (8.5.18)
‘/det(g) Z ox; S 8$j

See for example Meyer (1966, p. 256-270), McKean (1969, §4.3). The subject
of stochastic differential equations on manifolds is also treated in Ikeda and
Watanabe (1989), Emery (1989) and Elworthy (1982).

Example 8.5.9 (Harmonic and analytic functions)
Let B = (Bj, Bz) be 2-dimensional Brownian motion. Let us investigate what
happens if we apply a C? function

(w1, 22) = (u(z1,22),v(T1,T2))

to B:
Put Y = (Y1,Ys) = ¢(B1, B2) and apply Ito’s formula:

dY1 = u’l (Bl, BQ)dBl =+ u’2(Bl, BQ)dBQ + %[’U/{l (Bl, BQ) + ’U,g2(B1, BQ)]dt
and
dYs = v{(B1, B2)dBy + vy(B1, B2)dBs + £[v}) (B, Ba) + vhy(B1, B)]dt
ou

where u} = 5% etc. So
1

dY = b(Bl, Bg)dt + O'(Bl, Bg)dB N

Au uy  ul
. _ 1 o 1 2 o . .
with b = 3 < fv)’ o= <v'1 v§> = D, (the derivative of ¢).

So Y = ¢(B1, B2) is a martingale if (and, in fact, only if) ¢ is harmonic,
i.e. Ap = 0. If ¢ is harmonic, we get by Corollary 8.5.3 that

¢(B1,By) = (BSY, BY)

where B and B® are two (not necessarily independent) versions of 1-
dimensional Brownian motion, and

t t
mww:/WWBMM@,mmm:/wammw.
0 0

Since
[Vul?  Vu-Vv
ool =
Vu-Vo  |Vo|?
we see that if (in addition to Au = Av =0)

|Vu|> = |[Vv|? and Vu-Vo=0 (8.5.19)
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then
t

Y, =Y, + /adB
0
with
ool = |Vul|*(B1,B2)l> . Yo = ¢(B1(0), B2(0)) .

Therefore, if we let
t
5= B(tw) = [ IVuP(BrBo)ds, ar =5
0

we obtain by Theorem 8.5.2 that Y,, is a 2-dimensional Brownian motion.
Conditions (8.5.19) — in addition to Au = Av = 0 — are easily seen to be
equivalent to requiring that the function ¢(x + iy) = ¢(z,y) regarded as a
complex function is either analytic or conjugate analytic.

Thus we have proved a theorem of P. Lévy that ¢(By, B2) is — after a
change of time scale — again Brownian motion in the plane if and only if
¢ is either analytic or conjugate analytic. For extensions of this result see
Bernard, Campbell and Davie (1979), Csink and @ksendal (1983) and Csink,
Fitzsimmons and Oksendal (1990).

8.6 The Girsanov Theorem

We end this chapter by discussing a result, the Girsanov theorem, which
is fundamental in the general theory of stochastic analysis. It is also very
important in many applications, for example in economics (see Chapter 12).

Basically the Girsanov theorem says that if we change the drift coefficient
of a given It6 process (with a nondegenerate diffusion coefficient), then the
law of the process will not change dramatically. In fact, the law of the new
process will be absolutely continuous w.r.t. the law of the original process and
we can compute explicitly the Radon-Nikodym derivative.

We now proceed to make this precise. First we state (without proof) the
useful Lévy characterization of Brownian motion. A proof can be found in e.g.
Ikeda & Watanabe (1989), Theorem II.6.1, or in Karatzas & Shreve (1991),
Theorem 3.3.16.

Theorem 8.6.1 (The Lévy characterization of Brownian motion)
Let X(t) = (X1(t), ..., Xn(t)) be a continuous stochastic process on a proba-
bility space (£2,H, Q) with values in R™. Then the following, a) and b), are
equivalent

a) X(t) is a Brownian motion w.r.t. Q, i.e. the law of X(t) w.r.t. Q is the
same as the law of an n-dimensional Brownian motion.
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b) (i) X(t) = (X1(t),...,Xn(t)) is a martingale w.r.t. Q (and w.r.t. its own
filtration) and
(i) X:(t)X;(t)—0i;t is a martingale w.r.t. Q (and w.r.t. its own filtration)
foralli,je{1,2,...,n}.
Remark. In this Theorem one may replace condition (ii) by the condition
(i)’ The cross-variation processes (X;, X;)+ satisfy the identity
<Xi,Xj>t(w) = (Sijt a.s., 1 S i, j S n (861)
where

(Y,Y): being the quadratic variation process. (See Exercise 4.7.)

Next we need an auxiliary result about conditional expectation:

Lemma 8.6.2 (Bayes’ rule) Let p and v be two probability measures on a
measurable space (£2,G) such that dv(w) = f(w)du(w) for some f € L'(u).
Let X be a random variable on (§2,G) such that

E,[IX]] = / X ()| (@)dp(w) < oo -
0

Let H be a o-algebra, H C G. Then
E,[X|H]-E,[fIH] = E,[fX|H] a.s. (8.6.3)

Proof. By the definition of conditional expectation (Appendix B) we have
that if H € H then

/E X [H] fdp = /E X|Hd1/—/Xd1/
/ X fdp = / X H)dp (8.6.4)

On the other hand, by Theorem B.3 (Appendix B) we have

/ E (X[ fdp = E,[EXIHIf - X = By [BulE [X[HIf - X )]
H

— E,[XuE,[X|H] - E,[f1H)] = / E,[X|H]- B,[f/Hdu.  (865)
H
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Combining (8.6.4) and (8.6.5) we get

[ BX1H) - B = [ B, X M
H H

Since this holds for all H € H, (8.6.3) follows. O

Before stating the Girsanov theorem we make some general remarks about
absolute continuity of measures:

Let (£2,F,{F}i>0, P) be a filtered probability space (i.e. (£2,F,P) is a
probability space and {F};>¢ is a filtration on (£2,F)). Fix T' > 0 and let Q
be another probability measure on Fr. We say that @Q is absolutely continuous
w.r.t. P‘}.T (the restriction of P to Fr) and write Q < P if

PH)=0=Q(H)=0 for all H € Fr.

By the Radon-Nikodym theorem this occurs if and only if there exists an
Fr-measurable random variable Zr(w) > 0 such that

dQ(w) = Zp(w)dP(w) on Fr.

In this case we write

d
%ZZT on fT

and we call Zp the Radon-Nikodym derivative of @) with respect to P.
The following observation may be regarded as a weak partial converse of
the Girsanov theorem:

Lemma 8.6.3 Suppose QQ < P‘}.T with % = Zr on Fr. Then Q‘}.t < P’}.t
for allt € [0, T] and if we define

Q)
d(P|

t =

ft)
then Zy is a martingale w.r.t. Fy and P.

Proof. Since Q < P on Fr and F; C Fr it is obvious that @ < P on F;.
Choose F' € F;. Then

Ep|XF - Ep|Z7|Fi]| = Ep|Ep[XF - Zr|F]
— Ep|Xr - Zr] = EoXp] = Ep|Xr - Z4).

Since this holds for all F' € F; we conclude that

EP[ZT|.7:,5] = Zt a.s. P‘]__t.
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We can now prove the first version of the Girsanov formula:

Theorem 8.6.4 (The Girsanov theorem I)
Let Y (t) € R™ be an Itd process of the form

dY (t) = a(t,w)dt + dB(t) ; t<T, Yp=0.

where T < 0o is a given constant and B(t) is n-dimensional Brownian motion.

Put

t ¢
M, = exp (— /a(s,w)dBS - %/a%s,w)ds) ; 0<t<T. (8.6.6)
0 0

Assume that My is a martingale with respect to .7-}(”) and P. Define the mea-
sure @ on f:(pn) by
dQ(w) = M7 (w)dP(w) . (8.6.7)

Then Q is a probability measure on ]—'}") and Y (t) is an n-dimensional Brow-
nian motion w.r.t. Q, for 0 <t <T.

Remarks.

(1) The transformation P — @ given by (8.6.7) is called the Girsanov trans-
formation of measures.

(2) As pointed out in Exercise 4.4 the following Novikov condition (8.6.8) is
sufficient to guarantee that { M, },<1 is a martingale (w.r.t. ft(n) and P):

E[exp (%/T(f(s,w)ds)] < 00 (8.6.8)

where F = Ep is the expectation w.r.t. P.
(3) Note that since M; is a martingale we actually have that

MpdP = M,dP on F™; t<T. (8.6.9)

To see this, let f be a bounded ffn)-measurable function. Then by The-
orem B.3 we have

/ F(w)Mr(w)dP(w) = E[fMy] = E[E[f M| 7]
2

— E[fE[M7|F)] = E[f M) = / f(@)My(w)dP(w)

Proof of Theorem 8.6.4. Since M, is a martingale we have
Q(2) = Eq[l] = Ep[Myp] = 1.
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Hence @ is a probability measure. For simplicity we assume that a(s,w) is
bounded. In view of Theorem 8.6.1 we have to verify that

(i) Y(t) = (Ya(t),...,Yn(t)) is a martingale w.r.t. @ (8.6.10)
and
(ii) Yi(t)Y;(t) — d;;t is a martingale w.r.t. @,

for all 4,5 € {1,2,...,n}. (8.6.11)

To verify (i) we put K(¢t) = MY (¢t) and use Itd’s formula to get (see
Exercises 4.3, 4.4)

dK(t) = MydYi(t) + Yi(t)dM; + dYi(t)dM;

= My(a;(t)dt + dB;(t)) (Z —ax(t)dBy(t )
k=1
+(aBi()( - MY ak(t)dBk(t))
k=1
= My(dB(t) - Yi(t) iaw)dBk(t)) = My (t)dB(t) (8.6.12)
k=1

D | —Yilt)a;(t)  forj#i
) = {1—Y()al(t) for;':i.

Hence K, (t) is a martingale w.r.t. P, so by Lemma 8.6.2 we get, for t > s,

Eolvit)| 7] = MYV EK(OIF]

E[M|Fs] M,
_ Kl _y
= S =)

which shows that Y;(t) is a martingale w.r.t. Q. This proves (i). The proof of
(ii) is similar and is left to the reader. O

Remark. Theorem 8.6.4 states that for all Borel sets Fi,..., Fry C R™ and
all t1,to,...,tx <T,k=1,2,... we have

Q[Y(tl) € Fy,... ,Y(tk) S Fk] = P[B(tl) e Fy,.. .,B(tk) S Fk] (8.6.13)

An equivalent way of expressing (8.6.7) is to say that Q < P (Q is absolutely
continuous w.r.t. P) with Radon-Nikodym derivative

dQ

TS=Mr on Fi (8.6.14)
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Note that Mrp(w) > 0 a.s., so we also have that P < Q. Hence the two
measures () and P are equivalent. Therefore we get from (8.6.13)

P[Y(t1) € F1,...,Y () € Fx] >0
— QY (t1) € F1,...,Y(tx) € Fx] >0
< P[B(t1) € Fr,...,B(ty) € Fx] >0; t1,...,t, €[0,7] (8.6.15)

Example 8.6.5 Suppose Y (t) € R"™ is given by
dY (t) = g(t)dt + dB(t), 0<t<T

where g : [0,7] — R™ is a continuous deterministic function. Then the
Novikov condition (8.6.8) holds trivially and Y'(¢) is a Brownian motion w.r.t.
Q, where

T

T
dQ(w) = exp ( - /g(s)dB(s) - %/g%s)ds) dP(w) on ]—";n).
0

0

Theorem 8.6.6 (The Girsanov theorem II)
Let Y (t) € R™ be an Itd process of the form

dY (t) = B(t,w)dt + 0(t,w)dB(t) ; t<T (8.6.16)

where B(t) € R™, B(t,w) € R™ and 0(t,w) € R"™ ™. Suppose there exist
processes u(t,w) € Wi} and a(t,w) € W}, such that

O(t,w)u(t,w) = B(t,w) — at,w) (8.6.17)
Put
M; = exp ( - /u(s,w)dBS - %/u%s,w)ds) ; t<T (8.6.18)
0 0
and

dQ(w) = Mp(w)dP(w) on f:(pm) . (8.6.19)

Assume that My is a martingale (w.r.t. ft(n) and P). Then Q is a probability
(

measure on ]—"Tm), the process

§(t):z/u(s,w)ds+B(t); L<T (8.6.20)
0
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is a Brownian motion w.r.t. Q and in terms of B(t) the process Y (t) has the
stochastic integral representation

dY (t) = a(t,w)dt + 0(t,w)dB(t) . (8.6.21)

Remark. As in the Remark following Theorem 8.6.4 we note that the fol-
lowing Novikov condition is sufficient to guarantee that M; is a martingale:

T
E[exp (%b/u2(s,w)ds)] <00, (8.6.22)

Proof. 1t follows from Theorem 8.6.4 that @ is a probability measure on f:(pm)
and E(t) is a Brownian motion w.r.t. ). So, substituting (8.6.20) in (8.6.16)
we get, by (8.6.17),

dY (t) = B(t,w)dt + 0(t,w)(dB(t) — u(t,w)dt)
= [B(t,w) — O(t,w)u(t,w)]dt + 0(t,w)dB(t)
= a(t,w)dt + O(t,w)dB(t) . _
Note that if n = m and § € R™*" is invertible, then the process u(t,w)
satisfying (8.6.17) is given uniquely by
u(t,w) = 071t w)[B(t,w) — alt,w)] . (8.6.23)

Remark. In most applications, e.g. in finance (see Chapter 12) the process
a(t,w) is chosen to be 0. Then the process Y (¢) gets the form (see (8.6.21))

dY (t) = 0(t,w)dB(t),

which implies that Y (¢) is a local martingale w.r.t. Q. In this case @ is called
an equivalent local martingale measure. See Chapter 12.

Yi(t)

Example 8.6.7 Suppose Y (t) = [Y )
2

} € R? is given by
dYi(t) = 2dt + dB1(t) + dBa(t)
dYs(t) = 4dt + dB1(t) — dBa(t)

ie. i m i+ [} _11} dB(t);  B(t) = [Bz(tﬂ.

Choose a(t,w) = 0. Then equation (8.6.17) gets the form

e[



8.6 The Girsanov Theorem 169

which has the unique solution
up =3, us=-—1.
Hence we put
dQ(w) = exp(—3B1(T) + By(T) — 5T)dP(w)  on F\2
and

dB(t) = [_?’J dt + dB(t) .

Then trivially the Novikov condition holds (see Example 8.6.5) and we con-
clude that B(t) is a Brownian motion w.r.t. the probability measure @ and

ay(t) = [1 _11] dB(t) .

Thus in this case Y (¢) is in fact a martingale w.r.t. Q, i.e. Q is an equivalent
martingale measure for Y (t).

Finally we formulate a diffusion version:

Theorem 8.6.8 (The Girsanov theorem III)
Let X(t) = X*(t) e R" and Y (t) = Y*(t) € R™ be an Ité diffusion and an
It6 process, respectively, of the forms

dX (1) = b(X(t))dt + o(X())dB(t);  t<T, X(0)=z (8.6.24)
dY (t) = [y(t,w) + b(Y (£)]dt + o(Y (£))dB(t); t<T, Y(0) =z (8.6.25)

where the functions b: R™ — R™ and o:R"™ — R"*™ satisfy the conditions
of Theorem 5.2.1 and ~(t,w) € Wy, x € R". Suppose there exists a process
u(t,w) € Wi such that

o(Y () u(t,w) = v(t,w). (8.6.26)

Define My, Q and B(t) as in (8.6.18), (8.6.19) and (8.6.20). Assume that M;

18 a martingale w.r.t. .ﬂ(m) and P. Then Q is a probability measure on f:(pm)
and

dY (t) = b(Y (t))dt + O’(Y(t))dé(t) . (8.6.27)
Therefore,

the Q-law of Y*(t) is the same as

8.6.28
the P-law of X*(t); t<T. ( )

Proof. The representation (8.6.27) follows by applying Theorem 8.6.6 to the
case O(t,w) = a(Y(t)), B(t,w) = v(t,w)+b(Y (t)), a(t,w) = b(Y(¢)). Then the
conclusion (8.6.28) follows from the weak uniqueness of solutions of stochastic
differential equations (Lemma 5.3.1). O
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The Girsanov theorem III can be used to produce weak solutions of
stochastic differential equations. To illustrate this, suppose Y; is a known
weak or strong solution to the equation

dY, = b(Y,)dt + o (Y;)dB(t) (8.6.29)

where b: R™ — R", 0: R" — R™ ™ and B(t) € R™. We wish to find a weak
solution X (t) of a related equation

dX, = a(Xy)dt + o(X,)dB(t) (8.6.30)

where the drift function is changed to a: R™ — R™. Suppose we can find a
function ug: R™ — R™ such that

o(yuo(y) =bly) —aly);  yeR".
(If n = m and o is invertible we choose
up=0t-(b—a).)

Then if u(t,w) = uo(Y:(w)) satisfies Novikov’s conditions, we have, with Q
and B; = B(t) as in (8.6.20) and (8.6.21), that

dY; = a(Y;)dt + o (Y;)dB, . (8.6.31)

Thus we have found a Brownian motion (Et, Q) such that Y; satisfies (8.6.31).
Therefore (Y;, Bt) is a weak solution of (8.6.30).

Example 8.6.9 Let a: R™ — R" be a bounded, measurable function. Then
we can construct a weak solution X; = X7 of the stochastic differential equa-
tion

dX; = a(X;)dt + dBy ; Xo=z€R". (8.6.32)

We proceed according to the procedure above, with 0 =1, b =0 and

dY; = dBy; Yo==x.

Choose
up=0"1-(b—a)=—a
and define
t t
M, = exp{— /uO(YS)dBS - %/ug(Ys)ds}
0 0
i.e.
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Fix T < oo and put
dQ = MrdP  on Fi™ .
Then

t

Bti = —/a(BS)ds + Bt
0
is a Brownian motion w.r.t. @ for ¢t < T and

dB, = dY; = a(Y;)dt + dB; .

Hence if we set Yy = x the pair (Y, B) is a weak solution of (8.6.32) for
t <T. By weak uniqueness the Q-law of Y; = B; coincides with the P-law of
X[, so that

Elfi(X]) - fo(XE)] = EQlfi(Ye,) - .- fr(Ye,)]
= E[Mr f1(By,) ... fx(By)] (8.6.33)
for all f1,...,fx € Co(R™); t1,...,tx <T.

Exercises

8.1.*% Let A denote the Laplace operator on R™.
a) Write down (in terms of Brownian motion) a bounded solution g of
the Cauchy problem

dg(t
{ gg; ?) —3A,9(t,z) =0 for t >0,z € R"
9(0,2) = ¢(z)
where ¢ € C? is given. (From general theory it is known that the
solution is unique.)
b) Let ¢ € Cp(R™) and o > 0. Find a bounded solution u of the
equation
(a— 1A u=19 in R™.
Prove that the solution is unique.

8.2. Show that the solution u(¢,z) of the initial value problem

ou 0%u ou
5t T g T ey,
u(0,2) = f(z)  (f € C§(R) given)
can be expressed as follows:
u(t,z) = E[f(x - exp{BB; + (o — 38%)t})]
2

_\/%/f(x-exp{ﬁy—l—(a—%BQ)t})exp <— %)dy; t>0.
R

t>0,zeR
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8.3.

8.4.

8.5.
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(Kolmogorov’s forward equation)
Let X; be an It6 diffusion in R™ with generator

A = ; cz
f(y) ; 8 3yg + ; o f € (g
where a;; € C*(R™) and b; € C*(R") for all i, j and assume that the

transition measure of X; has a density p:(z,y), i.e. that

Wuwm=/}@mww@; fecz. (8.6.34)

Assume that y — pi(z,y) is smooth for each t,z. Prove that p:(z,y)
satisfies the Kolmogorov forward equation

d
%pt(:v y) = Aypi(z,y) for all =,y , (8.6.35)

where A7 operates on the variable y and is given by
0? )
Arp(y) = ——— Ty, %) Z 5y 09);  9ECt (3630)

i.e. A} is the adjoint of A,.
9
(Hint: By (8.6.34) and Dynkm s formula we have

/}@m@wwzﬂw+//Aﬁ@mww@%; fecs.
Rn

0 R

Now differentiate w.r.t. ¢ and use that
(Ap,¥) = (¢, A"y)  for € CF, ¥ € C?,
where (-,-) denotes inner product in L?(dy).)

Let B; be n-dimensional Brownian motion (n > 1) and let F' be a Borel
set in R™. Prove that the expected total length of time ¢ that B; stays
in F is zero if and only if the Lebesgue measure of F' is zero.

Hint: Consider the resolvent R, for o > 0 and then let @ — 0.

Show that the solution u(¢, x) of the initial value problem
%—?zpu+%Aut>0; xeR"
u(0,2) = f(z) (f € C3(R") given)

(where p € R is a constant) can be expressed by
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8.7.

8.8.
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u(t, z) = (2mt) "% exp(pt) / f(y) exp ( - %)dy :

R”

In connection with the deduction of the Black-Scholes formula for the
price of an option (see Chapter 12) the following partial differential
equation appears:

% = —pu—l—a:vg—g—i—%ﬁ%ﬁgw% it>0, zeR
uw(0,z) = (z — K)*; zeR,
where p > 0, a,  and K > 0 are constants and
(r — K)" = max(x — K,0) .

Use the Feynman-Kac formula to prove that the solution u of this
equation is given by

u(t,x) = \/_/:17 exp{(a — 18*)t + By} — K)Te 2idy; t>0.

(This expression can be simplified further. See Exercise 12.13.)

Let X; be a sum of It0 integrals of the form

X, = Z/ (s,w)dBy(s) ,

k=17
where (B, ..., By) is n-dimensional Brownian motion. Assume that
t
/ ’U (s,w)ds — oo as t — 00, a.s.
5 k=1
Prove that
. X
limsup ————="=1 a.s.

t—oo V2B loglog B;

(Hint: Use the law of iterated logarithm.)

Let Z; be a 1-dimensional Itd process of the form
dZt = u(t, (U)dt + dBt .
Let G; be the o-algebra generated by {Z(+); s < ¢t} and define

dNt = (u(t,w) — E[u|gt])dt + dBt .
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Use Corollary 8.4.5 to prove that Ny is a Brownian motion. (If we inter-
pret Z; as the observation process, then Ny is the innovation process.
See Lemma 6.2.6.)

8.9. Define a(t) = $1In(1 + £¢3). If B; is a Brownian motion, prove that
there exists another Brownian motion B, such that
at t
/ e*dB, = / rdB, .
0

0

8.10. Let B; be a Brownian motion in R. Show that
X;:= B?
is a weak solution of the stochastic differential equation
dX, = dt +2/|X|dB, . (8.6.37)

(Hint: Use Ito’s formula to express X; as a stochastic integral and
compare with (8.6.37) by using Corollary 8.4.5.)

8.11.*% a) Let Y(t) = ¢+ B(t); t > 0. For each T > 0 find a probability
measure Qp on Fr such that Qr ~ P and {Y(¢)};<7 is Brownian
motion w.r.t. Qr. Use (8.6.9) to prove that there exists a probability
measure ) on Fo, such that

QFr=Qr forall T>0.

b) Show that
P (tlim Y(t) = oo) =1
while
0 (tlim Y(t) = oo) =0.
Why does not this contradict the Girsanov theorem?

8.12.* Let

dY (t) = [ﬂ dt + [_11 _32] [Zg;g ;o t<T.

Find a probability measure @ on fg) such that @ ~ P and such that

o= [

is a Brownian motion w.r.t. @ and
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wo-[4 3][20]

8.13. Let b: R — R be a Lipschitz-continuous function and define
X: =X eRby

dX; = b(X,)dt + dB;, Xo =z € R .

a) Use the Girsanov theorem to prove that for all M < oo, z € R and

t > 0 we have
PIXF > M]>0.
b) Choose b(x) = —r where r > 0 is constant. Prove that for all x
Xy — —o0 as t — 00 a.s.

Compare this with the result in a).

8.14. (Polar sets for the graph of Brownian motion)
Let B; be 1-dimensional Brownian motion starting at + € R.

a) Prove that for every fixed time ¢y > 0 we have
P*B,, =0]=0.

b) Prove that for every (non-trivial) closed interval J C R we have
P*3t € J such that B, =0]>0.

(Hint: If J = [t1,t2] consider P*[By, < 0 & B, > 0] and then use
the intermediate value theorem.)

¢) In view of a) and b) it is natural to ask what closed sets F' C R™
have the property that

P®3t € F such that B, =0]=0. (8.6.38)

To investigate this question more closely we introduce the graph X;
of Brownian motion, given by

|1 0 ) o
axi= o] ae+ | V] ame i x=| ]

i.e.

X, = Xtto’wo = [to i—ot] where B(® =z a.s.
By
Then F satisfies (8.6.38) iff K:= F x {0} is polar for X, in the
sense that

Plo™ 3t >0; X, € K] =0 forall tg,z0 . (8.6.39)
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The key to finding polar sets for a diffusion is to consider its Green
operator R, which is simply the resolvent R, with a =0 :

Rf(t0,$0) = Etoo |:/f(XS>dS:| for f S C()(Rz) .
to

Show that
Rf(to, o) = /G(to,xo;t,;v)f(t,;v)dtdx ,
R2
where

|z — x0]?

Glto, 203 t,2) = X,y - (2m(t — 10)) ™% exp <_ 2t — to)

> (8.6.40)

(G is the Green function of X;.)
d) The capacity of K,C(K) = Cg(K), is defined by

C(K) = sup{u(K); p € Ma(K)}

where M¢(K)={u; p measure on K s.t. [G(to,xo;t,x)dpu(t, x) <1
K

for all tg,zo}.
A general result from stochastic potential theory states that

Plo®o[X, hits K] =0« C(K) =0. (8.6.41)

See e.g. Blumenthal and Getoor (1968, Prop. VI1.4.3). Use this to
prove that

Ay(F)=0= P™[3t€F suchthat B, =0]=0,

where A1 denotes 1/2-dimensional Hausdorff measure (Folland
(1984, §10.2)).

8.15. Let f € CZ(R") and a(z) = (au(x),...,an(z)) with a; € C3(R™) be
given functions and consider the partial differential equation

(SIS
M=

n
G =3 oulw) 9~ +

=1 =1

u(0,2) = f() ; reR".

2
94:t>0, reR"

a) Use the Girsanov theorem to show that the unique bounded solution
u(t, x) of this equation can be expressed by
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ult,x) = B [exp ( / a(B,)dB, — § / a2<Bs>ds>f<Bt>} ,
0 0

where E” is the expectation w.r.t. P”.
b) Now assume that « is a gradient, i.e. that there exists v € C*(R")
such that
Vy=a.

Assume for simplicity that v € CZ(R™). Use It&’s formula to prove
that (see Exercise 4.8)

ultse) = exp(-r o) [exp {- & [ (v22(8.)
0

+9(8) ) ds b exp(y (BN (B0)]

c) Put v(t,z) = exp(y(z))u(t,z). Use the Feynman-Kac formula to
show that v(t, z) satisfies the partial differential equation

ot
v(0,7) = exp(y()) f () ; zeR".
(See also Exercise 8.16.)

8.16. (A connection between B.m. with drift and killed B.m.)
Let B; denote Brownian motion in R™ and consider the diffusion X; in
R" defined by

{@:_%(V72+A7)-U+%Av;t>0; zeR"

dX; = Vh(X,)dt +dB,; Xo=z €R". (8.6.42)

where h € C}(R™).

a) There is an important connection between this process and the pro-
cess Y; obtained by killing B: at a certain rate V. More precisely,
first prove that for f € Co(R"™) we have

B C0] = B [exo (= [ V(B ) -expln(B) ~ 1) - 1(B0)]
0

(8.6.43)
where

V(z) = $|Vh(z)]* + L Ah(z) . (8.6.44)
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8.17.

8.18.

8. Other Topics in Diffusion Theory

(Hint: Use the Girsanov theorem to express the left hand side of
(8.6.43) in terms of B;. Then use the Ité formula on Z; = h(B;) to
achieve (8.6.44).)

b) Then use the Feynman-Kac formula to restate (8.6.43) as follows
(assuming V' > 0):

T (f,2) = exp(~h(x)) - T} (f - exph,z) ,

where TX, T} denote the transition operators of the processes X
and Y, respectively, i.e.

TX(f,z) = E°[f(X;)] and similarly for Y .

Suppose Y (t) = [ (tH € R? is given by

(t

S

dYy(t) = Bi(t)dt + dBy (t) + 2dBa(t) + 3dBs(t)
dYs(t) = Bo(t)dt + dBy (t) + 2dBa(t) + 2dBs(t)

where 1, B2 are bounded adapted processes.

Show that there are infinitely many equivalent martingale measures @
for Y (t). (See Example 8.6.7.)

(The Girsanov theorem in stochastic control)

The following exercise is inspired by useful communications with Jerome
Stein. It is mainly based on an example given in Fleming (1999), Chap-
ter 2, Section 2.5. See also Platen and Rebolledo (1996).

Suppose we have a financial market with two investment possibilities:
(i) a risk free asset, where the unit price So(t) at time ¢ is given by

dSo(t) = p(t)So(t)dt; So(0) =1
(ii) a risky asset, where the unit price Sy(t) at time ¢ is given by
dSy(t) = S1(t)[u(t)dt + o(t)dB(t)]; S1(0) > 0.

We assume that the coefficients p(t), p(t) and o(t) # 0 are deterministic
and satisfy

/{|P(t)| + | u(t)] + o?(t)}dt < oo

A portfolio in this market can be represented by an F;-adapted stochas-
tic process 7(t) which gives the fraction of the total wealth X (¢) in-
vested in the risky asset at time ¢. If we assume that 7(t) is self-financing
(see Chapter 12) then the corresponding wealth process X (t) = X, (t)
will have the dynamics



Exercises 179

dX(t) =1 —7(t)X(@)pt)dt + m(t) X (t)[p(t)dt + o(t)dB(t)]
X(0)=2>0 (constant).

The problem is to find the portfolio 7* which maximizes the expected
utility of the terminal wealth,

E[U(XA(T)]
in the case when U is the power utility function, i.e.
U(z) =z for some constant v € (0, 1).

(See Chapter 11 and 12 for further discussions of this type of optimal
portfolio problems.)

a) Show that we can write

BT = K E[Zeeo (3 [{(0(0) - plt)m(0)

—L(1 =)W (B)}dt) |
where
T T
Zn = Zn(w) = exp ( / yo(t)m(t)dB(t) — 142 / 02(t)7r2(t)dt)
0 0
and

T
K =2a2"exp (W/p(t)dt) (does not depend on ).
0

Define a new measure (), on Fr by
dQr(w) = Zp(w)dP(w).
Then we can write

EX(T)| = K Eq, [F(m)),

s

where

T

F(m) = exp (3 [{(u(®) = p()r(6) = 51 = 7)o (0)7* 1)) )

0
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b) By maximizing the integral in the exponent of F'(7) pointwise for
each t,w, show that

T
t
F(r) < F(n*) = exp %/ gg()t dt),
0
which is attained for
_ ey o ) —p(t)
e il

¢) Now assume, in addition to our previous assumptions, that the port-
folios m we consider satisfy the Novikov condition

T
2
E[exp (%/02(15)7(2(15)(#)} < 00
0
Use this to conclude that

sup E[X)(T)] = K exp

MIQ

1 2
0/ 0 dt),

and if this is finite, then the optimal portfolio is 7*(t), given in b)
above.
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Applications to Boundary Value Problems

9.1 The Combined Dirichlet-Poisson Problem.
Uniqueness

We now use results from the preceding chapters to solve the following gener-
alization of the Dirichlet problem stated in the introduction:

Let D be a domain (open connected set) in R™ and let L denote a semi-
elliptic partial differential operator on C?(R") of the form

i R 02
L= Zbi(:v)a -+ ) 0ij(2) 5= (9.1.1)
) ) J

=1 1,7=1

where b;(z) and a;;(x) = aji(x) are continuous functions (see below). (By
saying that L is semi-elliptic (resp. elliptic) we mean that all the eigenvalues
of the symmetric matrix a(x) = [a;;(2)]};=; are non-negative (vesp. positive)
for all z.)

The Combined Dirichlet-Poisson Problem

Let ¢ € C(OD) and g € C(D) be given functions. Find w € C?(D) such that

(i) Lw=—g in D (9.1.2)

and

(ii) lim w(z) = ¢(y) for all y € 0D . (9.1.3)
€D

The idea of the solution is the following: First we find an It6 diffusion {X;}
whose generator A coincides with L on C3(R™). To achieve this we simply
choose a square root o(z) € R™*™ of the matrix 2a(z), i.e.

30(x)o” (2) = lai;(2)] - (9.1.4)

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_9, © Springer-Verlag Berlin Heidelberg 2013
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We assume that o(z) and b(x) = [b;(x)] satisfy conditions (5.2.1) and (5.2.2)
of Theorem 5.2.1. (For example, if each a;; € C?(D) is bounded and has
bounded first and second partial derivatives, then such a square root ¢ can
be found. See Fleming and Rishel (1975).) Next we let X; be the solution of

where B; is n-dimensional Brownian motion. As usual we let E* denote ex-
pectation with respect to the probability law Q% of X; starting at x € R™.
Then our candidate for the solution w of (9.1.2), (9.1.3) is

D

wl) = B0(Xr,) Xyl + | [aCX00]  016)
where 7p denotes the first exit time from D, provided that ¢ is bounded and
D
E* [/ |g(Xt)|dt] < oo for allz . (9.1.7)
0

The Dirichlet-Poisson problem consists of two parts:

(i) Existence of solution.
(ii) Uniqueness of solution.

The uniqueness problem turns out to be simpler and therefore we handle
this first. In this section we prove two easy and useful uniqueness results. Then
in the next sections we discuss the existence of solution and other uniqueness
questions.

Theorem 9.1.1 (Uniqueness theorem (1))
Suppose ¢ is bounded and g satisfies (9.1.7). Suppose w € C?(D) is bounded
and satisfies

(i) Lw=—g in D (9.1.8)
and

(i)’ limgyr, w(Xy) = (X7 ) - Xr <o0} a.s. Q% for all x . (9.1.9)
Then

D

w(z) = B*[¢(X:)) - Xz <o0}] +Ew[/g(Xt)dt:| . (9.1.10)
0
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Proof. Let {Dy}72, be an increasing sequence of open sets Dj such that

Dy cC D and D = |J Dyg. Define
k=1

ar =kATp, ; k=1,2,...
Then by the Dynkin formula and (9.1.8)

A

w(z) = B w(Xa, )] — B [ / Lw(Xt)dt]

= E*[w(X —i—E””[/g X, dt} (9.1.11)
0

By (9.1.9) w(Xa,) = ¢(Xr,) ) - X7 <co} Pointwise boundedly a.s. Q°. Hence

Efw(Xa, )] = E*[9(Xr,) - X7 <co}] as k — oo (9.1.12)
Moreover,
[/g Xy dt] — E7 [/g Xy dt] as k— o0, (9.1.13)
0 0
since
(677 TD
/g(Xt)dt%/g(Xt)dt a.s.
0 0
and
(677 7—D
‘/g(Xt)dt‘ < /|g(Xt)|dt, which is @Q®-integrable by (9.1.7).
0 0
Combining (9.1.12) and (9.1.13) with (9.1.11) we get (9.1.10). O

An immediate consequence is:

Corollary 9.1.2 (Uniqueness theorem (2))
Suppose ¢ is bounded and g satisfies (9.1.7). Suppose

T, < 00 a.s. QF for all x . (9.1.14)
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Then if w € C*(D) is a bounded solution of the combined Dirichlet-Poisson
problem (9.1.2), (9.1.8) we have

D

w(z) = B [H(X,, )] + B [ / g(Xt)dt] | (9.1.15)
0

Example 9.1.3 (The classical Dirichlet problem)
Let D be a bounded open set in R™ and let ¢ be a bounded function on 9D.
Suppose there is a function w € C?(D) such that

i) Aw=0 in D (9.1.16)
and
(i) lim w(z) = ¢(y) forall y € dD (9.1.17)
zeD
Then

w(z) = E*[¢(Brp)].
This follows from Corollary 9.1.2, since

iA=1 Z 32 is the generator of B(t)
=1 g
and we know from Example 7.4.2 that 7p < oo a.s.
Example 9.1.4 (The classical heat equation)

Consider the heat operator

o 107
L—&ﬁ‘é@, (S,LL‘)ERXR.
This is the generator of
Xe=X"=(s+t,B{); t>0

where B is Brownian motion starting at € R (see Example 7.3.5). There-
fore, if there exists a solution w(s,z) € C?*(R?) of the heat equation

ow 10°
(i) a_f“Lia_:jg =0  (5,2)€(0,T)xR=:D (9.1.18)
(ii) tgm w(Xt) = d(X;p) a.s. (9.1.19)

where ¢ : {T'} x R — R is a given bounded function, then it is given by
w(s,z) = E>*[¢(X7p)] = E>[¢(s + 7p, B7 ).
Here

= inf{t > 0; (s + t, B*(t)) & [0,T] x R}

=inf{t >0;s+t &[0, T)}=T—5. (9.1.20)
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Therefore the solution of the heat equation is

w(s, z) = E>°[¢(T, B%_,)]. (9.1.21)

9.2 The Dirichlet Problem. Regular Points

We now consider the more complicated question of existence of solution. It is
convenient to split the combined Dirichlet-Poisson problem in two parts: The
Dirichlet problem and the Poisson problem:

The Dirichlet Problem

Let ¢ € C(OD) be a given function. Find u € C?(D) such that

(I) Lu=0 in D (9.2.1)

and

(II) lim u(z) = é(y) for all y € 0D . (9.2.2)
zeD

The Poisson Problem

Let g € C(D) be a given function. Find v € C?(D) such that

(a) Lv=—g in D (9.2.3)

and

(b) lim v(z) =0 forall y € 0D . (9.2.4)
zeD

Note that if u© and v solve the Dirichlet and the Poisson problem, respectively,
then w: = u + v solves the combined Dirichlet-Poisson problem.

We first consider the Dirichlet problem and proceed to study the Poisson
problem in the next section.

For simplicity we assume in this section that (9.1.14) holds.

In view of Corollary 9.1.2 the question of existence of a solution of the
Dirichlet problem (9.2.1), (9.2.2) can be restated as follows: When is

u(z): = E*[¢(X )] (9.2.5)

D

a solution?
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Unfortunately, in general this function u need not be in C?(D). In fact,
it need not even be continuous. Moreover, it need not satisfy (9.2.2), either.
Consider the following example:

Example 9.2.1 Let X(t) = (X1(¢), X2(t)) be the solution of the equations
dX1(t) =dt
dXs(t) =0
so that X (¢) = X(0) +¢(1,0) € R? ¢ > 0. Let
D =((0,1) x (0,1)) U ((0,2) x (0, 3))
and let ¢ be a continuous function on 9D such that
¢=1 on {1} x[5,1] and
¢=0 on {2} x[0,1]
=0 on {0} x[0,1].

R . 4

Then

1 ifze(d,1)
ult, @) = BV [0(X ) = § i e 0,1)
192/

S0 u is not even continuous. Moreover,
lim u(t,z) =1# ¢(0,2) if 3<z<]1
t—0t

s0 (9.2.2) does not hold.

However, the function u(x) defined by (9.2.5) will solve the Dirichlet prob-
lem in a weaker, stochastic sense: The boundary condition (9.2.2) is replaced
by the stochastic (pathwise) boundary condition (9.1.9) and the condition
(9.2.1) (Lu = 0) is replaced by a condition related to the condition

Au=0
where A is the characteristic operator of X; (Section 7.5).
We now explain this in more detail:

Definition 9.2.2 Let f be a locally bounded, measurable function on D. Then
f is called X -harmonic in D if
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f(x) = E7[f(X7,)]
for all x € D and all bounded open sets U with U C D.

We make two important observations:

Lemma 9.2.3
a) Let f be X-harmonic in D. Then Af =0 in D.
b) Conversely, suppose f € C*(D) and Af =0 in D. Then f is X -harmonic.

Proof.
a) follows directly from the formula for A.
b) follows from the Dynkin formula: Choose U as in Definition 9.2.2. Then

E(f(Xe)] = Jim B[ (X, ni)]
TU Ak

)+ Jim 5| [ (@nexas] = o).

since Lf = Af =0in U. O

The most important examples of X-harmonic functions are given in the
next result:

Lemma 9.2.4 Let ¢ be a bounded measurable function on 0D and put

u(z) = E*[¢(X; )] ; zeD.

D
Then w is X -harmonic. Thus, in particular, Au = 0.
Proof. From the mean value property (7.2.9) we have, if V C D

u(w) = [ )@ Xy € dy] = Eu(Xr,)].
ov

We are now ready to formulate the weak, stochastic version:

The Stochastic Dirichlet Problem

Given a bounded measurable function ¢ on 9D, find a function u on D such
that

(i)s wis X-harmonic (9.2.6)
(i) Imu(X) = 6(X,,) as. Q" zeD. (9.2.7)

D
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We first solve the stochastic Dirichlet problem (9.2.6), (9.2.7) and then
relate it to the original problem (9.2.1), (9.2.2).

Theorem 9.2.5 (Solution of the stochastic Dirichlet problem)
Let ¢ be a bounded measurable function on 0D.

a) (Euxistence) Define

u(z) = E*[p(X,)] - (9.2.8)

D
Then u solves the stochastic Dirichlet problem (9.2.6), (9.2.7).

b) (Uniqueness) Suppose g is a bounded function on D such that
(1) g is X-harmonic
(2) lim g(X) = (X)) a.5. Q" z € D.
D

Then g(z) = E*[¢(X- )], € D.

Proof. a) It follows from Lemma 9.2.4 that (i)s holds. Fix € D. Let {Dy}
be an increasing sequence of open sets such that Dy, CC D and D = | Dy.
k

Put 7, = 7p,, 7 = 7,. Then by the strong Markov property

u(Xy,) = BN 0(X,)] = B (6, ((X-))| 7]
= BT 0(X,)|F,,] 9.2.9)

Now M}, = E®[¢(X;)|Fr,] is a bounded (discrete time) martingale so by the
martingale convergence theorem Corollary C.9 (Appendix C) we get that

lim u(Xr,) = klggo B [p(Xr)|Fr] = o(X7) (9.2.10)

k—o0

both pointwise for a.a. w and in LP(Q%), for all p < co. Moreover, by (9.2.9)
it follows that for each k the process

Ny = u(XTkv(t/\Tk+1)> - u’(XTk) ; t>0

is a martingale w.r.t. Gt = F v (taryy)-
So by the martingale inequality

x 1 xr
Q| swp  Ju(X,) —u(Xn)| > €] £ S B fu(Xn,,) - u(Xn,)l]
TeSr<Tr41 €
—0 as k— oo, forall e>0. (9.2.11)
From (9.2.10) and (9.2.11) we conclude that (ii)s holds.

b) Let Dy, 7 be as in a). Then since g is X-harmonic we have

g9(x) = E*[g(X~,)]
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for all k. So by (2) and bounded convergence

g(z) = khllgo ETg(X5,)] = Em[QS(XTD )], as asserted . .

Finally we return to the original Dirichlet problem (9.2.1), (9.2.2). We
have already seen that a solution need not exist. However, it turns out that
for a large class of processes X; we do get a solution (for all D) if we reduce
the requirement in (9.2.2) to hold only for a subset of the boundary points
y € 0D called the regular boundary points. Before we define regular points
and state the result precisely, we need the following auxiliary lemmas:

(As before we let M; and M, denote the o-algebras generated by X;
s <t and by X; s > 0 respectively).

Lemma 9.2.6 (The 0-1 law) Let H € () M,. Then either Q*(H) =0 or
>0
Q7 (H) =1
Proof. From the Markov property we have
E*[0m|My] = B[]

for all bounded, M ,-measurable 7: {2 — R. This implies that

/ 0,n - dQ® = / EXt[n]dQ” , for all ¢ .

H H

First assume that n = n, = g1(X4, ) - - - g5 (X4, ), where each g; is bounded and
continuous. Then letting ¢t — 0 we obtain

[ mi@r =t [ oindqr =ty [ ¥ inidgr = @)=
H H H

by Feller continuity (Lemma 8.1.4) and bounded convergence. Approximating
the general n by functions 7 as above we conclude that

/ ndQ* = Q(H)E*[1]

H

for all bounded M -measurable 7. If we put n = X,, we obtain Q*(H)
(Q*(H))?, which completes the proof. O

Corollary 9.2.7 Let y € R". Then
either QY[r, =01=0 or QY[r, =0]=1.

Proof. H={w;7, =0} € (| M;. O
t>0
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In other words, either a.a. paths X; starting from y stay within D for a
positive period of time or a.a. paths X; starting from y leave D immediately.
In the last case we call the point y regular, i.e.

Definition 9.2.8 A point y € 9D is called regular for D (w.r.t. X;) if

Otherwise the point y is called irregular.

Example 9.2.9 Corollary 9.2.7 may seem hard to believe at first glance. For
example, if X, is a 2-dimensional Brownian motion B, and D is the square
[0,1] x [0, 1] one might think that, starting from (3,0), say, half of the paths
will stay in the upper half plane and half in the lower, for a positive period of
time. However, Corollary 9.2.7 says that this is not the case: Either they all
stay in D initially or they all leave D immediately. Symmetry considerations
imply that the first alternative is impossible. Thus (%, 0), and similarly all the

other points of 0D, are regular for D w.r.t. B;.

X0

X0

Example 9.2.10 Let D = [0,1] x [0, 1] and let L be the parabolic differential
operator

Cof 1 of ,
_E—’—_ (t,x) e R®.

(See Example 7.3.5)

Here )
1 0 0
b—<0> and a—[aij]—i(o 1) .

, we have 2007 = a. This gives the

So, for example, if we choose o0 = 5

0
10
following stochastic differential equation for the Ito diffusion X; associated

with L: W
(1 0 0 dB;
wxi= o)+ (1 5) (mpo) -

In other words,
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_[t+to (o
xe= (") = (2)

where B; is 1-dimensional Brownian motion. So we end up with the graph
of Brownian motion, which we started with in Example 7.3.5. In the case it
is not hard to see that the irregular points of 9D consist of the open line
{0} x (0,1), the rest of the boundary points being regular.

A

Example 9.2.11 Let A = {(z,y); 2> + y> < 1} C R? and let {A,} be
a sequence of disjoint open discs in A centered at (27", 0), respectively,
n=12,.... Put

D:A\(@An).

o0

Then it is easy to see that all the points of 0A U |J 04, are regular for
n=1

D w.r.t. 2-dimensional Brownian motion B, using a similar argument as in

Example 9.2.9. But what about the point 07 The answer depends on the sizes
of the discs A,. More precisely, if 7, is the radius of A, then 0 is a regular

point for D if and only if
Y = (9.2.12)
n=1

log TL
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This is a consequence of the famous Wiener criterion. See Port and Stone
(1978), p. 225.

Having defined regular points we now formulate the announced generalized
version of the Dirichlet problem:

The Generalized Dirichlet Problem

Given a domain D C R" and L and ¢ as before, find a function u € C?(D)
such that

i) Lu=0 in D (9.2.13)

and

(ii) lim u(z) = é(y) for all reqular y € 0D . (9.2.14)
zeD

First we establish that if a solution of this problem exists, it must be the
solution of the stochastic Dirichlet problem found in Theorem 9.2.5, provided
that X satisfies Hunt’s condition (H):

(H): Every semipolar set for X; is polar for X; . (9.2.15)

A semipolar set is a countable union of thin sets and a measurable set G C R"
is called thin (for X;) if Q*[Te = 0] = 0 for all z, where T =inf{t>0; X, € G}
is the first hitting time of G. (Intuitively: For all starting points the process
does not hit G immediately, a.s). A measurable set F' C R™ is called polar
(for X;) if Q*[Tr < oo] = 0 for all z. (Intuitively: For all starting points
the process never hits F', a.s.). Clearly every polar set is semipolar, but the
converse need not to be true (consider the process in Example 9.2.1). However,
condition (H) does hold for Brownian motion (See Blumenthal and Getoor
(1968)). It follows from the Girsanov theorem that condition (H) holds for
all It6 diffusions whose diffusion coefficient matrix has a bounded inverse and
whose drift coefficient satisfies the Novikov condition for all T' < oco.

We also need the following result, the proof of which can be found in
Blumenthal and Getoor (1968, Prop. 11.3.3):

Lemma 9.2.12 LetU C D be open and let I denote the set of irregular points
of U. Then I is a semipolar set.

Theorem 9.2.13 Suppose X; satisfies Hunt’s condition (H). Let ¢ be a
bounded continuous function on D. Suppose there exists a bounded u € C?(D)
such that

(i) Lu=0inD
(ii)s lim u(z) = ¢(y) for all regular y € 9D

x€D

Then u(x) = E*[p(X; )].

D
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Proof. Let {Dy} be as in the proof Theorem 9.1.1. By Lemma 9.2.3 b) w is
X-harmonic and therefore

u(z) = B u(X,,)] for all z € Dy, and all k.

If ¥ — oo then X, — X and so u(X;,) — (b(XTD) if X s regular.
From the Lemma 9.2.12 we know that the set I of irregular points of 9D is
semipolar. So by condition (H) the set I is polar and therefore X, ¢ I a.s.
Q*. Hence

u(z) = lim E*[u(X,, )] = E*[¢(X; )], as claimed . O

Under what conditions is the solution w of the stochastic Dirichlet problem
(9.2.6), (9.2.7) also a solution of the generalized Dirichlet problem (9.2.13),
(9.2.14)7 This is a difficult question and we will content ourselves with the
following partial answer:

Theorem 9.2.14 Suppose L is uniformly elliptic in D, i.e. the eigenvalues
of [a;j] are bounded away from 0 in D. Let ¢ be a bounded continuous function
on 0D. Put

u(z) = E¥[¢(X5) )] -

Then u € C**% locally in D for all o < 1 and u solves the Dirichlet problem
(9.2.13), (9.2.14), i.e.

(i) Lu=04nD.
(ii), lim u(z) = ¢(y) for all regular y € 9D .

xz€D

Remark. If k is an integer, a > 0 and G is an open set C**%(G) denotes the
set of functions on G whose partial derivatives up to k’th order is Lipschitz
(Holder) continuous with exponent a.

Proof. Choose an open ball A with A C D and let f € C(dA). Then, from
the general theory of partial differential equations, for all & < 1 there exists

a continuous function u on A such that u|A € C?***(A) and

Lu=0 inA (9.2.16)
u=f on 0A (9.2.17)

(see e.g. Dynkin (1965 II, p. 226)). Since u|A € C?t%(A) we have: If K is any
compact subset of A there exists a constant C' only depending on K and the
C“-norms of the coefficients of L such that

[ullg2raxy < C(|Lullcocay + lulleca)) - (9.2.18)
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(See Bers, John and Schechter (1964, Theorem 3, p. 232).) Combining (9.2.16),
(9.2.17) and (9.2.18) we obtain

lullcz+acry < Cllfllcoa) - (9.2.19)
By uniqueness (Theorem 9.2.13) we know that

u(x) = / u()dps(y) | (9.2.20)

where du, = Q*[X,, € dy] is the first exit distribution of X, from A. From
(9.2.19) it follows that

| [ fdue, [ s,

Therefore

< Clfllcoayler — 2 z1,22€ K. (9.2.21)

[tz — oo || < Clay — 22]% r1,20 € K (9.2.22)

where || || denotes the operator norm on measures on 9A. So if g is any
bounded measurable function on JA we know that the function

i) = / 9(9)dpia(y) = E*[g(X,)

belongs to the class C*(K). Since u(x) = E*[u(X,,)] for all open sets U with
U C D and x € U (Lemma 9.2.4) this applies to g = u and we conclude that
u € C*(M) for any compact subset M of D.

We may therefore apply the solution to the problem (9.2.16), (9.2.17) once
more, this time with f = w and this way we obtain that

u(r) = E"u(X7))] belongs to C**(M)

for any compact M C D. Therefore (i) holds by Lemma 9.2.3 a).
To obtain (ii), we apply a theorem from the theory of parabolic differential
equations: The Kolmogorov backward equation

_0v

Ly = —
YT ot

has a fundamental solution v = p(t, z,y) jointly continuous in ¢, x,y for ¢t > 0
and bounded in z,y for each fixed ¢ > 0 (See Dynkin (1965 II), Theorem 0.4
p. 227). Tt follows (by bounded convergence) that the process X; is a strong
Feller process, in the sense that the function

- B[f(X,)] = / F()p(t, 2. y)dy
J
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is continuous, for all ¢ > 0 and all bounded, measurable functions f.In general
we have:

If X, is a strong Feller Ito diffusion and D C R™ is open then
lim E*[¢(X7))] = ¢(y)

T—y

zeD

for all regular y € 9D and bounded ¢ € C(9D) . (9.2.23)

(See Theorem 13.3 p. 32-33 in Dynkin (1965 II)).
Therefore u satisfies property (ii),. and the proof is complete. O

Example 9.2.15 We have already seen (Example 9.2.1) that condition (9.1.3)
does not hold in general. This example shows that it need not hold even when
L is elliptic: Consider Example 9.2.11 again, in the case when the point 0 is
not regular. Choose ¢ € C(9D) such that

#(0)=1,0<¢(y) <1  for y € 9D\ {0}.

Since {0} is polar for B; (see Exercise 9.7 a) we have BQD # 0 a.s and therefore

u(0) = E°l6(B,,)] < 1.

D

By a slight extension of the mean value property (7.2.9) (see Exercise 9.4) we
get
Elu(Xy,)] = E%[p(X, )] = u(0) < 1 (9.2.24)

D

where

1
ak—inf{t>0;Bt§§Dﬂ{|x|<E}}, k=1,2,...

This implies that it is impossible that u(z) — 1 as z — 0. Therefore (9.1.3)
does not hold in this case.
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In general one can show that the regular points for Brownian motion are
exactly the regular points in the classical potential theoretic sense, i.e. the
points y on @D where the limit of the generalized Perron-Wiener-Brelot solu-
tion coincide with ¢(y), for all ¢ € C'(0D). See Doob (1984), Port and Stone
(1978) or Rao (1977).

Example 9.2.16 Let D denote the infinite strip
D={(t,z) e R*2 <R}, where RER

and let L be the differential operator
Lf(t,:v):——i——?; fECQ(D)

An Tt6 diffusion whose generator coincides with L on CZ(R?) is (see Exam-
ple 9.2.10)
Xt:(8+t,Bt); tZO,

and all the points of D are regular for this process. It is not hard to see that
in this case (9.1.14) holds, i.e.

T, <00 a.s.

(see Exercise 7.4).
Assume that ¢ is a bounded continuous function on 9D = {(¢, R);t € R}.
Then by Theorem 9.2.5 the function
u(s, z) = E>*[p(X, )]

D

is the solution of the stochastic Dirichlet problem (9.2.6), (9.2.7), where E*®
denotes expectation w.r.t. the probability law Q%® for X starting at (s, z).
Does u also solve the problem (9.2.13), (9.2.14)? Using the Laplace transform
it is possible to find the distribution of the first exit point on 9D for X, i.e.
to find the distribution of the first time ¢ = 7 that B; reaches the value R.
(See Karlin and Taylor (1975), p. 363. See also Exercise 7.19.) The result is

Pt € dt] = g(x,t)dt ,
where

gz, t) = { (R —z)(2mt*) "L exp(—F5E) s 1> 0 (9.2.25)
0; t<0.

Thus the solution u may be written

/¢s+tR (x,t)dt = /¢TR glx,r —s)dr .
0
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From the explicit formula for w it is clear that % and % are continuous
and we conclude that Lu = 0 in D by Lemma 9.2.3. So u satisfies (9.2.13).

What about property (9.2.14)? It is not hard to see that for ¢t > 0

)2
Bl (x0) = 2ty [ fito+tpenn (- 50 Yy
R
for all bounded, (¢, z)-measurable functions f. (See (2.2.2)). Therefore X; is
not a strong Feller process, so we cannot appeal to (9.2.23) to obtain (9.2.14).
However, it is easy to verify directly that if |y| = R, t; > 0 then for all ¢ > 0
there exists d > 0 such that |z —y| <4, [t —t:| <d = Q""[X, € N| >1—¢,
where N = [t; —€,11 + €] x {y}. And this is easily seen to imply (9.2.14).

Remark. As the above example (and Example 9.2.1) shows, an It6 diffusion
need not be a strong Feller process. However, we have seen that it is always a
Feller process (Lemma 8.1.4).

9.3 The Poisson Problem

Let L=>" aij#;zj +> bia%i be a semi-elliptic partial differential operator
on a domain D C R™ as before and let X; be an associated Ito diffusion,
described by (9.1.4) and (9.1.5). In this section we study the Poisson prob-
lem (9.2.3), (9.2.4). For the same reasons as in Section 9.2 we generalize the
problem to the following:

The Generalized Poisson Problem

Given a continuous function g on D find a C? function v in D such that

a) Lv=—g in D (9.3.1)
b) lim v(z) =0 for all reqular y € 0D (9.3.2)
xzeD

Again we will first study a stochastic version of the problem and then in-
vestigate the relation between the corresponding stochastic solution and the
solution (if it exists) of (9.3.1), (9.3.2):

Theorem 9.3.1 (Solution of the stochastic Poisson problem)
Assume that

E* [/ |g(XS)|ds} < 00 forall ze D . (9.3.3)
0
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(This occurs, for example, if g is bounded and E*[1,] < oo for all x € D).
Define

T

o(z) = Ew{ / g(Xs)ds} . (9.3.4)
0
Then
Av = —g in D, (9.3.5)
and
tlim v(Xy) =0 a.s. QF, forall x€D. (9.3.6)

Proof. Choose U open, z € U CC D. Put n = f g(Xs)ds, T = 1y1.
Then by the strong Markov property (7.2.5)

E) = o) _ e ) - B

Eelr] B[]
1 T[T _ 1 T

Approximate 1 by sums of the form

k
7 )*Zg (Xe) X, .., Ati .

) = Zg(Xti+t)X{ti+t<TB}Ati for all k

(see the argument for (7.2.6)) we see that

Since

D

0.n = /g(XS)ds . (9.3.7)
Therefore ’
Eo(X.)] —v(@) 1 [ ] J ) U la

since ¢ is continuous. This proves (9.3.5).
Put H(z) = E“| f |g(Xs)|ds]. Let Dy, 7, be as in the proof of Theo-

rem 9.2.5. Then by the same argument as above we get

B [H (X)) = (B[ [ 19(X0)lds| o]

T\t

D

zEz[/|g(Xs)|ds}—>O as t — 1,, k — 00

TNt

by dominated convergence. This implies (9.3.6). a
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Remark. For functions g satisfying (9.3.3) define the operator R by

D

(Rg)(x) = §lx) = B* [ / g<xs>ds} |
Then (9.3.5) can be written O

A(Rg) = —g (9.3.8)

i.e. the operator —R is a right inverse of the operator A. Similarly, if we define

T

Rag(z) = E* [/Dg(XS)e_‘”ds} for >0 (9.3.9)
0

then the same method of proof as in Theorem 8.1.5 gives that
(A—a)Rog=—g; a>0. (9.3.10)

(If &« > 0 then the assumption (9.3.3) can be replaced by the assumption that
¢ is bounded (and continuous as before)).

Thus we may regard the operator R, as a generalization of the resolvent
operator R, discussed in Chapter 8, and formula (9.3.10) as the analogue of
Theorem 8.1.5 b).

Next we establish that if a solution v of the generalized problem (9.3.1),
(9.3.2) exists, then v is the solution (9.3.4) of the stochastic problem (9.3.5),
(9.3.6):

Theorem 9.3.2 (Uniqueness theorem for the Poisson equation)
Assume that X; satisfies Hunt’s condition (H) ((9.2.15)). Assume that (9.3.3)
holds and that there ezists a function v € C*(D) and a constant C such that

D

lv(x)] < O(l + E° {/ |g(Xs)|dS}) for all x € D (9.3.11)
0

and with the properties

Lv=—g in D, (9.3.12)
lim v(z) =0 for all regular points y € 9D . (9.3.13)
zeD

Then v(z) = EI[{ 9(Xs)ds].
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Proof. Let Dy, 7, be as in the proof of Theorem 9.2.5. Then by Dynkin’s
formula

Tk Tk

0] - o) = 8| [ (xas| =57 [axas)
0 0

By dominated convergence we obtain

Tk

v(z) = lim (EI[U(XT,C)] +E1{/9(Xs)dsb —Ez{fg(Xs)ds} ,
0 0

k—o0

since X is a regular point a.s. by condition (H) and Lemma 9.2.12. a

Finally we combine the Dirichlet and Poisson problem and obtain the
following result:

Theorem 9.3.3 (Solution of the combined stochastic Dirichlet and
Poisson problem).

Assume that (9.1.14) holds. Let ¢ € C(0D) be bounded and let g € C(D)
satisfy

E* {/ |g(Xs)|ds_ < 00 forall x € D . (9.3.14)
Define ’
w(z) = E*[¢p(X, )] + E” -/g(XS)ds} : zeD. (9.3.15)
0
a) Then
Aw = —g in D (9.3.16)
and
lim w(X:) = (X7 ) as. QF, forall z€D. (9.3.17)

tT7,

b) Moreover, if there exists a function wy € C*(D) and a constant C' such
that

lwr ()] < O(1+EI[/D|9(XS)|dSD . zeD, (9.3.18)
0

and wy satisfies (9.3.16) and (9.8.17), then w1 = w.

Remark. With an approach similar to the one used in Theorem 9.2.14 one
can prove that if L is uniformly elliptic in D and g € C*(D) (for some a > 0)
is bounded, then the function w given by (9.3.15) solves the Dirichlet-Poisson
problem, i.e.
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Lw=—g in D (9.3.19)

and
lim w(x) = ¢(y) for all regular y € 9D . (9.3.20)

T—y

xz€D

The Green Measure

The solution v given by the formula (9.3.4) may be rewritten as follows:
Definition 9.3.4 The Green measure (of X, w.r.t. D at z), G(x,-) is defined
by

D

G(z,H) = E* |:/XH(X5)CZ8:| ) H C R"™ Borel set (9.3.21)
0
/f(y)G(x,dy) = E””[/f(Xs)ds} , f bounded, continuous. (9.3.22)
0

In other words, G(z, H) is the expected length of time the process stays
in H before it exits from D. If X; is Brownian motion, then

Gz, H) :/G(x,y)dy,
H
where G(z, y) is the classical Green function w.r.t. D and dy denotes Lebesque
measure. See Doob (1984), Port and Stone (1978) or Rao (1977). See also
Example 9.3.6 below.
Note that using the Fubini theorem we obtain the following relation

between the Green measure G and the transition measure for X; in D,
QtD(IaH) = Qx[Xt € Ha i< TD]:

G(z,H) = E” {7&1(){5) : X[O,TD)(s)ds] = /OOQ{F’(x,H)dt . (9.3.23)
0 0

From (9.3.22) we get

o(z) = B [79<Xs>ds] = [ st a) (9.3.24)
0

D

which is the familiar formula for the solution of the Poisson equation in the
classical case.
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Also note that by using the Green function, we may regard the Dynkin
formula as a generalization of the classical Green formula:

Corollary 9.3.5 (The Green formula) Let E*[r,,] < oo for all z € D and
assume that f € CZ(R™). Then
f@) = B0, - [xD)Gdy) . (0329
D

In particular, if f € CZ(D) we have

ﬂ@=—/@xmw@%®% (9.3.26)
D

(As before Lx = > b2~ 3t 3 13 (00T )ij 55— ax az when
dXt = b(Xt)dt + O'(Xt)dBt . )

Proof. By Dynkin’s formula and (9.3.24) we have

T

Em[f(XTD)] = f(i[:) + E* |:/(LXf)(Xs)d8:| = f(‘r) + /(fo)(y)G(Ji,dy) :

Remark. Combining (9.3.8) with (9.3.26) we see that if E*[7x] < oo for all
compacts K C D and all x € D, then —R is the inverse of the operator 4 on

C2(D) :
ARf)=R(Af) =—f, for all f € C3(D) . (9.3.27)

More generally, for all @ > 0 we get the following analogue of Theorem 8.1.5:
(A—a)(Rof) =Ra(A—a)f =—f  forall fe CZ(D). (9.3.28)

The first part of this is already established in (9.3.10) and the second part
follows from the following useful extension of the Dynkin formula

E?le " f(X;)] = f(z) + E {/e“’s(A —a)f(Xs)ds| . (9.3.29)
0

If o > 0 this is valid for all stopping times 7 < oo and all f € CZ(R"). (See
Exercise 9.6.)

Example 9.3.6 If X; = B; is 1-dimensional Brownian motion in a bounded
interval (a,b) C R then we can compute the Green function G(z,y) explicitly.
To this end, choose a bounded continuous function g¢: (a,b) — R and let us
compute
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D

(z): = E{/g(Bt)dt} .
0

By Corollary 9.1.2 we know that v is the solution of the differential equation
z € (a,b)
v(a) =v(b) =0.

Integrating twice and using the boundary conditions we get

1= 222 [ faras)ar—a [ ( [ oton: Yo

Changing the order of integration we can rewrite this as

b
v(z) = /g(y)G(:v,y)dy

where
(9.3.30)

Gley) = 200D o) )

We conclude that the Green function of Brownian motion in the interval (a,b)

is given by (9.3.30).

A G(x.y)
2(x-a)(b-x)
b-a
¥
¢ a X b

In higher dimension n the Green function y — G(z,y) of Brownian motion

starting at  will not be continuous at x. It will have a logarithmic singularity
L) for n = 2 and a singularity of the order

(i.e. a singularity of order In =

|z — y|?>~™ for n > 2.
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Exercises
9.1.* In each of the cases below find an It6 diffusion whose generator coincides
with L on Cg:
a) Lf(t,z) = oL at 62 amg ; «, 8 constants
b) Lf(z1,22) = a—t + b—t +3 (—i + g—zé) ; a,b constants
2
¢) Lf(z)=oaxf'(z)+ 36%f"(2); «,p constants
d) Lf(z) = af'(z) + £8%2*f"(z) ; o, B constants
e) Lf(xy,22) = ln(l—l—x%)g—wfl—kxgg—wfz—k%a 2—0—23:117261 353 +9252 8—f .
9.2.* Use Theorem 9.3.3 to find the bounded solutions of the following bound-
ary value problems:
) %-F%-%:qﬁ(t,x); 0<t<T, zeR
i
(T, z) = () rER
where ¢, are given bounded, continuous functions.
. axu/(z) + 382220 (z) =0; 0 <z <@
(ii) )
u(zo) = g
where a, 8 are given constants, a > 152,
(iii) If &« < £53% there are infinitely many bounded solutions of (ii),
and an additional boundary condition e.g. at x = 0 is needed to
provide uniqueness. Explain this in view of Theorem 9.3.3.
9.3.* Write down (using Brownian motion) and compare the solutions u(t, x)
of the following two boundary value problems:
) u i lAu=0 for 0<t<T,z€R"
(T, z) =¢(z) for z € R".
) —“——Au—O for 0<t<T, xeR"
u(0,z) =(z) for z € R™.
9.4. Let G and H be bounded open subsets of R",G C H, and let B; be

n-dimensional Brownian motion. Use the property (H) for B; to prove
that
inf{t >0;B, ¢ H} =inf{t >7¢; B, ¢ H} a.s.

i.e., with the terminology of (7.2.6),
TH = Tg where a =74 .

Use this to prove that if X; = B, then the mean value property (7.2.9)
holds for all bounded open G C H, i.e. it is not necessary to require
G CC H in this case. This verifies the statement (9.2.24).
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(The eigenvalues of the Laplacian)
Let D C R"™ be open, bounded and let A € R.

a)

Suppose there exists a solution u € C2(D)NC(D), u not identically
zero, such that
{—%Au =X in D
u=0 on 0D .

Show that we must have A > 0. (Hint: If $ Au = —Au in D then
<%Au7 u> = <_Au7 u>

(9.3.31)

where
(u,v) = /u(x)v(x)dx .
D

Now use integration by parts.)

It can be shown that if D is smooth then there exist 0 < A\g < A\1 <
<+o < A\p < --- where A\, — oo such that (9.3.31) holds for A = A,
n=0,1,2,..., and for no other values of \. The numbers {\,} are
called the eigenvalues of the operator —%A in the domain D and
the corresponding (nontrivial) solutions wu,, of (9.3.31) are called the
eigenfunctions. There is an interesting probabilistic interpretation
of the lowest eigenvalue A\g. The following result indicates this:

Put 7 =7, = inf{t > 0; B; ¢ D}, choose p > 0 and define

wp(x) = E®exp(p7)] ; zeD.

Prove that if w,(z) < oo for all z € D then p is not an eigenvalue
for —3A. (Hint: Let u be a solution of (9.3.31) with A = p. Apply
Dynkin’s formula to the process dY; = (dt,dB;) and the function
f(t,z) = e'u(z) to deduce that u(x) =0 for z € D).

Conclude that

Ao > sup{p; E®[exp(p7)] < 0o for all z € D} .

(We have in fact equality here. See for example Durrett (1984),
Chap. 8B).

Prove formula (9.3.29), for example by applying the Dynkin formula to
the process

dt
=[]

and the function g(y) = g(¢,z) = e~ f(z).

2)

Let B; be Brownian motion in R?. Prove that
P*[3t>0;B:=y]=0 for all z,y € R?.

(Hint: First assume x # y. We may choose y = 0. One possible
approach would be to apply Dynkin’s formula with f(u) = In|u]
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and 7 = inf{t > 0;|B:| < p or |B] > R}, where 0 < p < R. Let
p — 0 and then R — oco. If x = y consider P*[3t > ¢; B, = x| and
use the Markov property.)

b) Let B; = (B,E”, B£2)) be Brownian motion in R?. Prove that
B, = (—Bgl), B§2)) is also a Brownian motion.

c¢) Prove that 0 € R? is a regular boundary point (for Brownian mo-
tion) of the plane region

D = {(z1,22) € R*;a7 + 23 < 1} \ {(21,0);21 > 0} .

d) Prove that 0 € R? is an irregular boundary point (for Brownian
motion) of the 3-dimensional region

U= {(I17x27x3) € RS?'I% +$§ +$§ < 1} \ {(Ilvoao);xl > O} :

9.8.*% a) Find an Itd diffusion X; and a measurable set G which is semipolar
but not polar for X;.
b) Find an It diffusion X; and a countable family of thin sets Hy;
o0
k=1,2,...such that |J Hj is not thin.
k=1
9.9. a) Let X; be an It6 diffusion in R™ and assume that g is a non-constant
locally bounded real X;-harmonic function on a connected open set
G C R". Prove that g satisfies the following weak form of the maxi-
mum principle: g does not have a (local or global) maximum at any
point of G. (Similarly g satisfies the minimum principle).
b) Give an example to show that a non-constant bounded X;-harmonic
function g can have a (non-strict) global maximum. (Hint: Consider
uniform motion to the right.)

9.10.* Find the (stochastic) solution f(t,z) of the boundary value problem

K(x)e*pt—l—%—{—l—a:r%—l—%ﬂ%Q?*O for x>0,0<t<T

2 T

f(T,2) = e PT¢(x) for >0
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where K, ¢ are given functions and 7', p, i, 8 are constants, p>0, T >0.
(Hint: Consider dY; = (dt,dX;) where X; is a geometric Brownian
motion).

9.11. a) The Poisson kernel is defined by

1—72 _1—|z|2

P.(9) = =
(6) 1—2rcosf+1r2 |1—z|?

where 7 > 0,0 € [0,27], z=re? € C (i =+/-1).
The Poisson formula states that if D denotes the open unit disk in
the plane R? = C and h € C( D) satisfies Ah =0 in D then

Prove that the probability that Brownian motion, starting from z €
D, first exits from D at a set F' C D is given by

1 .
Py / P.(t —6)dt, where z=re" .
F

b) The function

wqu(z):iii—z

maps the disc D = {|z| < 1} conformally onto the half plane H =
{w =u+iv;v > 0}, (D) = R and ¢(0) = i. Use Example 8.5.9 to

prove that if ;1 denotes the harmonic measure for Brownian motion
at the point ¢ = (0,1) for the half plane H then

[ s@ne = & [ soteyar= sk [10Dy..
oD
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¢) Substitute w = ¢(2) (i.e. 2 = Y(w): = ¢~ (w) = lw“jrz) in the integral
above to show that

Zf(&)du /f o =y /f g

d) Show that the harmonic measure uf¥ for Brownian motion in H at
the point w = u + v € H is given by

1 v
_———e— I
7 (z—u)?+02

dpg () =

9.12. (A Feynman-Kac formula for boundary value problems)
Let X; be an Ito diffusion on R™ whose generator coincides with a
given partial differential operator L on CZ(R"). Let D, ¢ and g be as
in Theorem 9.3.3 and let g(z) > 0 be a continuous function on R™.
Consider the boundary value problem: Find h € C?(D) N C(D) such

that
Lh(z) - q(x)h(x) = —g(z) on D
{ lim h(x) = ¢(y) ; yeoD.
z‘}y
Show that if a bounded solution h exists, then

U5 t X.)d o
:Ew|:/efo a(Xs) Sg(Xt)dt+e’fo a(Xs) S¢(XT )
0

D

(Compare with the Feynman-Kac formula.)
Hint: Proceed as in the proof of Theorem 8.2.1 b).

For more information on stochastic solutions of boundary value problems see
Freidlin (1985).

9.13. Let D = (a,b) be a bounded interval.
a) For x € R define

Xe =X =x+put+oB;; t>0
where u, o are constants, o # 0. Use Corollary 9.1.2 to compute

D

wle)= B¢, )+ 57| [ axoal

0

when ¢: {a,b} — R and g¢: (a,b) — R are given functions, g bounded
and continuous.
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b) Use the results in a) to compute the Green function G(z,y) of the
process X;.
(Hint: Choose ¢ = 0 and proceed as in Example 9.3.6.)

9.14. Let D = (a,b) C (0,00) be a bounded interval and let
dX; = rXidt + aXdBy Xo==x € (a, b)

be a geometric Brownian motion.
a) Use Corollary 9.1.2 to find

(Hint: Choose g = 0 and ¢(a) =0, ¢(b) =1.)
b) Use Corollary 9.1.2 to compute

w(z) = B*[¢(X, )] + E* [/g X, dt]

0

for given functions ¢: {a,b} — R and g: (a,b) — R, g bounded and
continuous.

(Hint: The substitution ¢ = Inz, w(xz) = h(lnz) transforms the
differential equation

o’ (z) + raw’ (z) = —g(z) ; x>0
into the differential equation

1020 (t) + (r — 2a®)W/(t) = —g(e') ; teR.)

9.15.% a) Let D = (a,b) C R be a bounded interval and let X, = B, be
1-dimensional Brownian motion. Use Corollary 9.1.2 to compute

D

h(z) = E"[e "™ (B, )]+E1{9 / e—Pthdt]

0

for a given function v¥:{a,b} — R, when p > 0 and 6 € R are

constants.
(Hint: Consider the It6 diffusion

dy V7 _ T dt 1 0
Then

h(z) = w(0, x)
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where

D

(o) = wly) = BVlo(v, )| + 2| [ atriyar

with  ¢(y) = @(s, ) = e P51(z)
and  g(y) = g(s,z) = e P*a? .
Note that

7, =inf{t > 0; B, & (a,b)} = inf{t > 0; ¥;'*) & (a,b)}
=inf{t>0;Y; ¢ R x (a,b)} .

To find w(s, x) solve the boundary value problem

To this end, try w(s,x) = e **h(x).)
b) Use the method in a) to find E*[e”"™].
(Compare with Exercise 7.19.)

9.16. (The Black-Scholes equation)

a) Let D = (0,T) x (0,00) C R?, where T' > 0 is a constant. Show

that the unique solution w € C12(D)NC(D) of the boundary value
problem

2
{—rw(sw) + %(sw) +r:c%(s7:c) + 152220

(where r > 0, 0 # 0 are constants) is given by

w(s,z) = B> e T8 (Xp_, — K)T)
where X; = X7’ is the geometric Brownian motion

dX; = rXdt + 0 XdBy Xo=2>0.

[Hint: Put u(s,x) = e "*w(s,z). Then apply Theorem 9.2.13 and
Theorem 9.1.1 to the boundary value problem

g“(s x)—i—mca (s, )+1U2x2g%(s z)=0;(s,z) €D
thm u(Y;) = e "Gt o)X, — K)t x>0
—TD

where V; = Y>" = (s+t, X[) and 7p = inf{t > 0;Y; € D} =

=T-s]
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b) Use (9.3.32) to show that
w(0,z) = 2®(n + %U\/T) — Ke "'o(n - %oﬁ)

where "
n=o"'T72(In— +17)

and

¢
1 _s2
&(t) = Wors / e 2%ds

is the normal distribution function.

This is the celebrated Black-Scholes option pricing formula. See
Corollary 12.3.8.
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Application to Optimal Stopping

10.1 The Time-Homogeneous Case

Problem 5 in the introduction is a special case of a problem of the following
type:

Problem 10.1.1 (The optimal stopping problem)
Let X; be an It6 diffusion on R™ and let g (the reward function) be a given
function on R", satisfying

a) g(§) >0 forall £ € R™ (10.1.1)
b) g is continuous.

Find a stopping time 7% = 7*(x,w) (called an optimal stopping time) for
{X:} such that

E*[g(X+)] = sup E®[g(X,)] for all z € R™, (10.1.2)

the sup being taken over all stopping times 7 for {X;}. We also want to find
the corresponding optimal expected reward

g"(2) = E*[g(X,)] . (10.1.3)

Here g(X;) is to be interpreted as 0 at the points w € 2 where 7(w) = o©
and as usual E* denotes the expectation with respect to the probability law
Q” of the process X;; t > 0 starting at Xg =z € R".

We may regard X, as the state of a game at time ¢, each w corresponds to
one sample of the game. For each time ¢ we have the option of stopping the
game, thereby obtaining the reward g(X;), or continue the game in the hope
that stopping it at a later time will give a bigger reward. The problem is of
course that we do not know what state the game is in at future times, only the
probability distribution of the “future”. Mathematically, this means that the

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_10, © Springer-Verlag Berlin Heidelberg 2013
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possible “stopping” times we consider really are stopping times in the sense
of Definition 7.2.1: The decision whether 7 < ¢ or not should only depend
on the behaviour of the Brownian motion B, (driving the process X) up to
time ¢, or perhaps only on the behaviour of X, up to time ¢. So, among all
possible stopping times 7 we are asking for the optimal one, 7%, which gives
the best result “in the long run”, i.e. the biggest expected reward in the sense
of (10.1.2).

In the following we will outline how a solution to this problem can be
obtained using the material from the preceding chapter. Later in this chapter
we shall see that our discussion of problem (10.1.2)—(10.1.3) also covers the
apparently more general problems

g*(s,z) =sup EC[g(s + 7, X)) = B [g(s + 7, X+ )] (10.1.4)
and

G*(S; ZZ?) = sup E(SVI) |:/f(5 —+ t, Xt)dt + g(S —+ T, Xq-):|
T 0

= E(S’x)[/f(S-i-t,Xt)dt"‘g(S"'T*aXT*)] (10.1.5)
0

where f is a given profit rate (or reward rate) function (satisfying certain
conditions).

We shall also discuss possible extensions of problem (10.1.2)—(10.1.3) to
cases where g is not necessarily continuous or where g may assume negative
values.

A Dbasic concept in the solution of (10.1.2)—(10.1.3) is the following:

Definition 10.1.2 A measurable function f:R"™ — [0,00] is called super-
meanvalued (w.r.t. X;) if

J(@) > E°[f(X,)] (10.1.6)

for all stopping times T and all x € R™.
If, in addition, f is also lower semicontinuous, then f is called 1.s.c. su-
perharmonic or just superharmonic (w.r.t. X;).

Note that if f:R™ — [0, 00] is lower semicontinuous then by the Fatou

lemma
f(z) < E*[dim f(X7,)] < lim E*[f(Xr,)], (10.1.7)

k—o0 k—o0

for any sequence {74} of stopping times such that 7, — 0 a.s. P. Combining
this with (10.1.6) we see that if f is (L.s.c.) superharmonic, then

f(z) = kli_)m E°[f(X:,)] for all x, (10.1.8)

for all such sequences .
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Remarks. 1) In the literature (see e.g. Dynkin (1965 II)) one often finds
a weaker concept of Xi-superharmonicity, defined by the supermeanvalued
property (10.1.6) plus the stochastic continuity requirement (10.1.8). This
weaker concept corresponds to the X;-harmonicity defined in Chapter 9.
2) If f € C*(R"™) it follows from Dynkin’s formula that f is superharmonic
w.r.t. X; if and only if
Af <0

where A is the characteristic operator of X;. This is often a useful criterion
(See e.g. Example 10.2.1).

3) If X; = B; is Brownian motion in R™ then the superharmonic functions
for X; coincide with the (nonnegative) superharmonic functions in classical
potential theory. See Doob (1984) or Port and Stone (1979).

We state some useful properties of superharmonic and supermeanvalued
functions.

Lemma 10.1.3 a) If f is superharmonic (supermeanvalued) and o > 0, then
af is superharmonic (supermeanvalued).

b) If f1, fa are superharmonic (supermeanvalued), then f1 + fo is superhar-
monic (supermeanvalued).

c) If {fi}jes is a family of supermeanvalued functions, then f(x):=
]Helg{f] ()} is supermeanvalued if it is measurable (J is any set).

d) If f1, f2, -+ are superharmonic (supermeanvalued) functions and f T f
pointwise, then f is superharmonic (supermeanvalued).

e) If f is supermeanvalued and o < T are stopping times, then E*[f(X,)] >
E(X)). )

f) If f is supermeanvalued and H is a Borel set, then f(z):= E*[f(X,,)] is
supermeanvalued.

Proof of Lemma 10.1.5.

a) and b) are straightforward.
¢) Suppose f; is supermeanvalued for all j € J. Then

fi(x) > B*[f;(X;)] > E*[f(X;)]  forallj.
So f(x) =inf f;(z) > E*[f(X,)], as required.
d) Suppose f; is supermeanvalued, f; T f. Then
fx) > fi(x) > E*[f;(X.)] for all 4, so
£@) 2 Tim B7I5,(X)] = BIA(G)]

by monotone convergence. Hence f is supermeanvalued. If each f; is also
lower semicontinuous then if y, — = as kK — oo we have

fi(x) < lim f(ye) < lim f(yx) for each j .

k—o0 k—o0
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Hence, by letting j — oo,

f(@) < lim f(yk) -

k—oo
If f is supermeanvalued we have by the Markov property when ¢ > s
E*[f(Xo)|Fs] = B [f(Xe-s)] < F(XS), (10.1.9)
i.e. the process

G = f(Xy)

is a supermartingale w.r.t. the o-algebras F; generated by {B,;r < t}.
(Appendix C). Therefore, by Doob’s optional sampling theorem (see Gih-
man and Skorohod (1975, Theorem 6 p. 11)) we have

E*[f(Xo)] 2 E*[f(X7)]

for all stopping times o, 7 with ¢ < 7 a.s. Q”.
Suppose f is supermeanvalued. By the strong Markov property (7.2.2) and
formula (7.2.6) we have, for any stopping time «,

B [f(Xa)] = B [EX [f(X0)]] = B [E”[0af(Xo,)|Ful]
— B[00 f (Xr)] = E*[f(Xog )] (10.1.10)

where 75 = inf{¢t > o; X; ¢ H}. Since 7% > 7 we have by e)

E*[f(Xa)] < E*[f(Xry)] = f(2)

so f is supermeanvalued. a

The following concepts are fundamental:

finition 10.1.4 Let h be a real measurable function on R™. If f is a su-
harmonic (supermeanvalued) function and f > h we say that f is a super-

harmonic (supermeanvalued) majorant of h (w.r.t. X¢). The function

the

h(z) = ir;ff(:v); reR", (10.1.11)

inf being taken over all supermeanvalued majorants f of h, is called the

least supermeanvalued majorant of h.

(i)
(i)

Similarly, suppose there exists a function % such that

hisa superharmonic majorant of h and
if f is any other superharmonic majorant of h then i < f.

Then h is called the least superharmonic majorant of h.
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Note that by Lemma 10.1.3 c¢) the function A is supermeanvalued if it is
measurable. Moreover, if A is lower semicontinuous, then h exists and h = h.
Later we will prove that if g is nonnegative (or lower bounded) and lower
semicontinuous, then g exists and g = g (Theorem 10.1.7).

Let ¢ > 0 and let f be a supermeanvalued majorant of g. Then if 7 is a
stopping time

f(x) > E*[f(X7)] > E*[g(X7)] .
So

Therefore we always have, if g exists,
g(x) > g% () for all z € R™. (10.1.12)
What is not so easy to see is that the converse inequality also holds, i.e. that
in fact
g=gqg". (10.1.13)

We will prove this after we have established a useful iterative procedure for
calculating g. Before we give such a procedure let us introduce a concept which
is related to superharmonic functions:

Definition 10.1.5 A lower semicontinuous function f:R"™ — [0, 00] is called
excessive (w.r.t. X;) if
f(z) > E*[f(X,)] forall s >0,z € R™. (10.1.14)

It is clear that a superharmonic function must be excessive. What is not
so obvious, is that the converse also holds:

Theorem 10.1.6 Let f:R"™ — [0,00]. Then f is excessive w.r.t. X; if and
only if f is superharmonic w.r.t. X;.

Proof in a special case. Let L be the differential operator associated to X
(given by the right hand side of (7.3.3)), so that L coincides with the generator
A of X on CZ. We only prove the theorem in the special case when f € C?(R")
and Lf is bounded: Then by Dynkin’s formula we have

t

E*[f(Xy)] = f(x) + E* [/Lf(XT)dr] for all t >0,
0

so if f is excessive then Lf < 0. Therefore, if 7 is a stopping time we get
E*[f(Xinr)] < flx) forall t > 0.

Letting t — oo we see that f is superharmonic. a
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A proof in the general case can be found in Dynkin (1965 II, p. 5).
The first iterative procedure for the least superharmonic majorant g of g
is the following;:

Theorem 10.1.7 (Construction of the least superharmonic
majorant)
Let g = go be a nonnegative, lower semicontinuous function on R™ and define
inductively

gn(w) = sup E*[g,—1(X¢)] , (10.1.15)
teSy
where Sy, = {k-27™0<k<4"}, n=1,2,.... Then g, 1 g and g is the least

superharmonic majorant of g. Moreover, g = g.

Proof. Note that {gy} is increasing. Define §(z) = lim g, (). Then

g() > gn(x) > E®[gn-1(X})] forall nandallt €S, .

Hence
3(z) > lim E[gn (X)) = E°[5(Xy)] (10.1.16)

n—oo

oo
forallte S= |J Sn.
n=1
Since § is an increasing limit of lower semicontinuous functions (Lemma
8.1.4) g is lower semicontinuous. Fix ¢ € R and choose t; € S such that

tr — t. Then by (10.1.16), the Fatou lemma and lower semicontinuity

g(x) = lim E*[g(Xy, )] > E*[ lim g(Xy,)] > E¥[g(X)] -

k—oo k—o0

So g is an excessive function. Therefore § is superharmonic by Theorem 10.1.6
and hence ¢ is a superharmonic majorant of g. On the other hand, if f is any
supermeanvalued majorant of g, then clearly by induction

f(x) > gn(z) for all n

(x). This proves that ¢ is the least supermeanvalued majorant
O

It is a consequence of Theorem 10.1.7 that we may replace the finite sets
Sy, by the whole interval [0, co]:

Corollary 10.1.8 Define hg = g and inductively

hn(z) = sup E¥[hn—1(X1)] ; n=12,...
>0

Then h, 19.
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Proof. Let h = lim h,,. Then clearly h > g = g. On the other hand, since g is
excessive we have
g(x) = sup E*[g(Xy)].
>0

So by induction
g>hy for all n .

Thus g = h and the proof is complete.

We are now ready for our first main result on the optimal stopping prob-
lem. The following result is basically due to Dynkin (1963) (and, in a martin-
gale context, Snell (1952)):

Theorem 10.1.9 (Existence theorem for optimal stopping)
Let g* denote the optimal reward and g the least superharmonic majorant of
a continuous reward function g > 0.

a) Then
9" (x) =g(z) . (10.1.17)

b) Fore >0 let
D, = {z;g9(x) < g(x) — €} . (10.1.18)

Suppose g is bounded. Then stopping at the first time 7. of exit from D,
1s close to being optimal, in the sense that

lg"(z) — E¥[g(X-)]| < e (10.1.19)

for all .
c) For arbitrary continuous g > 0 let

D = {z;9(z) < ¢"(z)} (the continuation region) . (10.1.20)

For N = 1,2,... define g, = g NN, Dy = {x;9,(z) < gy(x)} and
ON = TDy - Then Dy C Dyyi, Dy C Dﬂg_l([O,N) , D= UDN If
N

on < o0 a.s. QF for all N then

g (x) = lim E%[g(X,\)] - (10.1.21)

N—o0

d) In particular, if Tp < 00 a.s. QF and the family {g(Xsy)}N is uniformly
integrable w.r.t. Q© (Appendiz C), then

9" () = E*[g(X7p)]

and T = Tp 1s an optimal stopping time.
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Proof. First assume that g is bounded and define
ge(z) = E*[g(X.)] fore>0. (10.1.22)
Then g, is supermeanvalued by Lemma 10.1.3 f). We claim that
g(x) < ge(x) for all x . (10.1.23)

To see this define
B:=sup{g(x) — ge(x)} . (10.1.24)

Then g.(x) 4+ 8 is a supermeanvalued majorant of g. Hence
9(z) < ge(z) +p forall x . (10.1.25)
Choose « such that 0 < o < €. Then there exists xy such that
B —a<g(@o) — ge(zo) -

Clearly
0 <g(zo0) — g(x0) < ge(x) + B8 — g(w0) < .

Hence
zo € DS € DF (10.1.26)

and therefore
ge(z) = E™[g(X~,)] = g(z0) -
This gives
B —a <g(wo) = ge(xo) < glxo) — ge(x0) = 0. (10.1.27)
Letting « | 0, we conclude that

p<0,

which proves the claim (10.1.23).
We conclude that g, is a supermeanvalued majorant of g. Therefore

9<ge=Eg(X: )l < Ellg+e)(Xr)] < g +e (10.1.28)

and since € was arbitrary we have by (10.1.12)

*

g=9 .
If ¢ is not bounded, let
gy =min(N,g), N=12,...

and as before let g, be the least superharmonic majorant of gn. Then
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g*>gt =gy 1Th as N— oo, where h>g

since h is a superharmonic majorant of g. Thus h = g = ¢g* and this proves
(10.1.17) for general g. From (10.1.28) and (10.1.17) we obtain (10.1.19).
Finally, to obtain ¢) and d) let us again first assume that ¢ is bounded.
Then, since
T T b as € | 0

and 7p < 0o a.s we have
E*lg(X:)] = E*[9(X:p)]  as elO, (10.1.29)
and hence by (10.1.28) and (10.1.17)
9 (z) = E*[g(X+,)] if ¢ is bounded . (10.1.30)
Finally, if g is not bounded define
= Jm
Then h is superharmonic by Lemma 10.1.3 d) and since g, < g for all N we

have h < g. On the other hand g, < g, < h for all N and therefore g < h.
Since g is the least superharmonic majorant of ¢ we conclude that

h=7G. (10.1.31)
Hence by (10.1.30), (10.1.31) we obtain (10.1.21):

g*(x) = lim gy(z) = lim E*[gy(Xoy)] < lim E¥[g(Xoy)] < g7(2) -

N —oo N —o00

Note that gy <N everywhere, so if g, (x) < g, (z) then g, (z) <N and there-

fore g(x) = g, () < gy(x) < g(z) and g, (x) = g, (2) < gy (2) < gy, (2).
Hence Dy € DN{x;¢g(z) < N} and Dy C D41 for all N. So by (10.1.31) we
conclude that D is the increasing union of the sets Dy; N = 1,2, ... Therefore

Tp = lim oy .
N —oc0
So by (10.1.21) and uniform integrability we have

9l) = Jim gu() = Jim E*lgy(Xoy)]

N —o0
= EI[A}EDOOQN(XUN)] = Ez[g(X.,-D)] )
and the proof of Theorem 10.1.9 is complete. a

Remarks.

1) Note that the sets D, D, and Dy are open, since g = g* is lower semicon-
tinuous and ¢ is continuous.
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2) By inspecting the proof of a) we see that (10.1.17) holds under the weaker
assumption that g > 0 is lower semicontinuous.

The following consequence of Theorem 10.1.9 is often useful:
Corollary 10.1.10 Suppose there exists a Borel set H such that
9y (2): = E*[g(X7y)]

s a supermeanvalued majorant of g. Then

9" (x) =g,(x), so 7" =Ty is optimal .
Proof. 1f g,, is a supermeanvalued majorant of g then clearly
9(z) < gy ().

On the other hand we of course have
9y (¥) < sup E¥[g(X)] = (),
so g* =g, by Theorem 10.1.7 and Theorem 10.1.9 a). ad
Corollary 10.1.11 Let
D = {z;g(x) <g(z)}

and put

If g > g then g = g*.

Proof. Since X, ¢ D we have g(X,,) > ¢g(X,;,) and therefore g(X,,) =
9(X:p), a.s. Q%. So g(z) = E*[g(X,,, )] is supermeanvalued since g is, and the
result follows from Corollary 10.1.10. O

Theorem 10.1.9 gives a sufficient condition for the existence of an optimal
stopping time 7*. Unfortunately, 7* need not exist in general. For example, if

X =t for t >0 (deterministic)
and )
_ &
=ire
then g*(z) = 1, but there is no stopping time 7 such that

9(§) £ER

E*lg(X-)] =1.

However, we can prove that if an optimal stopping time 7" exists, then the
stopping time given in Theorem 10.1.9 is optimal:
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Theorem 10.1.12 (Uniqueness theorem for optimal stopping)
Define as before
D ={a;g9(z) <g"(x)} CR".

Suppose there exists an optimal stopping time 7 = 7*(x,w) for the problem
(10.1.2) for all x. Then

*

7" > 1Tp forall x € D (10.1.32)

and
9" (z) = E*[9(X+p)] for all x € R™. (10.1.33)

Hence tp is an optimal stopping time for the problem (10.1.2).

Proof. Choose x € D. Let 7 be an F;-stopping time and assume
Q%|r < mp] > 0. Since g(X;) < g*(X,) if 7 < 7p and g < g* always, we have

E*[g(X,)] = / 9(X,)dQ* + / 9(X,)dQ"

T7<TD T>TD
< / g* (X,)dQ" + / 0" (X,)dQ" = B*[g"(X,)] < ¢ (2)
T<TD T>TD

since ¢g* is superharmonic. This proves (10.1.32).
To obtain (10.1.33) we first choose x € D. Since g is superharmonic we
have by (10.1.32) and Lemma 10.1.3 e)
9" (x) = E*[g(X7%)] < E*[g(X7%)] < E*[g(X7,)]
= FE*g(X;,)] < g"(2), which proves (10.1.33) for x € D .
Next, choose € 9D to be an irregular boundary point of D. Then 7p > 0
a.s. Q. Let {ay} be a sequence of stopping times such that 0 < o, < 7p and

ar — 0 as. QF, as k — oo. Then X,, € D so by (10.1.32), (7.2.6) and the
strong Markov property (7.2.2)

E*[9(X7,)] = B[00, 9(Xrp )| = E*[BXx [g(Xo,, )] = E®[g* (Xa,)] for all & .
Hence by lower semicontinuity and the Fatou lemma

9" () < E[lim ¢*(Xo,)] < lim E¥[g"(Xa,)] = E*[9(X7p)] -

k—o0 k—o0

Finally, if 2 € 0D is a regular boundary point of D or if z ¢ D we have 7p = 0
a.s. @* and hence g*(z) = E*[g(X,,)]. O

Remark. The following observation is sometimes useful:
Let A be the characteristic operator of X. Assume g € C?*(R"). Define

U = {x; Ag(x) > 0} . (10.1.34)
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Then, with D as before, (10.1.20),
UcbD. (10.1.35)

Consequently, from (10.1.32) we conclude that it is never optimal to stop the
process before it exits from U. But there may be cases when U # D, so that
it is optimal to proceed beyond U before stopping. (This is in fact the typical
situation.) See e.g. Example 10.2.2.

To prove (10.1.35) choose x € U and let 79 be the first exit time from a
bounded open set W 5, W C U. Then by Dynkin’s formula, for uv > 0

ToNAU

Bl =9(e) + 87| [ AgCx)as] > g0

so g(z) < g*(x) and therefore x € D.

Example 10.1.13 Let X; = B; be a Brownian motion in R2. Using that B;
is recurrent in R? (Example 7.4.2) one can show that the only (nonnegative)
superharmonic functions in R? are the constants (Exercise 10.2).

Therefore

9" () = |lgllso: = sup{g(y);y € R}  forall x.

So if g is unbounded then g* = oo and no optimal stopping time exists.
Assume therefore that g is bounded. The continuation region is

D= {z;9(z) <llgll} ,

so if 0D is a polar set i.e. cap (D) = 0, where cap denotes the logarithmic
capacity (see Port and Stone (1979)), then 7p = oo a.s. and no optimal
stopping exists. On the other hand, if cap(0D) > 0 then 7p < oo a.s. and

E*[9(Brp)] = [l9lloe = 97 (2) ,
so 7 = 7p is optimal.
Example 10.1.14 The situation is different in R™ for n > 3.

a) To illustrate this let X; = B; be Brownian motion in R? and let the reward

function be " . €
_ g7 for |§] > 1 3
g<§)_{1 f0r|§|<1’ §€R

Then g is superharmonic (in the classical sense) in R?, so g* = g every-
where and the best policy is to stop immediately, no matter where the
starting point is.
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b) Let us change g to
| |xl7™ for |x| >1
M) = { 1 for |z| <1
for some o > 1. Let H = {x;|z| > 1} and define

h(z) = E*[h(B,)] = P*[ry < o0 .
Then by Example 7.4.2

(1 iffa] <1
h(z) = { |~ i 2] > 1,

ie.h=g (defined in a)), which is a superharmonic majorant of h. There-
fore by Corollary 10.1.10

W=h=g,

H = D and 7" = 7 is an optimal stopping time.

Reward Functions Assuming Negative Values

The results we have obtained so far regarding the problem (10.1.2)—(10.1.3)
are based on the assumptions (10.1.1). To some extent these assumptions can
be relaxed, although neither can be removed completely. For example, we have
noted that Theorem 10.1.9 a) still holds if g > 0 is only assumed to be lower
semicontinuous.

The nonnegativity assumption on g can also be relaxed. First of all, note
that if ¢ is bounded below, say g > —M where M > 0 is a constant, then we
can put

g1=9g+M2>0

and apply the theory to g;. Since
E¥[g(X;)] = E¥[¢g1 (X)) — M if 7<o0as.,

we have g*(z) = g7 (z) — M, so the problem can be reduced to the optimal
stopping problem for the nonnegative function g;. (See Exercise 10.4.)

If g is not bounded below, then problem (10.1.2)-(10.1.3) is not well-
defined unless

E?lg7(X;)] < > for all 7 (10.1.36)

where
g~ (@) = — min(g(x),0)
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If we assume that g satisfies the stronger condition that
the family {¢~(X;); 7 stopping time} is uniformly integrable  (10.1.37)

then basically all the theory from the nonnegative case carries over. We refer to
the reader to Shiryaev (1978) for more information. See also Theorem 10.4.1.

10.2 The Time-Inhomogeneous Case

Let us now consider the case when the reward function g depends on both
time and space, i.e.

g=g(t,z):RxR" —[0,00), g is continuous . (10.2.1)
Then the problem is to find go(x) and 7* such that
o) = sup B7lg(7, X,)] = E¥lg(r*, X)), (10.2.2)
To reduce this case to the original case (10.1.2)—(10.1.3) we proceed as follows:
Suppose the It6 diffusion X; = X' has the form
dX, = b(X,)dt + o(X,)dBy ; t>0, Xo==x

where b: R" — R™ and o:R"™ — R™ ™ are given functions satisfying the
conditions of Theorem 5.2.1 and B; is m-dimensional Brownian motion. Define
the It6 diffusion V; = ¥,") in R"*1 by

s+t
Yt_[th]; £>0. (10.2.3)
Then
dY, = [b()l(t)] dt + [ (2@} dBy = b(Y,)dt + 5(Y;)dB, (10.2.4)
where
0---0
b0 =500,6) = [y [ R 51 = 00.6) = - [ eRm,

with 7 = (£,€) € R x R

So Y; is an Tto diffusion starting at y = (s,z). Let RY = R(>*) denote the
probability law of {Y;} and let EY = E(*%) denote the expectation w.r.t. RY.
In terms of Y; the problem (10.2.2) can be written

g0(@) = g"(0,2) = sup B [g(¥y)] = EC[g(Yr-)] (10.2.5)
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which is a special case of the problem

g"(s,x) = sup ECDg(Y,)] = B g(Yr-)] (10.2.6)

which is of the form (10.1.2)—(10.1.3) with X, replaced by Y;.
Note that the characteristic operator A of Y; is given by
- 0

(s, ) = 32

—(s,7) + Ad(s, ) ; $ € C*(R xR") (10.2.7)
s
where A is the characteristic operator of X, (working on the z-variables).

Example 10.2.1 Let X; = B; be 1-dimensional Brownian motion and let
the reward function be

g(t,&) =e P teR
where a, 8 > 0 are constants. The characteristic operator A of Y% = [SBJ?}
is given by
~ of 1 9%f 5
R c? .
Af(s,2)=5-+5-553  f€
Thus

Ag = (—a+45%)g,
so if 8% < 2« then g* = ¢ and the best policy is to stop immediately. If
g g p Yy P Y

B2 > 2o we have ~
U:={(s,7); Ag(s,z) > 0} = R?
and therefore by (10.1.35) D = R? and hence 7* does not exist. If 2 > 2«

we can use Theorem 10.1.7 to prove that g* = oo:

sup E(s,x)[g(}/t)] = sup E[e—a(s-i-t)-i-BBf]
teSn teSy

2
= sup [e" @) Pl t] (see the remark following (5.1.6))
teS'Vl
—atlp? "
= sup g(s,2) - o2 = g(s,2) - exp((—a+ 357027

teSy

S0 gn (s, ) — 00 as N — 0.
Hence no optimal stopping exists in this case.

Example 10.2.2 (When is the right time to sell the stocks? (Part 1))
We now return to a specific version of Problem 5 in the introduction:

Suppose the price X; at time ¢ of a person’s assets (e.g. a house, stocks,
oil ...) varies according to a stochastic differential equation of the form

dXt = TXtdt + OéXtdBt,Xo =xz>0 5
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where B; is 1-dimensional Brownian motion and r,a are known constants.
(The problem of estimating « and r from a series of observations can be
approached using the quadratic variation (X, X); of the process {X;} (Ex-
ercise 4.7) and filtering theory (Example 6.2.11), respectively.) Suppose that
connected to the sale of the assets there is a fixed fee/tax or transaction cost
a > 0. Then if the person decides to sell at time ¢ the discounted net of the
sale is
e (X —a),

where p > 0 is given discounting factor. The problem is to find a stopping
time 7 that maximizes

EGDe (X, — a)] = ECYg(r, X,)]
where
g(t,§) = e "(§ —a).
The characteristic operator A of the process Y; = (s +t, X;) is given by

~ 0 0 0?
Af(s,z) = (9_:: —|—r:1:a—£ + %azxza—x‘é ;

feC*R?.
Hence Ag(s, ) = —pe=P5(x — a) + raze % = e P*((r — p)z + pa). So

—~ R xR, ifr>p

U_{(57$)7A9(57$)>0}_{{(57x)7x<p—a%} 1f7"<p
Soif r > p we have U = D = R x Ry so 7" does not exist. If r > p then
g* = oo while if r = p then
g (s,x) = xe P .

(The proofs of these statements are left as Exercise 10.5.)

It remains to examine the case r < p. (If we regard p as the sum of
interest rate, inflation and tax etc., this is not an unreasonable assumption in
applications.) First we establish that the region D must be invariant w.r.t. ¢,

in the sense that
D + (t,0) =D for all ¢ . (10.2.8)

To prove (10.2.8) consider

D + (t9,0) = {(t + to, x); (t,z) € D} = {(s,z); (s — to,x) € D}

(5,2); (5 — fo,) < 9" (s — to, 2)} = {(5,2); e”0g (s, 2) < 06" (s, 7))
s,0);9(s,x) <g(s, )} = D,

( 3

where we have used that

={
={
g% (s — tg,x) = sup E(S_t"’m)[e_pT(XT —a)] = sup E[e_p(T"'(S_tO))(Xf —a)]

= e sup E[e_p(T"’S)(Xf —a)] = efog*(s, ) .

T
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Therefore the connected component of D that contains U must have the form

D(z0) = {(t,x);0 <z < x0} for some xg > —&

—-r

Note that D cannot have any other components, for if V' is a component of
D disjoint from U then Ag < 0in V and so, if y € V,

EY[g(Yr)] = g(y) +E‘”UT«ZQ(Yt)dt} <9(y)
0

for all exit times 7 bounded by the exit time from an z-bounded strip in V.
From this we conclude by Theorem 10.1.9 ¢) that ¢*(y) = ¢(y), which implies
vV =0.

Put 7(z0) = Tp(s,) and let us compute

9(5,2) = Gy (8,7) = B [g(Yy ()] - (10.2.9)

From Chapter 9 we know that f = g is the (bounded) solution of the boundary
value problem

0F |08 a0t
95 T 0s 0z
f(s,20) = e P*(x0 — a) .

=0 for 0 <z < xg (10.2.10)

(Note that R x {0} does not contain any regular boundary points of D w.r.t.
}/t = (S + t, Xt))
If we try a solution of (10.2.10) of the form

fs,2) = 77 ()
we get the following 1-dimensional problem

—p¢ +rad (z) + 5022?¢"(x) =0 for 0 <z <z } (10.2.11)

d(xo) =20 — @ .
The general solution ¢ of (10.2.11) is
¢(z) = Cra™ + Cox? |

where C1, Cy are arbitrary constants and

vi=a [ _ri\/ +2pa2} (i=1,2), <0< .
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Since ¢(z) is bounded as x — 0 we must have Co = 0 and the boundary
requirement ¢(zg) = zo — a gives C1 = x, " (o — a). We conclude that the
bounded solution f of (10.2.10) is

Guo(5,2) = fl5,2) = (30 — ) (£> | (10.2.12)

Zo

If we fix (s, ) then the value of xy which maximizes g, (s, ) is easily seen to
be given by

CL")/l
Ty = Tmax = 10.2.13
: o (10.2.13)
(note that v > 1 if and only if r < p).
Thus we have arrived at the candidate g, (s,z) for g*(s,z) =
sup EC®)[eP7 (X, — a)]. To verify that we indeed have g, . = g* it would

suffice to prove that g, .. is a supermeanvalued majorant of g (see Corol-
lary 10.1.10). This can be done, but we do not give the details here, since this
problem can be solved more easily by Theorem 10.4.1 (see Example 10.4.2).

The conclusion is therefore that one should sell the assets the first time
the price of them reaches the value xp.x = 'Z’ill' The expected discounted
profit obtained from this strategy is

~ _1 y1—1 Y1
0°(5,2) = G (5,2) = €7 (7—> ( z ) .

a g4t

Remark. The reader is invited to check that the value xg = . is the only
value of xg which makes the function

T — Juo(8, ) (given by (10.2.9))

continuously differentiable at xq. This is not a coincidence. In fact, it illustrates
a general phenomenon which is known as the high contact (or smooth fit)
principle. See Samuelson (1965), McKean (1965), Bather (1970) and Shiryaev
(1978). This principle is the basis of the fundamental connection between opti-
mal stopping and variational inequalities. Later in this chapter we will discuss
some aspects of this connection. More information can be found in Bensoussan
and Lions (1978) and Friedman (1976). See also Brekke and @ksendal (1991).

10.3 Optimal Stopping Problems Involving an Integral
Let
dY, = b(Yy)dt + o(Y})dB,,  Yo=y (10.3.1)

be an It6 diffusion in R¥. Let g: R*¥ — [0, 00) be continuous and let f:R* —
[0, 00) be Lipschitz continuous with at most linear growth. (These conditions



10.3 Optimal Stopping Problems Involving an Integral 231

can be relaxed. See (10.1.37) and Theorem 10.4.1.) Consider the optimal stop-
ping problem: Find &(y) and 7* such that

#(5) = sup £ | / P + g —Ey[fﬂmdwgm*) (1032)
0 0

This problem can be reduced to our original problem (10.1.2)-(10.1.3) by
proceeding as follows: Define the Ito diffusion Z; in R¥ x R = R¥*! by

dZt:[;Vl;t]:: B((%]dw[”%/f)]d&; Zo=2=(yw). (10.3.3)

Then we see that
b(y) = sup EVO[W, + g(Y;)] = sup BV [3(Z,)]
with
9(2):=g(y,w):=g(y) + w ; z=(y,w) € R xR. (10.3.4)

This is again a problem of the type (10.1.2)—(10.1.3) with X; replaced by
Zy and g replaced by g. Note that the connection between the characteristic
operators Ay of Y; and Az of Z; is given by

9¢

S ¢ € C2(R*1) . (10.3.5)

Az(2) = Az¢(y, w) = Ay oy, w) + f(y)
In particular, if §(y, w) = g(y) + w € C?(R**1) then

Az g(y,w) = Avg(y) + f(y) . (10.3.6)

Hence, in this general case the domain U of (10.1.34) gets the form

U={y; Ayg(y) + f(y) > 0} . (10.3.7)

Example 10.3.1 Consider the optimal stopping problem
&(x) = sup E* [/ﬁe_thtdt +e PTX, |,
T 0

where
dX; = aX;dt + BXtdBt N Xo=2>0
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is geometric Brownian motion (a, 8,0 constants, § > 0). We put

dt | 1 [0
d}/t—[dXt_—[aXt:|dt+_ﬂXt]dBt, Yo = (s, )
and
JY; ! [0
dzZy = [dVVt} = aXy | dt+ | BXy | dBy; Zy = (s,z,w) .
¢ _Geftht L O
Then with
fly)=f(s,z) =0z,  gly)=e "z
and
§(s,2,w) = gls,2) +w = ¢ x
we have
-~ 99 dg 5 20%g ] —ps
Azg:%+a$%+%ﬁ 2o gt P aos = (—ptat e .
Hence

3 .
U={(s,z,w); Az §(s,z,w) >0} = {01]1 ifp<a+6

ifp>a+6.
From this we conclude (see Exercise 10.6):
Ifp>a+0thent =0
and @(s,z,w) = g(s,z,w) = e Pr4+w. (10.3.8)
If a < p<a+ 0 then 7 does not exist
and @(s,x,w):fﬁ—wae”)s—l—w . (10.3.9)
If p < a then 7* does not exist and ¢ = oo . (10.3.10)

10.4 Connection with Variational Inequalities

The ‘high contact principle’ says, roughly, that — under certain conditions —
the solution g* of (10.1.2)-(10.1.3) is a C! function on R" if g € C*(R").
This is a useful information which can help us to determine g*. Indeed, this
principle is so useful that it is frequently applied in the literature also in cases
where its validity has not been rigorously proved.

Fortunately it turns out to be easy to prove a sufficiency condition of
high contact type, i.e. a kind of verification theorem for optimal stopping,
which makes it easy to verify that a given candidate for g*(that we may have
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found by guessing or intuition) is actually equal to g*. The result below is a
simplified variant of a result in Brekke and @ksendal (1991):
In the following we fix a domain G in R* and we let

dY, = b(Y,)dt + o(Y,)dB,; Yo =y (10.4.1)
be an Ité diffusion in R*. Define
T7¢ = 1¢(y,w) = inf{t > 0;Y;(w) ¢ G} . (10.4.2)

Let f:R* — R, ¢: R* — R be continuous functions satisfying
) Ey[/f*(Yt)dt] < 00 for all y € RF (10.4.3)

and

(b) the family {¢g~(Y;); T stopping time, 7 < 7} is uniformly integrable
w.r.t. RY (the probability law of Y;), for all y € RF. (10.4.4)

Let 7 denote the set of all stopping times 7 < 7g. Consider the following
problem: Find &(y) and 7* € 7 such that

Ply) = sup J7(y) = I (y), (10.4.5)

where

—Ey[/fYtdt—l-g(YT)} for T €T .
0

Note that since J°(y) = g(y) we have

d(y) > g(y) for all y € G . (10.4.6)

We can now formulate the variational inequalities. As usual we let

o2
L= Ly—Zb _ QZUU )is (

Yi ij=1 8y18yj

be the partial differential operator which coincides with the generator Ay of
Y, on C2(RF).

Theorem 10.4.1 (Variational inequalities for optimal stopping)

a) Suppose we can find a function ¢: G — R such that

(i) ¢eCHG)NC(G)

(ll) ¢ >g onG and lim (ZS(Y%) = g(YTG)X{TG<OO} a.s.

t~>7’c

D ={zeGdx)>g(x)}.

Define
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Suppose Yy spends 0 time on 0D a.s., i.e.
TG
(i) EY [/ XaD(Yt)dt} —0 forallyeG
0

and suppose that

(iv) 0D is a Lipschitz surface, i.e. OD 1is locally the graph of a function
h:RF=1 — R such that there exists K < oo with

h(z) = h(y)| < Kle—y|  for all o,y

Moreover, suppose the following:

(v) ¢ € C*(G\ID) and the second order derivatives of ¢ are locally bounded
near 0D
(vi) Le+f<0onG\D.
Then
o(y) =2 d(y)  forally € G.

b) Suppose, in addition to the above, that

(vil) Lo+ f=0onD
(vill) 7p:=inf{t > 0;Y; ¢ D} < o0 a.s. RY forally € G

and
(ix) the family {¢(Y;);7 < 7p, 7 € T} is uniformly integrable w.r.t. RY, for
ally € G.
Then .
o) =) =sw e[ [ oo+ g0m]: vea  oan
TE 4
and

™ =17Tp (10.4.8)
is an optimal stopping time for this problem.

Proof. By (i), (iv) and (v) we can find a sequence of functions
¢; € C3G)NC(G), j=1,2,..., such that

(a) ¢; — ¢ uniformly on compact subsets of G, as j — oo

(b) L¢; — L¢ uniformly on compact subsets of G\ 9D, as j — oo
(c) {Lp;}32, is locally bounded on G.
(

j=1
See Appendix D).

Let {GR};::l be a sequence of bounded open sets such that G = |J Gg.
R=1
Put Tr = min(R,inf {¢t > 0;Y; ¢ Ggr}) and let 7 < 7¢ be a stopping time.
Let y € G. Then by Dynkin’s formula
TATR

Ey[¢j<YMTR>1—¢j<y>+Ey[ / L@-(mdt} (10.4.9)
0
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Hence by (a), (b), (c¢) and (iii) and the bounded a.e. convergence

TATR

¢y) = lim E“[ / —Lo;(Yy)dt + ¢;( TATR)}
TATR
—Ey[ O/ LoVt + 6 Mm] . (10.4.10)
Therefore, by (ii), (iii) and (vi),
TATR
o(y) > EY O/ f(Yy)dt + g( TATR)] :

Hence by the Fatou lemma and (10.4.3), (10.4.4)

o(y) = %EU[ T7TRf(K)dt+g(YTATR)] > EY [/Tf(lﬁ)dtJrg(YT)] :
0 0

Since 7 < 7¢ was arbitrary, we conclude that

oy) > P(y)  forall ye G, (10.4.11)

which proves a).
We proceed to prove b): If y ¢ D then ¢(y) = g(y) < P(y) so by (10.4.11)

we have

o(y) =d(y) and 7=7(y,w):=0 is optimal for y ¢ D . (10.4.12)
Next, suppose y € D. Let {D;}32, be an increasing sequence of open sets Dy,
such that D C D, Dy, is compact and D= U Dy. Put 7, =inf{t>0;Y; & Dy},
k=1,2,... By Dynkin’s formula we have for y € Dy,

TeNTR

o) = Jim 650) = tim B [ =L, + 65V,

‘]HOO
0

TNANTR TeNANTR

5| [ ~zotiie + o(¥nm)| =87 [ 10+ 6V
0 0
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So by uniform integrability and (ii), (vii), (viii) we get
TeNTR

o) = plim B [ 50t + o )|

= 5| [+ gvn)| = 0w < 0. (10413
0

Combining (10.4.11) and (10.4.13) we get
¢(y) =2 D(y) = ™ (y) = 6(y)

so
o(y) =P(y) and 7T(y,w):=7p is optimal when y € D . (10.4.14)
From (10.4.12) and (10.4.14) we conclude that
o(y) = d(y) forall y € G.

Moreover, the stopping time 7 defined by
~ 0 for D
P = {2 v

p forye D
is optimal. By Theorem 10.1.12 we conclude that 7p is optimal also. a

Example 10.4.2 (When is the right time to sell the stocks?

(Part 2))

To illustrate Theorem 10.4.1 let us apply it to reconsider Example 10.2.2:
Rather than proving (10.2.8) and the following properties of D, we now

simply guess/assume that D has the form

D ={(s,2);0 <x < x0}
for some x¢ > 0, which is intuitively reasonable. Then we solve (10.2.11) for
arbitrary x¢ and we arrive at the following candidate ¢ for g*:

—ps — Z )71

6(5,2) = ¢ (o —a)(5)" for 0 <z <o

e P (x—a) for x > xg .
The requirement that ¢ € C* (Theorem 10.4.1 (i)) gives the value (10.2.13)
for zo. It is clear that ¢ € C? outside D and by construction L¢ = 0 on

D. Moreover, conditions (iii), (iv), (viii) and (ix) clearly hold. It remains to
verify that

(i)  o(s,x)>g(s,x) for 0<xz<xo, i.6. P(s,2)>e P*(x —a) for 0<x <z0
and
(v) L¢(s,z) <0 for x > xg, i.e. Lg(s,z) <0 for z > x.

This is easily done by direct calculation (assuming r < p).
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We conclude that ¢ = ¢* and 7* = 7p is optimal (with the value (10.2.13)
for xg).

Exercises

10.1.* In each of the optimal stopping problems below find the supremum
g* and — if it exists — an optimal stopping time 7*. (Here B; denotes
1-dimensional Brownian motion)

a) g*(x) = sup B*[BZ]
T
b) g*(x) = sup E*[| B-|"],
T
where p > 0.
2
c) g*(x) = sup E[e~ 7]
T
d) g*(s,z) = sup E®®)[e=P(+7)cosh B, ]
T
where p > 0 and cosh x = % (e* 4 e7¥).
10.2.* a) Prove that the only nonnegative (B,-) superharmonic functions in
R? are the constants.

(Hint: Suppose u is a nonnegative superharmonic function and that
there exist x,y € R? such that

Consider
E*u(B;)],

where 7 is the first hitting time for B; of a small disc centered at

Y)-
b) Prove that the only nonnegative superharmonic functions in R are
the constants and use this to find g*(x) when

g(z) = ze ™ forx >0
0 for x <0.

c) Let v € R, n > 3 and define, for x € R",

x| for |z] > 1
Fo(@) = {1 for x| < 1.

For what values of v is f,(-) ((B¢)-) harmonic for |z| > 1 ? Prove
that f, is superharmonic in R™ iff v € [2 —n,0] .

10.3.* Find g*, 7* such that

g"(s,2) = sup B [e D B = B e+ B
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10.4.

10.5.

10.6.
10.7.

10.8.
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where B; is 1-dimensional Brownian motion, p > 0 is constant.
Hint: First assume that the continuation region has the form

D = {(s,z); —xo <z < o}
for some xg and then try to determine zy. Then apply Theorem 10.4.1.

Let X; be an It6 diffusion on R™ and g: R™ — R a continuous reward
function. Define

g°(z) =sup{E*[g(X,)]; T stopping time, E*[7] < oo} .

Show that ¢g® = g*.
[Hint: If 7 is a stopping time put 7, = 7 Ak for k = 1,2, ... and consider

EI[Q(XT> X ] < Ex[h_mg(X‘rk)H .

T< o0
k—o0

With g, r, p as in Example 10.2.2 prove that
a) if r > p then g* = oo,
b) if r = p then g*(s,z) = xze Pr*.

Prove statements (10.3.8), (10.3.9), (10.3.10) in Example 10.3.1.
As a supplement to Exercise 10.4 it is worth noting that if g is not
bounded below then the two problems
9" (z) = sup{ E”[g(X;)]; T stopping time}
and
g°(x) = sup{ E*[g(X;)]; T stopping time, E*[r] < oo}

need not have the same solution. For example, if g(z)=z, X;=B;€R
prove that
g% (x) =0 forall z€ R

while
9°(z) =z forall ze R.

(See Exercise 7.4.)

Give an example with g not bounded below where Theorem 10.1.9 a)
fails. (Hint: See Exercise 10.7.)

10.9.* Solve the optimal stopping problem

&(x) = sup E” {/ e P'BXdt + e PTB?| .
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10.10. Prove the following simple, but useful, observation, which can be re-
garded as an extension of (10.1.35):
Let W = {(s,x); 37 with g(s,z) < E®®)[g(s + 7, X,)]}.
Then W C D.

10.11. Consider the optimal stopping problem

g*(s,z) = sup E®®) [e=P(s+T) BH] |

where B; € R and 27 = max{z, 0}.

a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D=A(s,z);x < x0}

for some xy > 0.
b) Determine zg and find g*.
c¢) Verify the high contact principle:

89*7@
dr  Ox

when (s,z) = (s,z0) ,

where g(t,x) = e PtzT.

10.12.* The first time the high contact principle was formulated seems to
be in a paper by Samuelson (1965), who studied the optimal time for
selling an asset, if the reward obtained by selling at the time ¢ and
when price is £ is given by

g(t,§) = e "(E-1)" .

The price process is assumed to be a geometric Brownian motion X
given by
dX; = rXudt + aXdBy , Xo=2>0,

where r < p.
In other words, the problem is to find g*,7* such that

g (s,2)=sup B e ?CH(X, — 1)H] = ECP e P HT) (X — 1)),

T

a) Use the argument for (10.2.8) and Exercise 10.10 to prove that the
continuation region D has the form

D ={(s,2);0 <z <xp}

for some xg > ;f—r.
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b) For a given zg > £ solve the boundary value problem

2
Bl o0 for 0<a<a

f(s,0)=0

f(s,z0) =€ P(xg — 1)T

by trying f(s,z) = e P*¢(x).
¢) Determine z by using the high contact principle, i.e. by using that

of 9y
5~ B when =z .
d) With f,z¢ as in b), ¢) define
_ f(S,JI) 5 .’II<.’IIQ
(s @) = {e"’s(x -t z>a0.

Use Theorem 10.4.1 to verify that v = ¢* and that 7 = 7p is
optimal.

10.13.* (A resource extraction problem)
Suppose the price P; of one unit of a resource (e.g. gas, oil) at time ¢
is varying like a geometric Brownian motion

dPt:O[Ptdt—i-ﬂPtdBt, P():p

where By is 1-dimensional Brownian motion and «, 8 are constants.
Let Q; denote the amount of remaining resources at time ¢. Assume
that the rate of extraction is proportional to the remaining amount, so
that

dQy = —AQdt ; Qo=q
where A\ > 0 is a constant.

If the running cost rate is K > 0 and we stop the extraction at the
time 7 = 7(w) then the expected total discounted profit is given by

T

J7(s,p,q) = BP9 { / (AP,Q; — K)e ?tdt + e P+ g(P,, Q,) |

where p > 0 is the discounting exponent and g(p, q) is a given bequest

function giving the value of the remaining resource amount ¢ when the

price is p.

a) Write down the characteristic operator A of the diffusion process
dt

dXt = dPt ; XO = (Svpaq)
dQ:
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and formulate the variational inequalities of Theorem 10.4.1 corre-
sponding to the optimal stopping problem

®(s,p,q) =sup J7(s,p,q) = J" (5,0, q) -

b) Assume that ¢g(p,q) = pq and find the domain U corresponding to
(10.1.34), (10.3.7), i.e.

U={(s,p,q); Ale” " g(p,q)) + f(s,p,q) > 0},

where
f(s,p,q) = e (Apg — K) .
Conclude that
(i) if p > « then 7* =0 and P(s,p, q) = pgeP*
(ii) if p < a then D D {(s,p,q); pq > ai_p}
c) As a candidate for @ when p < a we try a function of the form

e "pg; 0 <pg < yo
S, D, = —ps
#ep:0) {e P P(pa) s pg > yo
for a suitable ¢: R — R, and a suitable yo. Use Theorem 10.4.1 to
determine v, yo and to verify that with this choice of v,y we have
o= and 7 =inf{t > 0; BQ: < yo},if p<a<p+ A
d) What happensif p+ A < a?
10.14.* (Finding the optimal investment time (I))
Solve the optimal stopping problem

W(S,p) = sup E(S’p) |:/ e*P(Sth)Ptdt _ Oe*p(SJrT)

3

where
dPt:OéPtdt—f—ﬁPtdBt; P():p,

B; is 1-dimensional Brownian motion and «, 8, p, C' are constants,

0 < a < pand C > 0. (We may interprete this as the problem of
finding the optimal time 7 for investment in a project. The profit rate
after investment is P, and the cost of the investment is C'. Thus ¥ gives
the maximal expected discounted net profit.)

Hint: Write [ e PGt Pdt = e=P3[ [ e 7' Pydt — [ et Pydt]. Compute
T 0 0

E[ [e~P*Pdt] by using the solution formula for P; (see Chapter 5) and

0
then apply Theorem 10.4.1 to the problem

@(s,p) =SupE<5*”>[— / e PO Pt — Cem Pt |
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10.15. Let B; be 1-dimensional Brownian motion and let p > 0 be constant.
a) Show that the family

{77 B;; T stopping time}

is uniformly integrable w.r.t. P*.
b) Solve the optimal stopping problem

(s, z) = sup B [e (B, —a)]

T

when a > 0 is constant. This may be regarded as a variation of Ex-
ample 10.2.2/10.4.2 with the price process represented by By rather
than X;.

10.16. (Finding the optimal investment time (II))
Solve the optimal stopping problem

!p(87p) = sup E(S,p) |:/e—p(8+t)Ptdt _ Ce_p(S+T)

T

where
dPt:/J,dt—f—O'dBt; PO:p

with p, o # 0 constants. (Compare with Exercise 10.14.)

10.17. a) Let
dX; = pdt + o dBy ; Xo=z2z€R

where p and o are constants. Prove that if p > 0 is constant then
o0
Em[/e_pt|Xt|dt] < oo for all = .
0
b) Solve the optimal stopping problem

T

&(s,x) = sup E* {/e‘p(sﬂ) (X: — a)dt},
720 0

where a > 0 is a constant.
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Application to Stochastic Control

11.1 Statement of the Problem

Suppose that the state of a system at time ¢ is described by an Itd process X;
of the form

dXt = ngL = b(t,Xt,’LLt)dt + O'(t, Xt, Ut)dBt y (1111)

where X; e R", b RxR"xU - R", o: R x R" x U — R™™ and By is m-
dimensional Brownian motion. Here u; € U C RF is a parameter whose value
we can choose in the given Borel set U at any instant ¢ in order to control
the process X;. Thus u; = u(t,w) is a stochastic process. Since our decision
at time ¢ must be based upon what has happened up to time ¢, the function

w — u(t,w) must (at least) be measurable w.r.t. f,f(m), i.e. the process wu;

must be ft(m)—adapted. Thus the right hand side of (11.1.1) is well-defined as
a stochastic integral, under suitable assumptions on the functions b and o. At
the moment we will not specify the conditions on b and o further, but simply
assume that the process X; satisfying (11.1.1) exists. See further comments
on this in the end of this chapter.

Let {X;"*}n>s be the solution of (11.1.1) such that X% = z, i.e.

h h
Xyt =a+ /b(r, X% up)dr + /o(r, X% up)dBy h>s

S S

and let the probability law of X; starting at x for ¢ = s be denoted by Q**,
so that

Q*“[Xy, EF,..., Xy, €FR] =P[X)" € Fy,..., X" €] (11.1.2)

fors<t;, F;, CR"1<i<k k=1,2,...

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_11, © Springer-Verlag Berlin Heidelberg 2013
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Let f: RxR"xU — R (the “profit rate” function) and g: RxR"™— R (the
“bequest” function) be given continuous functions, let G be a fixed domain
in R x R™ and let T be the first exit time after s from G for the process
{X2%}, >, Le.

~

N

= T°%(w) = inf{r > s; (r, X3*(w)) ¢ G} < 00 . (11.1.3)

Suppose

~

T
E[ / |f“r<r,Xr>|dr+|g<f,Xf>|X{f<w}}<<>o for all s,z,u (11.1.4)

where f%(r,z) = f(r, z,u). Then we define the performance function J"(s,x)
by

~

T
JU(s,x) = E5" |:/ fer(r, X, )dr + g(T\, Xf)X{f<oo}:| . (11.1.5)

To obtain an easier notation we introduce
Y, = (s +t, X)) for t >0, Yy = (s,2)
and we observe that if we substitute this in (11.1.1) we get the equation
dY, = dY* = b(Yy,u)dt + o(Yy, uy)dBy . (11.1.6)

(Strictly speaking, the u,b and o in (11.1.6) are slightly different from the u, b
and ¢ in (11.1.1).) The probability law of Y; starting at y = (s, z) for t =0 is
(with slight abuse of notation) also denoted by Q%% = QY.

Note that

~

)

T _s e
/f“T (r, X, )dr = / fltt(s+t, Xoqpr)dt = /f“”t (Yy)dt ,
s 0 0
where R
Te:=mf{t >0, ¢ G} =T —s. (11.1.7)
Moreover,

g(f, Xf) = g(Yf,S) = g(YTG) :

Therefore the performance function may be written in terms of Y as follows,
with y = (s, 2),

7w =8| [ 50 ) ey - (1118)
0

(Strictly speaking this u; is a time shift of the u; in (11.1.6).)
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The problem is — for each y € G — to find the number &(y) and a control
u* = u*(t,w) = u*(y,t,w) € A such that

b(y): = sup J'(y) = J" (y) (11.1.9)

u(t,w)

where the supremum is taken over a given family A of admissible controls,

(m)

contained in the set of all F;""’-adapted processes {u;} with values in U. Such
a control u* — if it exists — is called an optimal control and @ is called the
optimal performance or the value function. Examples of types of admissible
control functions that may be considered are:

(1)
(2)

3)

Functions of the form w(t,w) = wu(t) i.e. not depending on w. These
controls are sometimes called deterministic or open loop controls.
Processes {u;} which are M,-adapted, i.e. for each ¢ the function w —
u(t,w) is My-measurable, where M; is the o-algebra generated by
{X?¥; r <t}. These controls are called closed loop or feedback controls.
The controller has only partial information of the state of the system.
More precisely, to the controller’s disposal are only (noisy) observations
R; of X, given by an It6 process of the form

dRy = a(t, X;)dt +~(t, X;)dB; ,

where B is a Brownian motion (not necessarily related to B). Hence the
control process {u;} must be adapted w.r.t. the o-algebra N; generated
by {Rs; s < t}. In this situation the stochastic control problem is linked
to the filtering problem (Chapter 6). In fact, if the equation (11.1.1) is
linear and the performance function is integral quadratic (i.e. f and g are
quadratic) then the stochastic control problem splits into a linear filtering
problem and a corresponding deterministic control problem. This is called
the Separation Principle. See Example 11.2.4.

Functions u(t,w) of the form u(t,w) = ug(t, X;(w)) for some function
up: R"! — U C RF. In this case we assume that u does not depend on
the starting point y=(s, z): The value we choose at time ¢ only depends
on the state of the system at this time. These are called Markov con-
trols, because with such u the corresponding process X; becomes an 1to
diffusion, in particular a Markov process. In the following we will not dis-
tinguish between v and wug. Thus we will identify a function u: R**1 —U
with the Markov control u(Y) = u(t, X;) and simply call such functions
Markov controls.

11.2 The Hamilton-Jacobi-Bellman Equation

Let us first consider only Markov controls

u = u(t, X¢(w)) .
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Introducing Y; = (s + ¢, Xs4¢) (as explained earlier) the system equation
becomes

4Y, = b(Ye, u(Yy))dt + o(Yi, u(Y:))dB, . (11.2.1)
For v € U and ¢ € C3(R x R") define
0 . 0 - 0?
(L)) = S2w) + bl ) o+ D ayly )t (1122)
i=1 ‘

Ti;0T 4
ij=1 Oz,

where a;; = $(c07);;, y = (s,z) and = (z1,...,,). Then for each choice
of the function u the solution ¥; = Y is an It6 diffusion with generator A
given by

(Ad)(y) = (L*W ) (y) for ¢ € C2(R x R™) (see Theorem 7.3.3) .

For v € U define f’(y) = f(y,v). The first fundamental result in stochastic
control theory is the following:

Theorem 11.2.1 (The Hamilton-Jacobi-Bellman (HJB) equation (I))
Define
&(y) = sup{J“(y);u = u(Y) Markov control} .

Suppose that & € C%(G) N C(G) satisfies

EY [|45(Ya)|+/a|L”¢(iﬁ)|dt} < 0

for all bounded stopping times a < 7, all y € G and all v € U. Moreover,
suppose that an optimal Markov control u* exists and that OG is regular for
Y (Definition 9.2.8). Then the value function ® in (11.1.9) satisfies

ilelg{fv(y) +(L*®?)(y)} =0 forall ye G (11.2.3)

and

D(y) = g(y) for all y € 0G . (11.2.4)

The supremum in (11.2.3) is obtained if v = u*(y) where u*(y) is optimal. In
other words,

fly,u*(y) + (L W) (y) =0 forall ye G . (11.2.5)

Proof. The last two statements are easy to prove: Since u* = u*(y) is optimal
we have

Bly) = I (y) = B [ [ 0t s+ 9(Ve) Ky
0

If y € OG then 7¢ = 0 a.s. QY (since OG is regular) and (11.2.4) follows. By
the solution of the Dirichlet-Poisson problem (Theorem 9.3.3)
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(L W)(y) = —f(y,u'(y)  forall ye @,

which is (11.2.5). We proceed to prove (11.2.3). Fix y = (s,z) € G and choose
a Markov control u. Let a < 7 be a bounded stopping time.
Since

Ju(y) = FEY [/fu(yr)dr +g(YTG) : X{Tc<oo}] s
0

we get by the strong Markov property (7.2.5), combined with (7.2.6) and
(9.3.7)

EY[J“(Y,)] = EY _EYQ Ugf“(Yr)dr + g(YTG)X{TG@o}”
- 0

_pv|py [oa ( ]Gf“(Yr)dT + g(Ym)X{m@o}) ‘f“”
- 0

= EY _Ey[/f“(Yr)dT+9(YTG)X{TG<oo}‘faH

= EY /f“ P)dr + g(Yeg ) X(rg <o) —/f“ }

- frone)

[e3

J(y) = Ey[/f“(Yr)dr} + BY[J(Ya)] - (11.2.6)

0

So
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Now let W C G be of the form W = {(r,z) € G; r < t;} where s < t;. Put
a = inf{t > 0;Y; € W}. Suppose an optimal control u*(y) = u*(r,z) exists
and choose

u(r, 2) = v if (r,2z)ew
O\ wr(rz) i (r2) e G\ W
where v € U is arbitrary. Then
B(Yo) = J* (Ya) = J*(Va) (11.2.7)

and therefore, combining (11.2.6) and (11.2.7) we obtain
2(0) = 7'0) = 2| [ 10| + B0 (11.28)
0

Since @ € C?(G) we get by Dynkin’s formula

o

EY[D(Yy)] = P(y) + EY { / (L“gzs)(yr)dr} ,

which substituted in (11.2.8) gives

#0) > £ / Fevar| + o)+ 27| / (L) )ar|

B| [ + @ <o.
0
So N
Ey[g(f”(Yr) + (L'®)(Y,))dr]

< .
Fla] <0 for all such W

Letting t1 | s we obtain, since fV(-) and (LP)(-) are continuous at y, that
f(y) + (L®)(y) < 0, which combined with (11.2.5) gives (11.2.3). That
completes the proof. O

Remark. The HIB (I) equation states that if an optimal control u* exists,
then we know that its value v at the point y is a point v where the function

v— fy) + (L'P)(y); wveU

attains its maximum (and this maximum is 0). Thus the original stochastic
control problem is associated to the easier problem of finding the maximum
of a real function in U C R*. However, the HIJB (I) equation only states that
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it is mecessary that v = u*(y) is the maximum of this function. It is just as
important to know if this is also sufficient: If at each point y we have found
v = up(y) such that f(y) + (LY®)(y) is maximal and this maximum is 0,
will uo(Y) be an optimal control? The next result states that (under some
conditions) this is actually the case:

Theorem 11.2.2 (The HJB (II) equation — a verification theorem)
Let ¢ be a function in C*(G) N C(G) such that, for allv € U,

P+ L) (y) <05 yeG (11.2.9)
with boundary values
tli}ql-lc (Ye) = g(Yrg) - X{‘rc<oo} a.s. QY (11.2.10)

and such that

{67 (Y;); T stopping time, T < 7¢} is uniformly QY-integrable
for all Markov controls u and all y € G . (11.2.11)
Then

o(y) > J“(y) for all Markov controls u and all y € G . (11.2.12)

Moreover, if for each y € G we have found uo(y) such that
FoW(y) + (L9g)(y) = 0 (11.213)
and

{d(Y'°); T stopping time, T < 1¢} is uniformly
QY-integrable for all y € G (11.2.14)

then ug = uo(y) is a Markov control such that

P(y) = J* ()
and hence if uy is admissible then ug must be an optimal control and ¢(y) =
P(y).
Proof. Assume that ¢ satisfies (11.2.9) and (11.2.10) above. Let u be a Markov
control. Since L"%¢ < — f* in G we have by Dynkin’s formula

Tr

EY[¢(Yry)] = o(y) + EY [ / (L”¢)(Yr)dr]

0
< oly) — BV [7f“<mdr}
0
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where
Tr = min{ R, 7¢,inf{t > 0; |Y;| > R}} (11.2.15)

for all R < oo. This gives, by (11.1.4), (11.2.10), (11.2.11) and the Fatou
lemma,
Tr

oy) = Jm EY [O/f“(Yr)dr + ¢(YTR)]

TG

> E”[/f”(lﬁ)errg(Ym)X{m@o}} =J"(y)
0

which proves (11.2.12). If ug is such that (11.2.13) and (11.2.14) hold, then
the calculations above give equality and the proof is complete. a

The HIB equations (I), (IT) provide a nice solution to the stochastic control
problem in the case where only Markov controls are considered. One might
feel that considering only Markov controls is too restrictive, but fortunately
one can always obtain as good performance with a Markov control as with an

arbitrary ft(m)—adapted control, at least if some extra conditions are satisfied:

Theorem 11.2.3 Let

D (y) = sup{J"(y);u = u(Y) Markov control}

and
Do (y) = sup{J“(y); u = u(t,w) ft(m)—adapted control} .

Suppose there exists an optimal Markov control ug = ug(Y) for the Markov
control problem (i.e. Ppr(y) = J*0(y) for all y € G) such that all the boundary
points of G are regular w.r.t. Y"° and that ®pr is a bounded function in

C*(GYNC(G) satisfying
Ey{|gl'>M(Ya)|+/|L“¢M(Yt)|dt} <0 (11.2.16)
0

for all bounded stopping times o < 71¢, all adapted controls u and all y € G.
Then
Dy (y) = Paly) forall ye G .

Proof. Let ¢ be a bounded function in C?(G)NC(G ) satistying (11.2.16) and

fPy)+ (L) (y) <0 forall ye G,veU (11.2.17)
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and
o(y) = 9(y) for all y € 0G . (11.2.18)

Let ui(w) = u(t,w) be an ]—"t(m)—adapted control. Then Y; is an Itd process
given by
dY; = b(Yy, w)dt + o(Ys, uy)dBy

so by Lemma 7.3.2, with T as in (11.2.15),
Tr

Bo(vra)] = o00) + B | [ ()]
0

where
(LH0)9)(y) =
o ¢

= %(y) + ; bl(ya U(t,w))axi (y) + Z @ij (y7 u(t, w)) 6$iaxj (y) ,

i,j=1

with a;; = 1(007);;. Thus by (11.2.17) and (11.2.18) this gives

EY[¢(Yr,)] < ¢(y) — EY [71“(1@#@,&1))6115} :
0

Letting R — oo we obtain
oly) = J"(y) - (11.2.19)

But by Theorem 11.2.1 the function ¢(y) = Par(y) satisfies (11.2.17) and
(11.2.18). So by (11.2.19) we have & s (y) > Po(y) and Theorem 11.2.3 follows.
O

Remark. The theory above also applies to the corresponding minimum prob-
lem
P(y) =inf J*(y) = J* (y) . (11.2.20)

To see the connection we note that
TG
U(y) = —sup{—J"(y)} = —sup{Ey [/ = (Yy)dt — g(Yre) - X{m<oo}]}
0

so —¥ coincides with the solution @ of the problem (11.1.9), but with f re-
placed by — f and g replaced by —g. Using this, we see that the HJB equations
apply to ¥ also but with reverse inequalities. For example, equation (11.2.3)
for @ gets for ¥ the form

jglfj{fv(y) + (L") (y)} =0  forall yeG. (11.2.21)
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We now illustrate the results by some examples:

Example 11.2.4 (The linear stochastic regulator problem)
Suppose that the state X; of the system at time ¢ is given by a linear stochastic
differential equation:

dX: = (He Xt + Myug)dt +00dBy,  t>s; Xs=u (11.2.22)

and the cost is of the form

t1—s

Ju(S,I):ES’x |: /{XtTOtXt + Uthut}dt—FXT

tl—S

Rthfs 5 s§t1 (11223)

where all the coefficients H;, € R"*", M, € R"** 5, € R"*™ (¢, € R"*",
D, € R**F and R € R™*™ are t-continuous and deterministic. We assume that
C; and R are symmetric, nonnegative definite and D, is symmetric, positive
definite, for all ¢. We also assume that ¢; is a deterministic time.

The problem is then to choose the control u = u(t, X;) € R* such that
it minimizes J“(s,x). We may interpret this as follows: The aim is to find a
control u which makes | X;| small fast and such that the energy used
(~ uTDu) is small. The sizes of C; and R reflect the cost of having large
values of | X;|, while the size of D; reflects the cost (energy) of applying large
values of |u|.

In this case the HJB-equation for ¥(s,x) = inf J"(s, 2) becomes

u

0= igf{f”(s, x) + (L?)(s,x)}

o . T - " o
=5 + 113f {x Cix +v' Dgv + Z.Efl(st + Msv)ia_:vi
= 0*w
2 : T
+%ij:1(0'50's )Um} for s < tl (11224)
and
W(t,z) = x' Rx . (11.2.25)

Let us try to find a solution 1 of (11.2.24)—(11.2.25) of the form
Y(t,z) = 2¥ S + ay (11.2.26)

where S(t) = S; € R™*" is symmetric, nonnegative definite, a; € R and both
a; and Sy are continuously differentiable w.r.t. ¢ (and deterministic). In order
to use Theorem 11.2.2 we need to determine S; and a; such that

irgf{f”(t, z)+ (L°Y)(t,z)} =0 for t <1 (11.2.27)
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and
Y(ty,z) =" Ra . (11.2.28)
To obtain (11.2.28) we put
S, =R (11.2.29)
a, =0. (11.2.30)

Using (11.2.26) we get

ot x) + (L") (t,z) = 27 Sjx + a, + 27 Crx + vT Dyw +

+(Hyw + Mp)" (S + ST )+ (0107 )i S (11.2.31)
%,
where S} = %St, a, = %at. The minimum of this expression is obtained when
0 .. . )
() + () =05 =1k
i.e. when
2Dv + 2M ' S;z =0

i.e. when

v=—D; M!Sz . (11.2.32)
We substitute this value of v in (11.2.31) and obtain

[t @) + (L)(t, @) =
= xTSéx + a; +27Cx + xTStMthlDthlMtTStx
+(Hyx — MtDt_lMtTSt:r)T2St:17 + tT(O'O'TS)t
=a27(S| + Cy — S;M;D; ' MF'S, + 2HT S)x + a), + tr(oa’ S); ,

where tr denotes the (matrix) trace. We obtain that this is 0 if we choose S;
such that

S; = —2HTS, + S;M,D;*MTS, —C,; t<t (11.2.33)

and a; such that
a; = —tT(UUTS)t ; t<ti. (11234)

We recognize (11.2.33) as a Riccati type equation from linear filtering theory
(see (6.3.4)). Equation (11.2.33) with boundary condition (11.2.29) determines
Sy uniquely. Combining (11.2.34) with the boundary condition (11.2.30) we

obtain
ty

ay = /tT(O'O'TS)SdS . (11.2.35)

t
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With such a choice of S; and a; we see that (11.2.27) and (11.2.28) hold, so
by Theorem 11.2.2 we conclude that

u*(t,x) = —D;'MISix,  t<t (11.2.36)
is an optimal control and the minimum cost is
ty
(s, z) =l Sex + /tr(aaTS)tdt , s<t. (11.2.37)

This formula shows that the extra cost due to the noise in the system is
given by
t1

as = /tr(aaTS)tdt.
The Separation Principle (see Davis (1977), Davis and Vinter (1985) or Flem-
ing and Rishel (1975)) states that if we had only partial knowledge of the
state X; of the system, i.e. if we only had noisy observations

to our disposal, then the optimal control u*(¢,w) (required to be G;-adapted,
where G; is the o-algebra generated by {Z,;r < t}), would be given by

ut(t,w) = —D; TMT S Xy (w) | (11.2.39)

where )?t is the filtered estimate of X; based on the observations {Z,;r < t},
given by the Kalman-Bucy filter (6.3.3). Comparing with (11.2.36) we see that
the stochastic control problem in this case splits into a linear filtering problem
and a deterministic control problem.

An important field of applications of the stochastic control theory is eco-
nomics and finance. Therefore we illustrate the results above by applying
them to a simple case of optimal portfolio diversification. This problem has
been considered in more general settings by many authors, see for example
Markowitz (1976), Merton (1971), Harrison and Pliska (1981), Aase (1984),
Karatzas, Lehoczky and Shreve (1987) and the survey article Duffie (1994)
and the references therein.

Example 11.2.5 (An optimal portfolio selection problem)

Let X; denote the wealth of a person at time t. Suppose that the person has
the choice of two different investments. The price X;(t) at time ¢ of one of
the assets is assumed to satisfy the equation

dX1 (%)
dt

where W, denotes white noise and a, @ > 0 are constants measuring the
average relative rate of change of X1 (¢) and the size of the noise, respectively.

= Xl(t)[a—i-aWt] (11240)
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As we have discussed earlier we interpret (11.2.40) as the (It6) stochastic
differential equation

dX1(t) = X1 (t)adt + X, (t)adB, . (11.2.41)

This investment is called risky, since a > 0. We assume that the price Xo(t)
of the other asset satisfies a similar equation, but with no noise:

dXo(t) = Xo(t)bdt . (11.2.42)

This investment is called risk free. So it is natural to assume b < a. At each
instant ¢ the person can choose how big fraction u(t) of his wealth he will
invest in the risky asset, thereby investing the fraction 1 — u(¢) in the safe
one. This gives the following stochastic differential equation for the wealth
Zt = Z;U’ :

= Zi(au(t) + b(1 — u(t)))dt + au(t)Z,dBy . (11.2.43)

Suppose that, starting with the wealth Z; = « > 0 at time s, the person
wants to maximize the expected utility of the wealth at some future time
to > s. If we do not allow any borrowing (i.e. require u(t) < 1) and we do
not allow any shortselling (i.e. require u(t) > 0) and we are given a utility
function N:[0,00) — [0,00), N(0) = 0 (usually assumed to be increasing and
concave) the problem is to find @(s, x) and a (Markov) control u* = u*(t, Z;),
0 <wu* <1, such that

&(s,z) = sup{J*(s,z); u Markov control, 0 < u <1} = J" (s, ),
where JU(s, ) = E**[N(Z" )] (11.2.44)
and 7¢ is the first exit time from the region G = {(r, z); r < tg,z > 0}. This is

a performance criterion of the form (11.1.6)/(11.1.8) with f =0 and g = N.
The differential operator L has the form (see (11.2.2))

v _ 09 00 1 5 5 20°¢
(LY9)(t,x) = 5t + z(av + b(1 — v))ax +3a°v7T 902 (11.2.45)
The HJB equation becomes
sup{(L*®)(t,z)} =0, for (t,x) € G ; (11.2.46)

and

®(t,z) = N(z) for t=1ty,  &(t,0)=N(0) for t<ty. (11.2.47)



256 11 Application to Stochastic Control

Therefore, for each (t,z) we try to find the value v = u(t, z) which maximizes
the function

v 0P 0D | 4 4 0D
n(v) =1L @:E—l—x(b—k(a—b)v)%—kﬁa vt o (11.2.48)
Ifo,:.= g—‘f >0 and @,,:= 227425 < 0, the solution is
B _ (a—=D)D,
v=u(t,x) = v (11.2.49)

If we substitute this into the HIB equation (11.2.48) we get the following
nonlinear boundary value problem for & :

— b)2g2
@t—I—bx@m—% =0 fort<to, x>0 (11.2.50)
&(t,x) = N(x) for t=tyor x=0. (11.2.51)

The problem (11.2.50), (11.2.51) is hard to solve for general N. Important
examples of increasing and concave functions are the power functions

N(z)=2x" where 0 < <1 is a constant . (11.2.52)

If we choose such a utility function N, we try to find a solution of (11.2.50),
(11.2.51) of the form

D(t,x) = f(t)x” .
Substituting we obtain

&(t,x) = Moty | (11.2.53)

Where/\:b”y—k;;l{(—l{)j%.

Using (11.2.49) we obtain the optimal control

a—>b
(¢ = — 11.2.54
W) = (11254
If #_bv) € (0,1) this is the solution to the problem, in virtue of Theo-

rem 11.2.2. Note that «* is in fact constant.

Another interesting choice of the utility function is N (z) = log z, called the
Kelly criterion. As noted by Aase (1984) (in a more general setting) we may
in this case obtain the optimal control directly by evaluating E**[log(Xr)]
using Dynkin’s formula:

E**(log(Z7,)] =

TG
=logx + E** [/{au(t, Zy) +b(1 —u(t, Zy)) — $a*u®(t, Zy) }dt

since L¥(logz) = av + b(1 — v) — $a%v?.
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So it is clear that J%(s,x) = E*"[log(Z,.,)] is maximal if we for all ¢, z
choose u(t, z) to have the value of v which maximizes

av +b(1 —v) — La?v?

i.e. we choose

a—>b
2

v=u(t,Zy) = for all t,w . (11.2.55)

So this is the optimal control if the Kelly criterion is used. Similarly, this direct
method also gives the optimal control when N(z) = z" (See Exercise 11.8).

Example 11.2.6 Finally we include an example which shows that even quite
simple — and apparently innocent — stochastic control problems can lead us
beyond the reach of the theory developed in this chapter:

Suppose the system is a 1-dimensional It integral

dX; = dX;' = u(t,w)dBy , t>s Xg=2>0 (11.2.56)
and consider the stochastic control problem

®(t,z) = sup EV*[K (X)), (11.2.57)

where 7¢ is the first exit time from G = {(r,z);r < t1,z > 0} for ¥} =
(s+1t,X.7) and K is a given bounded continuous function.

u=0
|

(tx) /

Intuitively, we can think of the system as the state of a game which behaves
like an “excited” Brownian motion, where we can control the size w of the
excitation at every instant. The purpose of the control is to maximize the
expected payoff K (X, ) of the game at a fixed future time ¢;.

Assuming that @ € C? and that u* exists we get by the HIB (I) equation

2
fgg{%—l—%?ﬁ%}zo for t < t1, P(t1,2) = K(z) . (11.2.58)
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From this we see that we necessarily have

0’® 0’® 0P
— < ¥ = —_— = /N
9z = 0, v o 0 and 5 0 for t<ty, (11.2.59)

where v* is the value of v € R which gives the supremum in (11.2.58). But if
%—f =0, then &(t,x) = &(t1,2) = K (x). However, this cannot possibly be the
solution in general, because we have not assumed that %25 <0 - in fact, K
was not even assumed to be differentiable.

What went wrong? Since the conclusion of the HIB (I) equation was wrong,
the assumptions cannot hold. So either & is not C? or u* does not exist, or
both.

To simplify the problem assume that

2. < <
K(m):{w ; 0<x<1

1 ; z>1.

Then considering the figure above and using some intuition we see that it
is optimal to excite as much as possible if X; is in the strip 0 < = < 1 to
avoid exiting from G in the interval {¢;} x (0, 1). Using that X; is just a time
change of Brownian motion (see Chapter 8) we conclude that this optimal
control leads to a process X* which jumps immediately to the value 1 with
probability x and to the value 0 with probability 1 — z, if the starting point
is € (0,1). If the starting point is = € [1,00) we simply choose our control
to be zero. In other words, heuristically we should have

u*(t,x)—{o(;) i ;5[(1(?’03 (11.2.60)

with corresponding expected payoff

" . v Jx if 0<x<1
¢ (s,x) = E¥*[K(X])] = { L a1 (11.2.61)
Thus we see that our candidate u* for optimal control is not continuous (not
even finite!) and the corresponding optimal process X; is not an Itd diffu-
sion (it is not even continuous). So to handle this case mathematically it is
necessary to enlarge the family of admissible controls (and the family of cor-
responding processes). For example, one can prove an extended version of
Theorem 11.2.2 which allows us to conclude that our choice of ©* above does
indeed give at least as good performance as any other Markov control u and
that ¢* given by (11.2.61) does coincide with the maximal expected payoft @
defined by (11.2.57).

This last example illustrates the importance of the question of existence in
general, both of the optimal control u* and of the corresponding solution X
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of the stochastic differential equation (11.1.1). We briefly outline some results
in this direction:

With certain conditions on b, 0, f, g, 0G and assuming that the set of con-
trol values is compact, one can show, using general results from nonlinear
partial differential equations, that a smooth function ¢ exists such that

sgp{f”(y) +(L"¢)(y)} =0 for ye G

and
o(y) = g(y) for y € 0G .

Then by a measurable selection theorem one can find a (measurable) function
u*(y) such that

) + (L) (y) =0, (11.2.62)

for a.a. y € G w.r.t. Lebesgue measure in R"*1. Even if u* is only known
to be measurable, one can show that the corresponding solution X; = Xt“*
of (11.1.1) exists (see Stroock and Varadhan (1979) for general results in this
direction). Then by inspecting the proof of Theorem 11.2.2 one can see that it
suffices to have (11.2.62) satisfied outside a subset of G with Green measure
0 (see Definition 9.3.4). Under suitable conditions on b and ¢ one can in
fact show that the Green measure is absolutely continuous w.r.t. Lebesgue
measure. Thus by (11.2.62) (and a strengthened Theorem 11.2.2) u* is an
optimal control. We refer the reader to Fleming and Rishel (1975), Bensoussan
and Lions (1978), Dynkin and Yushkevich (1979) and Krylov (1980) for details
and further studies.

11.3 Stochastic control problems with terminal
conditions

In many applications there are constraints on the types of Markov controls u
to be considered, for example in terms of the probabilistic behaviour of Y;* at
the terminal time ¢ = T. Such problems can often be handled by applying a
kind of “Lagrange multiplier” method, which we now describe:

Consider the problem of finding @(y) and u*(y) such that

(y) = sup J*(y) = T (y) (11.3.1)

where

7w = | [ o o) (113.2)
0
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and where the supremum is taken over the space K of all Markov controls
uw:R™! — U c RF such that

EY[M;(Y})] =0, i=1,2,...,1, (11.3.3)
where M = (M, ..., M;):R"! — R! is a given continuous function,
EY[IM(Y;,)]] < o0 for all y,u , (11.3.4)

and we interpret g(Y-,(w)) as 0 if 7¢(w) = oo.
Now we introduce a related, but unconstrained problem as follows:

For each A € R! and each Markov control u define
TG
5 = | [ s g e300 a1
0

where - denotes the inner product in R!. Find @,(y) and u}(y) such
that

Da(y) = sup T} (y) = 13 () (11.3.6)

without terminal conditions.

Theorem 11.3.1 Suppose that we for all A\ € A C R! can find &5 (y) and
u} solving the (unconstrained) stochastic control problem (11.3.5)-(11.3.6).
Moreover, suppose that there exists A\g € A such that

EY[M(Y,")] = 0. (11.3.7)

Then ®(y): = ®x,(y) and u*:= u3  solves the constrained stochastic control
problem (11.83.1)-(11.5.3).

Proof. Let u be a Markov control, A € A. Then by the definition of u} we
have

TG

B | [ 50 o) 3 21v) | = 150
0
> J3(y) = EY Uf“(Y;“)ng(Y;g) + A M(Y;g)} . (11.3.8)
0

In particular, if A = Ay and u € K then

EY[M(Y00)] = 0 = EY[M(Y%)]

TG TG
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and hence by (11.3.8)
g% (y) = J“(y) for all we K.

Since u} € K the proof is complete.

For an application of this result, see Exercise 11.11.

Exercises

11.1. Write down the HJB equation for the problem

U(s,x) = infEW[/e‘“(s“)(e(Xt) + uf)dt

where
dXt:Utdt+dBt 3 Xt,ut,Bt ER,

261

a > 0 is a constant and #:R — R is a given bounded, continuous
function. Show that if ¥ satisfies the conditions of Theorem 11.2.1

and u* exists then o
_ 1 _at
u*(t,r) = —5e* .

ox

11.2.  Consider the stochastic control problem

oo

Wo(s,z) = inf B*7 [/e_ptfo(utaXt)df )

S
where

dXt = ngL = b(ut,Xt)dt + O'(Ut, Xt)dBt
XtERn, utERk, BtERm,

fo is a given bounded continuous real function, p > 0 and the inf is
taken over all time-homogeneous Markov controls u, i.e. controls u of

the form u = u(X}). Prove that
Yy(s,z) = e P¢(x) where £(x) =¥(0,z) .

(Hint: By definition of E®** we have

o [ / e fou(X0), X,)dt] = E / e P fo(u(X3E), X5 )di

S

where E denotes expectation w.r.t. P.)
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11.3. Define
dXt = ’I”’LLtXtdt + O[’U,tXtdBt 3 Xt, U, Bt S R

and

o0

B(s,z) = sup B [ [ e o]

u

where 7, a, p are constants, p > 0 and f is a bounded continuous real
function.

Assume that & satisfies the conditions of Theorem 11.2.1 and that
an optimal Markov control u* exists.

a) Show that

0P 0P 0*®
—pt 1.2,2,.2 _
fgg{e flz) + It —i—rvxax—i—za (2 8:1:2} 0

Deduce that

0P
T <.
Ox? <0

b) Assume that %’? < 0. Prove that

o

r<=
u*(t,x) = ——22
() =

and that

oD\ 9P o\ ?
2 —pt el Ity Bl _
2 (e fo(z) + 815)81:2 r (835) 0.

¢) Assume that ‘2;7“3 = 0. Prove that % =0 and

eiptfo(I) + —=0.

d) Assume that u} = v*(X;) and that b) holds. Prove that &(t, z) =
e Pt¢(z) and

202(fy — pE)E" — ()2 = 0.
(See Exercise 11.2)
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The assumptions in Theorem 11.2.1 often fail (see e.g. Exercise 11.10),
so it is useful to have results in such cases also. For example, if we
define @, as in Theorem 11.2.3 then, without assuming that u* ex-
ists and without smoothness conditions on @, we have the Bellman
principle (compare with (11.2.6)—(11.2.7))

Buly) = sup B [ [ rewar+ e,
0

for all y € G and all stopping times « < 7¢, the sup being taken over

all ]—"t(m)—adapted controls u. (See Krylov (1980, Th. 6, p. 150).)
Deduce that if &, € C?(G) then

[P(y) + L'®,(y) <0  forall ye G,veU.

Assume that f = 0 in (11.1.8) and that an optimal Markov control
u* exists. Prove that the function @ is superharmonic in G w.r.t. the
process Y, for any Markov control w. (Hint: See (11.2.6)—(11.2.7).)

Let X; denote your wealth at time ¢. Suppose that at any time ¢ you
have a choice between two investments:

1) A risky investment where the unit price X;(t) = X1 (t,w) satisfies
the equation

Xm(t) = ale(t)dt + O'le(t)dBt .
2) A safe investment where the unit price Xo(t) = Xo(t,w) satisfies
dXo(t) = aoXo(t)dt + oo Xo(t)dB,
where a;, 0; are constants such that
ay >ag, O01>00

and By, B, are independent 1-dimensional Brownian motions.

a) Let u(t,w) denote the fraction of the fortune Z;(w) which is placed
in the riskier investment at time ¢. Show that

dZ, = dZ™ = Zy(ayu(t) + ao(1 — u(t)))dt
+Zi(o1u(t)dBy + o0(1 — u(t))dBy) .

b) Assuming that u is a Markov control, u = u(t, Z}*), find the gen-
erator A" of (¢, Z}).

¢) Write down the HJB equation for the stochastic control problem

(s, w) = sup B {(Z@)v}

7
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where 7 = min(t; — s,70), 70 = inf{t > 0; X; = 0} and ¢; is a
given future time (constant), v € (0,1) is a constant.
d) Find the optimal control u* for the problem in c).

11.7.* Consider the stochastic control problem

(system) dX; = au(t)dt + u(t)dBy ; Xo=x>0

where B, € R, u(t) € R and a € R is a given constant, and

(performance) (s, x) = sup B¥7[(X5)"] ,

u

where 0 < v < 1 is constant and
T=inf{t >0, X, =0} A (T —3s),

T being a given future time (constant).
Show that this problem has the optimal control

ax
11—~

u*(t,x) =
with corresponding optimal performance

0005) = 7o (T

11.8. Use Dynkin’s formula to prove directly that

a—>b
*(t,2) = min [ ———2— 1
u*(t, ) m1n<a2(1_7) , )
is the optimal control for the problem in Example 11.2.5, with utility
function N(x) = 27. (Hint: See the argument leading to (11.2.55).)

11.9. In Benes (1974) the following stochastic control problem is consid-

ered: -
W (s, x) _me”[ / ep(”t)det} ,
0
where
dX; = dX\") = au,dt +dB,; X, B,€R

and a, p are (known) constants, p > 0. Here the controls u are re-
stricted to take values in U = [—1, 1].
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a) Show that the HJB equation for this problem is

ov ov o*w
inf -ps2 | ZF Z 4122 U _0.
vl 1] {e T s T e T2 83:2}

b) If ¥ € C? and u* exists, show that
u*(x) = —sign(ax) ,

where

o, [T 230
=11 ifz<o0.

(Hint: Explain why z > 0 = g—g >0and z < 0= g—i <0.)

11.10. Let

folz) = 2?2 for0<z<1
A7 Vv forx>1

and put

70

Tsi) = 5| [ e foxiyie| - @(s,0) =sup (5.0
0

u

where
dX# = utdBt ] t 2 0

with control values u; € R, B; € R and

7o = inf{t > 0; X' <0} .

a) Define
1 ~
o(s,x) = —e P f(x) for x>0,s€R
P
where
’\(), T for0<z<1
=) = Ve forz>1.
Prove that

J(s,x) < (s, x)

for all s,z and all (finite) Markov controls w.
(Hint: Put ¢1(s,z) = %e"’sx for all s,z and ¢o(s,z) = %e_ps\/f
for all s,z. Then

J(s,2) < ¢i(s, x) for i=1,2

by Theorem 11.2.2.)
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b) Show that
D(s,x) = é(s,x) .
(Hint: Consider J“*(s,z), where

() = k for0<z<1
Y70 fora>1

and let k — 00).
Thus u* does not exist and @ is not a C? function. Hence both
conditions for the HIJB (I) equation fail in this case.

11.11.* Consider a 1-dimensional version of the stochastic linear regulator

problem of Example 11.2.4:

tl—S
(s, x) = meEw{ / (X% + 6u?)dr (11.3.9)
ue
0
where
dX} = udt + odBy for t >0, Xg=2x,

ut, By € R, 0,6 and t; constants, 8 > 0, t; > 0. The infimum is taken
over the space K of all Markov controls u satisfying

Es,x [(Xu

L) =m where m is a constant . (11.3.10)

Solve this problem by using Theorem 11.3.1.
(Hint: Solve for each A € R the unconstrained problem

t1—s
Wy (s,z) = inf E>* [ / ((X[)? 4 Oul)dr + N(X; _,)?
with optimal control u}. Then try to find Ag such that

B [(X020)?] = m? )

11.12.* Solve the stochastic control problem

W(s,z) = inf J%(s,z) = J* (s, z)
where

J( Ef[ / P (X2 4 gu?)dt
0

and
dXt = ’U,tdt + UdBt N

with u;, By € R and 0 € R, p > 0, 6 > 0 are constants. (Hint:
Try ¥(s,z) = e P*(ax® + b) for suitable constants a,b and apply
Theorem 11.2.2.)
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11.13.* Consider the stochastic control problem

T

&(s,x) = sup B> [/ep(s+t)ut dt]
“ 0

where the (1-dimensional) system X, is given by
dXt = dX,;U’ = (1 — ’U,t)dt + O'dBt 5

and p > 0, o # 0 are constants. The control u; = u;(w) can assume
any value in U = [0, 1] and

T =inf{t > 0; X} <0} (the time of bankruptcy) .
Show that if p > ;2; then the optimal control is
uy =1 for all ¢

and the corresponding value function is

1 2
@(s,x)_e’m;<1—exp<— —2x>>, x>0.
o

11.14. The following problem is an infinite horizon version of Example
11.2.5, with consumption added.

Suppose we have a market with two investment possibilities:
(i) a bond/bank account, where the price Xo(t) at time ¢ is given
by
dXo(t) = p Xo(t)dt ; Xo(0) =1, p >0 constant
(ii) a stock, where the price X;(¢) at time ¢ is given by

Xm(t):/LXl(t)dt'i‘O'Xl(t)dB(t); X1(0)2$>0,

where p, 0 are constants, o # 0.

Let Yy(¢), Y1(¢) denote the amount of money that an agent at time
t has invested in the bonds and in the stocks, respectively. Assume
that the agent at any time can choose her consumption rate c(t) =
¢(t,w) > 0 and the ratio

Yi(t)
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of her total wealth invested in the stocks. We assume that c(¢) and
u(t) are Fi-adapted processes and that the dynamics of the total
wealth Z(t) = Y1 (t) + Ya(t) is given by

dZ(t) = Z () [{p(1 — u(t)) + pu(t)}dt + o u(t)dB(t)] —c(t)dt;
Z(0)=2z>0.
Consider the problem to find &, ¢* and u* such that

B(s,) = sup S (s, 2) = T (s,2)

c,u

where
T0

V(¢
J(s,2) = E5F |:/66(S+t) o) )dt}
Y
0
where ¢ > 0 and v € (0,1) are constants and
7o = inf{t > 0; Z(t) <0} < oo (time of bankruptcy)
Use Theorem 11.2.2 to prove that, under some conditions,

B(s,2) = Ke 227

for a certain value of the constant K. Find this value of K and hence
find the optimal consumption rate ¢*(¢) and the optimal portfolio
u*(t).
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Application to Mathematical Finance

12.1 Market, portfolio and arbitrage

In this chapter we describe how the concepts, methods and results in the
previous chapters can be applied to give a rigorous mathematical model of
finance. We will concentrate on the most fundamental issues and those topics
which are most closely related to the theory in this book. We emphasize that
this chapter only intends to give a brief introduction to this exciting subject,
which has developed very fast during the last years and shows no signs of
slowing down. For a more comprehensive treatment see for example Benth
(2004), Bingham and Kiesel (1998), Elliott and Kopp (2005), Duffie (1996),
Karatzas (1997), Karatzas and Shreve (1998), Shreve (2004), Lamberton and
Lapeyre (1996), Musiela and Rutkowski (1997), Kallianpur and Karandikar
(2000), Merton (1990), Shiryaev (1999) and the references therein.

First we give the mathematical definitions of some fundamental finance
concepts. We point out that other mathematical models are also possible and
in fact actively investigated. Other models include more general (possibly
discontinuous) semimartingales (see e.g. Barndorff-Nielsen (1998), Eberlein
and Keller (1995), Schoutens (2003), Cont and Tankov (2004), @ksendal and
Sulem (2007)) and even non-semimartingale models. See e.g. Cutland, Kopp
and Willinger (1995), Lin (1995), Rogers (1997), Hu and (@ksendal (2003),
Elliott and Van der Hoek (2003), Biagini and @ksendal (2005), @ksendal
(2005), Di Nunno et al. (2006), Biagini et al. (2007).

Definition 12.1.1 a) A market is an f,f(m)—adapted (n + 1)-dimensional Ito
process X (t) = (Xo(t), X1(t),..., Xn(t)); 0 <t < T which we will assume
has the form

dXo(t) = p(t,w)Xo()dt ;  Xo(0) =1 (12.1.1)

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6_12, © Springer-Verlag Berlin Heidelberg 2013
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and

dXi(t) = pi(t,w)dt + Y 0ij(t,w)dB; (t) (12.1.2)
j=1
= /Li(t, w)dt + Ui(t, w)dB(t) ; Xl(O) =x;,
where o; is row number i of the n x m matriz [o;;]; 1 <i<née&N.

b) The market {X (t)}.cp0,) s called normalized if Xo(t) = 1.
c) A portfolio in the market {X (t)}+cjo,7) 9 an (n + 1)-dimensional (t,w)-

measurable and ffm)—adapted stochastic process
O(t,w) = (O (t,w), 01 (t,w),...,0H(t,w)); 0<t<T. (12.1.3)

d) The value at time t of a portfolio 0(t) is defined by
V(t,w)=V0(t,w)=0() - X(t) = ZGi(t)Xi(t) (12.1.4)

where - denotes inner product in R"t1,

e) The portfolio 0(t) is called self-financing if

T n m n
/ |60(s) (s)—l—z Z {Z s)oij(s )}2}ds<oo a.s.
) =1

- - (12.1.5)

and
dV(t) =0(t) - dX(t) (12.1.6)
V(t)=V(0)+ /9(5) -dX(s) for t€10,T]. (12.1.7)

0

Comments to Definition 12.1.1.

a) We think of X;(t) = X;(t,w) as the price of security/asset number i at
time ¢. The assets number 1,...,n are called risky because of the presence of
their diffusion terms. They can for example represent stock investments. The
asset number 0 is called risk free because of the absence of a diffusion term
(although p(t,w) may depend on w). This asset can for example represent a
bank investment. For simplicity we will assume that p(t,w) is bounded.

b) Note that we can always make the market normalized by defining
Xi(t) = Xo(t) 1 X4(t); 1<i<n. (12.1.8)

The market
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X(t) = (1, X1(t),..., Xn(t)

is called the normalization of X (t).

Thus normalization corresponds to regarding the price X(t) of the safe
investment as the unit of price (the numeraire) and computing the other prices
in terms of this unit. Since

Xolt) = exp / plov)ds)

t

E(t):= Xy H(t) = exp (— /p(s,w)ds) >0 foralltel0,T] (12.1.9)
0

we have

Xm(t):d(g(t)Xl(t))Zf(t)[(/l,l—le)dt—f—Ude(t)], 1<i<n (12110)

or

dX (t)=&E)[dX () —p(t) X (t)dt] . (12.1.11)
¢) The components 0y(t,w), ..., 0,(t,w) represent the number of units of the
securities number 0, ..., n, respectively, which an investor holds at time t.

d) This is simply the total value of all investments held at time ¢.

e) Note that condition (12.1.5) is required to make (12.1.7) well-defined. See
Definition 3.3.2.

This part e) of Definition 12.1.1 represents a subtle point in the mathe-
matical model. According to It6’s formula the equation (12.1.4) would lead
to

dV(t) =6(t) - dX () + X (t) - dO(t) + dO(t) - dX (1)

if 0(t) was also an Itd process. However, the requirement (12.1.6) stems from
the corresponding discrete time model: If investments 6(t;) are made at dis-
crete times ¢ = t, then the increase in the wealth AV (¢;) = V(tky1) — V(¢k)
should be given by

AV(tk) = H(tk) . AX(tk) (12.1.12)

where AX (t;) = X (tg+1) — X (tx) is the change in prices, provided that no
money is brought in or taken out from the system i.e. provided the portfolio
is self-financing. If we consider our continuous time model as a limit of the
discrete time case as Aty = tr1 — ti goes to 0, then (12.1.6) (with the Ito
interpretation of the integral) follows from (12.1.12).

f) Note that if 6 is self-financing for X (¢) and

V') =0(t) - X(t) = £V () (12.1.13)
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is the value process of the normalized market, then by It6’s formula and
(12.1.11) we have

E()AV(t) + VO(t)de
(1)
(t)
(t)d

t

V() (t)
0(t)dX (1) — p(t)(H)V ()t
O(t)[dX (t) — p(t) X (t)d]

(t) . (12.1.14)

§
£(6)0(t)
0(t)dX

Hence 6 is also self-financing for the normalized market.

Remark. Note that by combining (12.1.4) and (12.1.6) we get

n

eo(t)XQ (t) =+ Z 0; (t)Xi (t)

=1
=V%0) + s)dXo(s) + zn: 0;(s)dX;(s) . (12.1.15)
O/ 1_1/

Assume that 6y(t) is an Ité process. Then, if we put

Yo(t) = 0o(t) Xo(t)

we get
dYo(t) = p(t)Yo(t)dt + dA(t) ,
where .
Ay = (/91-(5)61)(1-(5) - Hi(t)Xl-(t)> . (12.1.16)
=1 0

This equation has the solution

E(B)Ya(t) = 0p(0) + / £(s)dA(s)
0

olt) = 60(0) + / £(s)dA(s)
0

Using integration by parts we may rewrite this as

Bo(t) = B0 (0) + £()A(t) — A(0) / As)de (s)
0

or
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0o(t) = VO (0) + £(t)A(t) + /p(s)A(s){(s)ds . (12.1.17)
0

This argument goes both ways, in the sense that if we define 0y(t) by (12.1.17)
(which is an It process), then (12.1.15) holds.

Therefore, if 6,(¢),...,0,(t) are chosen, we can always make the
portfolio 6(t) = (0o(t),01(t),...,0,(t)) self-financing by choosing 60y(t)
according to (12.1.17). Moreover, we are free to choose the initial
value V?(0) of the portfolio.

We now make the following definition

Definition 12.1.2 A portfolio 6(t) which satisfies (12.1.5) and which is self-
financing is called admissible if the corresponding value process VO(t) is (t,w)
a.s. lower bounded, i.e. there exists K = K(0) < oo such that

VOt,w) > -K for a.a. (t,w) € [0,T] x 2. (12.1.18)

This is the analogue of a tame portfolio in the context of Karatzas (1996).
The restriction (12.1.18) reflects a natural condition in real life finance: There
must be a limit to how much debt the creditors can tolerate. See Exam-
ple 12.1.4.

Definition 12.1.3 An admissible portfolio 6(t) is called an arbitrage (in
the market {Xi}iepo,11) if the corresponding value process V(t) satisfies
V?(0) =0 and

VUT)>0 as.and P[VY(T)>0]>0.

In other words, 6(t) is an arbitrage if it gives an increase in the value from
time t = 0 to time ¢t = T a.s., and a strictly positive increase with positive
probability. So 6(t) generates a profit without any risk of losing money.

Intuitively, the existence of an arbitrage is a sign of lack of equilibrium
in the market: No real market equilibrium can exist in the long run if there
are arbitrages there. Therefore it is important to be able to determine if a
given market allows an arbitrage or not. Not surprisingly, this question turns
out to be closely related to what conditions we pose on the portfolios that
should be allowed to use. We have defined our admissible portfolios in Defini-
tion 12.1.2 above, where condition (12.1.18) was motivated from a modelling
point of view. One could also obtain a mathematically sensible theory with
other conditions instead, for example with the L?-conditions

EQ[/Tiwi(t)oi(t)Pdt} < o0 (12.1.19)
0

=1

where @ is the probability measure defined in Lemma 12.2.3.
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In any case, some additional conditions are required on the self-financial
portfolios: If we only require the portfolio to be self-financing (and satisfying
(12.1.5)) we can generate virtually any final value V(T), as the next example
illustrates:

Example 12.1.4 Consider the following market
dXo(t) =0, dXi1(t) =dB(t), 0<t<T=1.
Let

V1—s
By Corollary 8.5.5 there exists a Brownian motion B(t) such that

Y(t) = B(B),

t
ds 1
fr— = < .
B /1_5 1n(1—t) for 0<t<1
0

Let M < oo be a given constant and define

t
Y(t)z/dB(S) for 0<t<1.
0

where

Ti=Tar: = inf{t > 0; E(t) = M}

and
ar=ap:=inf{t > 0;Y () =M} .

Then

T <oo as. (Exercise 7.4a))
and )

T_1n< ), so a<1a.s.

11—«

Define

B \/% f0r0§t<04
01(t) =
0 for a<t<1

and choose y(t) according to (12.1.17) and such that V(0) = 0. Then 6(t) =
(00(t),01(t)) is self-financing and the corresponding value process is given by

tAa
dB(s)
V() = =Y ({Aa) for 0<t<1.
1—
) V1i—s

In particular,
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so this portfolio generates the terminal wealth M a.s. although the initial
wealth is 0. In this case condition (12.1.5) reduces to

03 (s)ds < 0o a.s.

o _

Now
«

1
ds 1
2 _ _ -
/91(s)d5—/1_S—ln(1_a>—7'<oo a.s.
0 0

o (12.1.5) holds. But 8(t) is not admissible, because V(t) = Y(t A a) =
B(In(1—)) is not (¢,w)-a.s. lower bounded for (t,w) € [0,1] x £2. Note that
6(t) does not satisfy (12.1.19) either, because in this case @ = P and

E[/lef(s)ds] = E[1] = o

(Exercise 7.4b).

This example illustrates that with portfolios only required to be self-
financing and satisfy (12.1.5) one can generate virtually any terminal value
V(T,w) from V(0) = 0, even when the risky price process X;(t) is Brow-
nian motion. This clearly contradicts the real life situation in finance, so a
realistic mathematical model must put stronger restrictions than (12.1.5) on
the portfolios allowed. One such natural restriction is (12.1.18), as we have
adopted.

To emphasize the phenomenon illustrated by this example, we state the
following striking result, which is due to Dudley (1977):

Theorem 12.1.5 Let F' be an f}m)—measumble random variable and let B(t)
be m-dimensional Brownian motion. Then there exists ¢ € W™ such that

T
/qs (t,w)dB(t (12.1.20)
0

Note that ¢ is not unique. See Exercise 3.4.22 in Karatzas and Shreve
(1991). See also Exercise 12.4.
This implies that for any constant z there exists ¢ € W™ such that

T
=z+/¢tde
0

Thus, if we let m = n and interpret Bi(t) = X1(¢),...,Bn(t) = X,(t) as
prices, and put Xo(t) = 1, this means that we can, with any initial fortune
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z, generate any ]—'}m)—measurable final value F = V(T), as long as we are
allowed to choose the portfolio ¢ freely from W™. This again underlines the
need for some extra restriction on the family of portfolios allowed, like condi-
tion (12.1.18).

How can we decide if a given market {X (¢)}ic[o,r] allows an arbitrage or
not? The following simple result is useful:

Lemma 12.1.6 Suppose there ezists a measure Q on f:(pm) such that P ~ @Q
and such that the normalized price process { X (t)}+ejo,r] is a local martingale
w.r.t. Q. Then the market { X (t)}iep0,m) has no arbitrage.

Proof. Suppose §(t) is an arbitrage for {X(t)}icjo,r)- Let Ve(t) be the cor-
responding value process for the normalized market with 79(0) = 0. Then
Ve(t) is a lower bounded local martingale w.r.t. @, by (12.1.14). Therefore
Ve(t) is a supermartingale w.r.t. (), by Exercise 7.12. Hence

Eo[V' (1) < VP (0) =0. (12.1.21)

But since V' (T,w) > 0 a.s. P we have V' (T,w) > 0 a.s. Q (because Q < P)

and since P[V (T") > 0] > 0 we have Q[VH(T) > 0] > 0 (because P <« Q).
This implies that

Eo[V'(T)] >0,

which contradicts (12.1.21). Hence arbitrages do not exist for the normalized
price process { X (t)}. It follows that { X (¢)} has no arbitrage. (Exercise 12.1).
O

Definition 12.1.7 A measure Q ~ P such that the normalized process
{X () }iepo,m is a (local) martingale w.r.t. Q is called an equivalent (local)
martingale measure.

Thus Lemma 12.1.6 states that if there exists an equivalent local martin-
gale measure then the market has no arbitrage. In fact, then the market also
satisfies the stronger condition “no free lunch with vanishing risk” (NFLVR).
Conversely, if the market satisfies the NFLVR condition, then there exists
an equivalent martingale measure. See Delbaen and Schachermayer (1994),
(1995), (1997), Levental and Skorohod (1995) and the references therein. Here
we will settle with a weaker result, which nevertheless is good enough for many
applications:

Theorem 12.1.8 a) Suppose there exists a process u(t,w) € V™(0,T) such
that, with X (t,w) = (X1(t,w), ..., Xn(t,w)),

o(t, w)u(t,w) = p(t,w) — p(t,w) X (t,w) for a.a. (t,w)  (12.1.22)
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and such that
T
E{exp (% /u%t,w)dt)} <00, (12.1.23)
0

Then the market {X (t)}ici0,7) has no arbitrage.

b) (Karatzas (1997), Th. 0.2.4)
Conversely, if the market {X (t)}+cjo,1) has no arbitrage, then there exists

an ft(m)—adapted, (t,w)-measurable process u(t,w) such that
o(t,w)u(t,w) = p(t,w) — p(t,w) X (t,w)
for a.a. (t,w).

Proof. a) We may assume that {X(¢)} is normalized, i.e. that p = 0 (Exercise
12.1). Define the measure Q = @, on f}m) by

dQ(w) = exp ( - ]u(t,w)dB(t) - %]u%t,w)dt) dP(w) . (12.1.24)
0 0

Then @ ~ P and by the Girsanov theorem II (Theorem 8.6.6) the process

t

Bt):= /u(s,w)ds—i—B(t) (12.1.25)
0

is a Q-Brownian motion and in terms of B(t) we have
dX;(t) = pidt + 0;dB(t) = 0;dB(t);  1<i<n.

Hence X(t) is a local @Q-martingale and the conclusion follows from Lemma
12.1.6.

b) Conversely, assume that the market has no arbitrage and is normalized.
For t € [0,T], w € £2 let

F; = {w; the equation (12.1.22) has no solution}
= {w; u(t,w) does not belong to the linear span of the columns
of o(t,w)}
= {w; Jv = v(t,w) with o7 (t,w)v(t,w) = 0 and
v(t,w) - p(t,w) #0}.

Define

Bi(t.w) = {sign(v(t,w) -t w))vi(t,w) for w e F,

0 for w¢ Fy
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for 1<i<n and 6(t,w) according to (12.1.17) and such that V¢(0) =0. Since
o(t,w), u(t,w) are ft(m)-adapted and (t,w)-measurable, it follows that we

can choose 0(t,w) to be ft(m)-adapted and (¢, w)-measurable also. Moreover,
0(t,w) is self-financing and it generates the following terminal value

T'ﬂ
:/ZHstdX
0

i=1

T m n
Xr, (w)|v(s,w) - u(s,w)|ds + (s,w)oij(s,w) |dB;(s)
- f (3 )
- / X, (@)u(s,0) - u(s,0)|ds
0
T
—i—/sign(v(s,w) (s, W)X, (w)o T (s, w)v(s,w)dB(s)

0
= /XFS (W)|v(s,w) - u(s,w)lds >0 a.s. .

Since the market has no arbitrage we must have that

Xp,(w) =0 for a.a. (t,w)
i.e. that (12.1.22) has a solution for a.a. (t,w). O
Example 12.1.9 a) Consider the price process X (t) given by

dXo(t) =0, dXy(t)=2dt+dBy(t), dXa(t) = —dt+dBy(t) + dBa(t) .

(3], [t

and the system ou = p has the unique solution

== 15

From Theorem 12.1.8a) we conclude that X (¢) has no arbitrage.

In this case we have

b) Next, consider the price process Y (t) given by

dYo(t) =0, dYi(t) = 2dt + dBy(t) + dBs(t) ,
dYa(t) = —dt — dBy(t) — dBa(t) .
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Here the system of equations ocu = p gets the form

11 up | |2

—1-1]|u| |-1
which has no solutions. So the market has an arbitrage, according to Theo-
rem 12.1.8 b). Indeed, if we choose

o(t) = (GO(t)v L 1)

we get

VUT) =V?(0) + [ 2dt + dBy(t) + dBa(t) — dt — dBi(t) — dBa(t)

N et~

=V%0) +

In particular, if we choose 6y (t) according to (12.1.17) and such that
V?(0) = 0 then 6 will be an arbitrage.

12.2 Attainability and Completeness

We start this section by stating without proof the following useful result,
which is a special case of Proposition 17.1 in Yor (1997):

Lemma 12.2.1 Suppose a process u(t,w) € V™(0,T)satisfies the condition

T
E[exp (%O/U2(S,w)ds>] <oo. (12.2.1)

Define the measure Q = Q,, on f:(pm) by

(12.2.2)

U
O
—~

&
~—

|

@

e
k=)

7N
I
O\’ﬂ
<
—~
“PF
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~—~
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oS
—~
=

I
[N
O\H
<
[
—~
“PF

&
~—~

U

~

N———

U

)
—~
~

B(t):= /u(s,w)ds + B(t) (12.2.3)
0
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8 an ]—'t(m)-martmgale (and hence an ]—'t(m)-Browman motion) w.r.t. QQ and
any F € L? (f:(pm), Q) has a unique representation

T
F(w) = Eg[F] +/¢(t,w)d§(t) : (12.2.4)
0

where ¢(t,w) is an .ﬂ(m)—adapted, (t,w)-measurable R™-valued process such
that

EQ[/T¢2(t,w)dt} <o00. (12.2.5)
0

Remark. a) Note that the filtration {]?t(m)} generated by {B(t)} is con-

tained in {F™} (by (12.2.3)), but not necessarily equal to {F™}. There-
fore the representation (12.2.4) is not a consequence of the Itd representation
theorem (Theorem 4.3.3) or the Dudley theorem (Theorem 12.1.5), which in

this setting would require that F' be _%:(Fm)—measurable.

b) To prove that f?(t) is an ]—'t(m)—martingale w.r.t @, we apply Itd’s formula
to the process

where
2(0) = exo ( - / u(s,w)dB(s) - § / ls)is)

and use the Bayes formula, Lemma 8.6.2. The details are left to the reader.
(Exercise 12.5.)

Next we make the following simple, but useful observation:

Lemma 12.2.2 Let X (t) = £(t)X (t) be the normalized price process, as in
(12.1.8)—(12.1.11). Suppose 0(t) is an admissible portfolio for the market
{X(t)} with value process

VOt)=6(t)- X(t). (12.2.6)

Then 6(t) is also an admissible portfolio for the normalized market {X(t)}
with value process

V)= 00t) - X(t) = ()VO (%) (12.2.7)
and vice versa.
In other words,
VO(t) =V9(0) + f@(s)dX(s) . 0<t<T (12.2.8)
0
EHVIt) =V9(0) + fto(s)dY(s) ;0<t<T (12.2.9)
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Proof. Note that v’ (t) is lower bounded if and only if V?(#) is lower bounded
(since p(t) is bounded). Consider first the market consisting of the price pro-

cess X (t). Let 6(t) be an admissible portfolio for this market with value process

V(t). Then
0

V() =0(t) - X(t) =)V (t) (12.2.10)
and since 6(t) is self-financing for the market {X(¢)} we have, by (12.1.14),
dV°(t) = 0(t)dX (t) . (12.2.11)
Hence 6(t) is also admissible for {X(¢)} and Ve(t) = V%0) + j@(s)dY(s),
which shows that (12.2.8) implies (12.2.9). ’
The argument goes both ways, so the lemma is proved. a

Before we proceed we note the following useful result:
Lemma 12.2.3 Suppose there ezists an m-dimensional process u(t,w) €
V™(0,T) such that, with X (t,w) = (X1(t,w), ..., X, (t,w)),
o(t,wult,w) = p(t,w) — p(t,w) X (t,w) for a.a. (t,w) (12.2.12)

and

E[exp (%O/TUQ(S,W)C[S)} <0 (12.2.13)

Define the measure Q = Q, and the process B(t) as in (12.2.2), (12.2.3),
respectively. Then B is a Brownian motion w.r.t. Q and in terms of B we
have the following representation of the normalized market X (t) = £(¢t) X (¢) :

dXo(t) =0 (12.2.14)

dX(t) = E()o;(H)dB(t); 1<i<n. (12.2.15)

T

In particular, if [ Eql&?(t)o2(t)]dt < oo, then Q is an equivalent martingale
0

measure (Definition 12.1.7).

In any case the normalized value process Ve(t) of an admissible portfolio
0 is a local Q-martingale given by

av°(t) = €(t) > " 0:(t)oi(H)dB(t) = E(L)O(t)o(t)dB(t) | (12.2.16)

=1

where B(t) = (01(1),...,0,(t)) € RIX™,
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Proof. The first statement follows from the Girsanov theorem. To prove the
representation (12.2.15) we compute

Xi(t) = d(E(H) Xi (1)) = £(1)dX (1) + X, (t)dE(t)

O[(ui(t) = p(£) Xi(t))dt + 03 (t)dB(t)]

(6)[(i (1) = p()Xi(8))dt + 03(8) (dB (1) — wi(t)di)]
(t)ori(t)dB(t) .

3
§
3

S

In particular, if [ Eg[¢%(t)o2(t)]dt < oo, then X;(t) is a martingale w.r.t. Q
0

by Corollary 3.2.6.
Finally, the representation (12.2.16) follows from (12.2.11) and (12.2.15).
O

Note. From now on we assume that there exists a (not necessarily
unique) process u(t,w) € V™(0,T) satisfying (12.2.12) and (12.2.13)
and we let Q = Q, and B be as in (12.2.2), (12.2.3), as described
in Lemma 12.2.3. In particular, by Theorem 12.1.8 this guarantees
that the market {X(t)}:c[o,7] has no arbitrage.

Definition 12.2.4

a) A (European) contingent T-claim (or just a T-claim or claim) is a lower
bounded f;m)—measumble random variable F(w) € L*(Q).

b) We say that the claim F(w) is attainable (in the market {X (t)}iep0,17) if
there exists an admissible portfolio 0(t) and a real number z such that

Fw)=VX(T):=z+ [ 6)dX(t) a.s.

St~

and such that

t n

V.t)==z2 —i—/f(s) Z@i(s)m(s)dé(s) i 0<t<T is a @-martingale .

0 i=1

If such a 0(t) exists, we call it a replicating or hedging portfolio for F.
Note that we necessarily have z = Eq[F¢(T))].

c) The market { X (t)}icjo,1) is called complete if every T-claim is attainable.

In other words, a claim F(w) is attainable if there exists a real number z
such that if we start with z as our initial fortune we can find an admissible
portfolio 6(¢) which generates a value V/(T) at time T which a.s. equals F:
VAT, w) = F(w) for a.a. w .

z
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—0
In addition we require that the corresponding normalized value process V' (),
which has the representation (12.2.16), is a martingale and not just a local
martingale w.r.t. Q.

Remark. If we drop the martingale condition in Definition 12.2.4b) then the
replicating portfolio 6 need not be unique. See Exercise 12.4.

What claims are attainable? Which markets are complete? These are im-
portant, but difficult questions in general. We will give some partial answers.
We are now ready for the main result of this section:

Theorem 12.2.5 The market {X(t)} is complete if and only if o(t,w) has

a left inverse A(t,w) for a.a. (t,w), i.e. there exists an ft(m)

valued process A(t,w) € R™*™ such that

-adapted matrix

Alt,w)o(t,w) = Iy, for a.a. (t,w) . (12.2.17)

Remark. Note that the property (12.2.17) is equivalent to the property

rank o(t,w) =m for a.a. (t,w) . (12.2.18)

Proof of Theorem 12.2.5. (i) Assume that (12.2.17) hold. Let Q and B be as
in (12.2.2), (12.2.3). Let F be a T-claim. We want to prove that there exists
an admissible portfolio 6(t) = (0y(t), ..., 0,(t)) and a real number z such that
if we put

V"(t):z+/9(s)dX(s); 0<t<T
0

By Lemma 12.2.1 we have a unique representation
T T

§(T)F(w) = EQl¢(T)F +/¢(t,w)d§(t) = EQl§(T)F] +/Z¢j (t,w)dB;(t)
0 o J=t1

for some ¢(t,w) = (¢1(t,w),...,dm(t,w)) € R™. Hence we put

z = Eq[¢(T)F]
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~

and we choose (t) = (01(t),...,0,(t)) such that

n

§1)Y 0:i(t)oi;(t) =¢;(t); 1<j<m

i.e. such that
EBOt)o(t) = 6(t) .

-~

By (12.2.17) this equation in §(¢) has the solution
0(t,w) = Xo(t)(t,w) A(t,w) .
By choosing 6y according to (12.1.17) the portfolio becomes self-financing. We
can also choose V?(0) = z. Moreover, since &(t)VI(t) = z + j@(s)df(s) =
0
¢

z+ [ ¢(s)dB(s) is a Q-martingale, we get the useful formula
0

EVE(t) = Eole(T)V(T)|F™) = Eqle(T)FIF™), (12.2.19)

where ]?t(m) is the o-algebra generated by B(s); s < t. In particular, V2 (t) is
lower bounded. Hence the market {X (¢)} is complete.

(ii) Conversely, assume that {X(¢)} is complete. Then {X(¢)} is complete, so
we may assume that p = 0. The calculation in part a) shows that the value pro-
cess V7 (t) generated by an admissible portfolio 8(t) = (6o(t),01(t),. .., 0. (1))
with V2(0) = z is

t m n t
V() = z—l—/z <Zoiaij>d§j :z+/§ad§, (12.2.20)
o J=1 ti=l 0

~

where 0(t) = (01(t), ..., 0.(1)).
Since {X(t)} is complete we can hedge any T-claim. Choose an ftm)—

T
adapted process ¢(t,w) € R™ such that Eg[[ ¢?(t,w)dt] < oo and define
0
T ~
F(w):= [¢(t,w)dB(t). Then Eg[F?] < oo so by completeness there exists
0

for an admissible portfolio § = (90,5) such that VO(t) = fodB is a Q-

o o

martingale and

0o dB .

g
£
Il
<
G
Il
o\)ﬂ
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But then .

Eg[F | F'™] = [ ¢dB
/

a.s. for all ¢t € [0, 7], where j-:t(m) is the o-algebra generated by B(s); s < t.

Hence by uniqueness we have ¢(t,w) = A(t,w)a(t,w) for a.a. (t,w). This
implies that ¢(¢,w) belongs to the linear span of the rows {o;(¢,w)}?; of
o(t,w). Since this applies to, e.g., all processes ¢ of the exponential form given
in (4.3.1), it follows by Lemma 4.3.2 that the linear span of {o;(¢,w)}™ ; is
the whole of R™ for a.a. (t,w). So rank o(t,w) = m and there exists A(t,w) €
R"™*™ such that

Alt,w)o(t,w) = Iy, .
O

Corollary 12.2.6 (a) If n = m then the market is complete if and only if
o(t,w) is invertible for a.a. (t,w).

(b) If the market is complete, then
rank o(t,w) =m for a.a. (t,w) .

In particular, n > m.
Moreover, the process u(t,w) satisfying (12.2.12) is unique.

Proof. (a) is a direct consequence of Theorem 12.2.5, since the existence of a
left inverse implies invertibility when n = m. The existence of a left inverse of
an n X m matrix is only possible if the rank is equal to m, which again implies
that n > m. Moreover, the only solution u(t,w) of (12.2.12) is given by

u(t,w) = A(ta w)[,u(tvw) - p(tvw))?(ta w)] :
This shows (b). O
Example 12.2.7 Define X((t) = 1 and

dX(t) 1 10 4B, (1)
e H k]

Then p = 0 and the equation (12.2.12) gets the form
1 0 1
ou= |0 1 [“1] = |2
1 3

which has the unique solution u; = 1, ug = 2. Since w is constant, it is clear
that (12.2.12) and (12.2.13) hold. It is immediate that rank o = 2, so (12.2.18)
holds and the market is complete by Theorem 12.2.5.
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Since

[100](1)(1’[1 0]1
- — 12,
01011 0 1

we see that in this case

1 0
is a left inverse of c = [0 1
1 1

Example 12.2.8 Let X(¢t) =1 and
dX,(t) = 2dt + dBi(t) + dBs(t) .

Then =2, 0 = (1,1) € R*2 son =1 < 2 = m. Hence this market cannot
be complete, by Corollary 12.2.6. So there exist T-claims which cannot be
hedged. Can we find such a T-claim? Let 6(t) = (6o(¢), 61(t)) be an admis-
sible portfolio. Then the corresponding value process V2 (t) is given by (see
(12.2.20))

VOt) =2+ / 01(s)(dB1(s) + dBa(s)) .
0

So if § hedges a T-claim F(w) we have that V() is a Q-martingale and
T
Flw) =2+ /91(5)(d§1(s) + dBy(s)) . (12.2.21)
0

Choose F(w) = g¢(Bi(T)), where g:R — R is bounded. Then by the
It6 representation theorem applied to the 2-dimensional Brownian motion
B(t) = (B1(t), B2(t)) there is a unique ¢(t,w) = (¢1(¢,w), P2(t,w)) such that

Eq[ [ (#3(s) + ¢3(s))ds] < co and
T

9(Bi(T)) = Eqlg(Bi(T))] + /¢1(S)d§1(5) + ¢2(s)dBs(s)
0

and by the It representation theorem applied to El (t), we must have ¢ =0,
ie.
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T

9(Bi(T)) = Eqlg(Bi(T))] +/¢1(S)d§1(8)
0

Comparing this with (12.2.21) and using the martingale property we get

Z+ / 01(s)(dB) (s) + dBs(s)) = Eq[F|Fi] = EolF] + / ¢1(s)dBy(s)
0 0

which implies both that 61(s) = ¢1(s) and that 61(s) = 0 for a.a. (s,w). This

contradiction proves that F'(w) = g(B1(T")) cannot be hedged if g # 0.

Remark. There is a striking characterization of completeness in terms of
equivalent martingale measures, due to Harrison and Pliska (1983) and Jacod
(1979):

A market {X(¢)} is complete if and only if there is one and only one
equivalent martingale measure for the normalized market {X (£)}.

(Compare this result with the equivalent martingale measure characteri-
zation of markets with no arbitrage/NFLVR, stated after Definition 12.1.7!)

12.3 Option Pricing

European Options

Let F(w) be a T-claim. A Furopean option on the claim F is a guarantee to be
paid the amount F(w) at time ¢t = T > 0. How much would you be willing to
pay at time ¢t = 0 for such a guarantee? You could argue as follows: If I — the
buyer of the option — pay the price y for this guarantee, then I have an initial
fortune —y in my investment strategy. With this initial fortune (debt) it must
be possible to hedge to time T a value V_(’U(T,w) which, if the guaranteed
payoff F(w) is added, gives me a nonnegative result:

0
VI (T,w)+ Flw) >0 as.
Thus the maximal price p = p(F') the buyer is willing to pay is

(Buyer’s price of the (European) contingent claim F) (12.3.1)

p(F) = sup{y; There exists an admissible portfolio ¢
T

such that V% (T,w): = —y + / o(s)dX(s) > —F(w) a.s.}
0
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On the other hand, the seller of this guarantee could argue as follows:

If T — the seller — receive the price z for this guarantee, then I can use this
as the initial value in an investment strategy. With this initial fortune it must
be possible to hedge to time T a value V¥(T,w) which is not less than the
amount F'(w) that I have promised to pay to the buyer:

VAT, w) > F(w) as.
Thus the minimal price ¢ = ¢(F) the seller is willing to accept is

(Seller’s price of the (European) contingent claim F) (12.3.2)
q(F) = inf{z; There exists an admissible portfolio v

T
such that V¥(T,w): = z + /w(s)dX(s) > F(w) a.s.}
0

Definition 12.3.1 If p(F) = ¢(F) we call this common value the price (at
t = 0) of the (European) T-contingent claim F'(w).

Two important examples of European contingent claims are
a) the European call, where
F(w) = (Xi(T,w) - K)*

for some i € {1,2,...,n} and some K > 0. This option gives the owner
the right (but not the obligation) to buy one unit of security number i at
the specified price K (the ezercise price) at time T'. So if X;(T,w) > K
then the owner of the option will obtain the payoff X;(7T,w) — K at time
T, while if X;(T.w) < K then the owner will not exercise his option and
the payoff is 0.

b) Similarly, the European put option gives the owner the right (but not
the obligation) to sell one unit of security number ¢ at a specified price K
at time T'. This option gives the owner the payoff

F(w) = (K - X;(T,w))*.

Theorem 12.3.2 a) Suppose (12.2.12) and (12.2.13) hold and let Q be as
in (12.2.2). Let F be a (European) T-claim. Then

essinf F'(w) < p(F) < Egl¢(T)F] < ¢(F) < 0. (12.3.3)

b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then the price of the (European) T-claim F' is

p(F) = EQ[¢(T)F] = q(F) . (12.3.4)
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Proof. a) Suppose y € R and there exists an admissible portfolio ¢ such that

T
VE(T,w) =~y —l—/go(s)dX(s) > —F(w) as.
0

i.e., using (12.2.7) and Lemma 12.2.2,

T n
—y+ /Zs@l (s)dB(s) > —&(T)F(w)  as. (12.3.5)
o =1
where B is defined in (12.2.3).
Since f Z ©i(5)€(s)o3(s)dB(s) is a lower bounded local Q-martingale, it is
0 i=1

t n ~

a supermartingale, by Exercise 7.12. Hence Eg[[ > ¢;(s)&(s)o(s)dB(s)] <0
0 i=1

for all ¢ € [0, T]. Therefore, taking the expectation of (12.3.5) with respect to

Q we get
y < Eql§(T)F] .

Hence

p(F) < EQE(T)F]

provided such a portfolio ¢ exists for some y € R. This proves the second
inequality in (12.3.3). Clearly, if y < F(w) for a.a. w, we can choose ¢ = 0.
Hence the first inequality in (12.3.3) holds.

Similarly, if there exists z € R and an admissible portfolio ¥ such that

T
z4 /w(s)dX(s) > F(w) as.
0

then, as in (12.3.5)
T n
st [ S eI (s)dBe) = (DFW) as
5 i=1
Taking Q-expectations we get
z > Eql§(T)F],

provided such z and 1 exist.
If no such z, exist, then ¢(F') = oo > Eg[¢(T)F].
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b) Next, assume in addition that the market is complete. Then by complete-
ness we can find (unique) y € R and 6 such that

T
—y+ /H(S)dX(s) =—F(w) as.
0

i.e. (by (12.2.7) and Lemma 12.2.2)

T n
—y+ / > 0i(s)€(s)0i(s)dB(s) = —£(T)F(w) as.
o =1
t n
which gives, since [ > 6;(s oi(s)dB(s) is a Q-martingale (Definition
0 i=1
12.2.4¢)),
y = Eq[E(T)F]
Hence

Combined with a) this gives

p(F) = EQ€(T)F] .

A similar argument gives that

(F) = Eql€(T)F] .

How to Hedge an Attainable Claim

We have seen that if V?(¢) is the value process of an admissible portfolio 8(t)

for the market {X (¢)}, then VZ(t): = ¢(t)V2(t) is the value process of 6(t) for
the normalized market {X(¢)} (Lemma 12.2.2). Hence we have

t

EBVI(t) = z+/9(s)dY(s) . (12.3.6)

0

If (12.2.12) and (12.2.13) hold, then — if Q, B are defined as before ((12.2.2)
and (12.2.3)) — we can rewrite this as (see Lemma 12.2.3)

m

V. z+/291 $) Y 0ij(s)dB;(s) . (12.3.7)
0

=1 Jj=1
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Therefore, the portfolio 6(t) = (6y(t),...,0,(t)) needed to hedge a given T-
claim F' is given by

E(t,w)(01(1),...,0n(t)o(t,w) = d(t,w) , (12.3.8)

ie.
0(t) = Xo(t)e(H)A(t) ,
where ¢(t,w) € R™ is such that

T
&(T) =z+ /¢ t,w)dB(t (12.3.9)
0

(and 6y(t) is given by (12.1.17)).

In view of this it is of interest to find explicitly the integrand ¢(¢,w) when
Fis given. One way of doing this is by using a generalized version of the Clark-
Ocone theorem from the Malliavin calculus. See Karatzas and Ocone (1991).
A survey containing their result is in Oksendal (1996)). See also Di Nunno
et al (2009). In the Markovian case, however, there is a simpler method, which
we now describe. It is a modification of a method used by Hu (1997).

Let Y (¢) be an Ito diffusion in R* of the form

dY (t) = b(Y (£))dt + o(Y (£))dB(t),  Y(0) =y (12.3.10)

where b: R¥ — RF and o: R¥ — RF*¢ are given Lipschitz continuous func-
tions. Assume that Y'(¢) is uniformly elliptic, i.e. that there exists a constant

¢ > 0 such that
2Po(y)o” (y)a > claf? (12.3.11)

for all z € R, y € RF.
Let h € C2(R¥) and define

g(t,y) = EYIMY (T —1);  t€[0,T], yeRF. (12.3.12)

Then by uniform ellipticity it is known that g(¢,y) € C*2((0,T) x R¥) (see
Dynkin 1965 II, Theorem 13.18 p. 53 and Dynkin 1965 I, Theorem 5.11 p. 162)
and hence Kolmogorov’s backward equation (Theorem 8.1.1) gives that

k

k
% +y bi(y)g—j +3 > (00")ij(W) 55— =0. (12.3.13)

i=1 v i,j=1

Z(t) = g(t,Y (1)) . (12.3.14)
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Then by 1t6’s formula we have, by (12.3.13),

0

dZ(t) = a_i(t’ Y (t))dt + Z g_zi(t’ Y (t))dY;i(t))

Moreover,

Z(T) = g(T,Y(T)) = Ep P [n(Y (0))] = h(Y (T))

and

Z(0) = g(0,Y(0)) = Eg[h(Y(T))] -
Combining (12.3.15)—(12.3.17) we get

T
WY (T)) = +/¢ (t,w)dB(t
0

where

ot w) =

1M
Q|

T—=1)],_y oY1)

(12.3.15)

(12.3.16)

(12.3.17)

(12.3.18)

(12.3.19)

More generally, by approximating more general processes Y (¢) by uniformly
elliptic processes Y (™) (t) and more general functions h(y) by CZ functions

H™)(y); n,m = 1,2,... we obtain the following conclusion:

Theorem 12.3.3 Let Y (t) € RF be an Ité diffusion of the form (12.3.10)

and assume that h : R¥ — R is a given function such that

{ 88%- Q[h(Y(T —1))] }k exists

i=1

and .
EG| | 6*(t,w)dt
Q[O/ w } < 00

where

(t,w) = T—- t))} y:y(t)ai(y(t)) .

1M
S

(12.3.20)

(12.3.21)

(12.3.22)
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Then we have the It6 representation formula
T
h(Y(T)) = Eglh )]+ /¢ t,w) dB (12.3.23)
0

To apply this result to find ¢ in (12.3.9) we argue as follows:
Suppose the equation for X (t) is Markovian, i.e.
0Xo(t) = p(X () Xo(t)dt;  Xo(0) =
dX;(t) = pi(X(¢))dt + o;(X (t))dB(t); i=1,...,n
where o; is row number ¢ of the matrix o. We rewrite this equation for X (t)
in terms of B(t) and get, using (12.2.12) and (12.2.3), the following system
dXo(t) = p(X(t))Xo(t)dt (12.3.24)
dX(t) = p(X () Xi(t)dt + o5 (X (1))dB(t) ; 1<i<n. (12.3.25)

Therefore Theorem 12.3.3 gives

Corollary 12.3.4 Let X(t) = (Xo(t),...,Xn(t)) € R be given by
(12.8.24)-(12.5.25) and assume that ho : R"™ — R is a given function
such that

{8?:1 ES[E(T — tho(X (T - t))]}; exists (12.3.26)
and .
E(f?[/&(t,w)dt} < (12.3.27)
0
where

"9
Pt w) == o
i=1

Then we have the Ito representation formula

S[&(T — t)ho(X(T —1))] eexi(X (1) . (12.3.28)

T
E(T)ho(X(T)) = Egl€(T)ho +/¢ (t,w)dB(t (12.3.29)
0

We summarize our results about pricing and hedging of European T-claims
as follows:

Theorem 12.3.5 Let {X (t)}ep0,1) be a complete market. Suppose (12.2.12)

and (12.2.13) hold and let Q, B be as in (12.2.2), (12.2.3). Let F be a Euro-
pean T'-claim such that Eq[{(T)F] < co. Then the price of the claim F is
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p(F) = EQl¢(T)F] . (12.3.30)

Moreover, to find a replicating (hedging) portfolio 0(t) = (6o(t),...,0,(t)) for
the claim F we first find (for ezample by using Corollary 12.3.4 if possible)

T
an adapted process ¢ such that EQ[f @2 (t)dt} < oo and
0

T
¢(T)F = Eql¢(T)F) + /qs (t,w)dB(t (12.3.31)
0

Then we choose B(t) = (81(t),...,0,(t)) such that
B(t,w)E(t,w)o(t,w) = o(t,w) (12.3.32)
and we choose 0y(t) as in (12.1.17).

Proof. (12.3.30) is just part b) of Theorem 12.3.2. The equation (12.3.32)
follows from (12.3.8). Note that the equation (12.3.32) has the solution

B(t,w) = Xo(t)p(t, w)A(t,w) (12.3.33)
where A(t,w) is the left inverse of o(t,w) (Theorem 12.2.5). O

Example 12.3.6 Suppose the market is (Xo(t), X1(¢)), where Xo(t) = et
and X () is an Ornstein-Uhlenbeck process

dX:(t) = aX1(t)dt + odB(t); X1(0) =2
where p > 0, «, o are constants, o # 0. How do we hedge the claim
Fw) = exp(X1(T)) ?
The portfolio 6(t) = (0o(t), 01(t)) that we seek is given by (12.3.33), i.e
61(t,w) = elo 1 o(t,w)

where ¢(t,w) and V(0) = z are uniquely given by (12.3.9), i.e

T
§T)F(w) = z+/¢(t,w)d§(t)
0

or .
F(w) = exp(X1(T)) = ze"T + /(bo(t,w)dé(t) ,
0

where
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do(t,w) = e"To(t,w) .
To find ¢(t,w) explicitly we apply Corollary 12.3.4:
Note that in terms of B we have
dX,(t) = pX1(t)dt + odB(t) ;  X1(0) = a1 .
This equation has the solution (see Exercise 5.5)

¢
Xi(t) = zie” + a/ep(t_s)df?(s) .
0

Hence, if we choose hg(z1) = exp(x1) we have

B3 Tho(X (T — 1)) = B3 exp(X1 (T — 1))
T—t

=Eqg [exp {:Cle”(T_t) +o / ep(T_t_S)dé(s)H
0

2
T(H -1} it pAo0.

= exp {xlep(T_t) +
4p

This gives, by (12.3.28),
d .

(b (t w) dI E [h'O( ( t))} m1:X1(t)U

2

= oe?T=1 exp {Xl (t)er T8 4 z

4p
Therefore, by (12.3.33),

0 (t) = {exp{Xl(t)eP(T t) p( 20(T=6) _ 1)} if p£0

exp{X1(t) + 5 (T — 1)} ifp=0.

The Generalized Black-Scholes Model

(e20(T=1) _ 1)} if p#£0.
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Let us now specialize to a situation where the market has just two securities

Xo(t), X1(t) where Xg, X are Itd processes of the form

dXo(t) = p(t,w)Xo(t)dt (as before) (12.3.34)

dX1(t) = a(t,w) X1 (t)dt + B(t,w) X1 (t)dB(t) , (12.3.35)

where B(t) is 1-dimensional and «(t,w), (t,w) are 1-dimensional processes

in W.
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Note that the solution of (12.3.35) is

X1 () = X1(0) exp (/tﬁ(s,w)dB(s)+/(a(s,w)—%ﬂQ(s,w))ds) . (12.3.36)
0 0

The equation (12.2.12) gets the form
Xi()B(t w)u(t,w) = Xa(H)a(t,w) = Xa(t)p(t, w)
which has the solution

u(t,w) = Bt w)[a(t,w) — p(t,w)] if B(t,w)#0. (12.3.37)

So (12.2.13) holds iff

E[exp (%/T (“(5’2)2(_87’25)5’”))2615)] <. (12.3.38)
0

In this case we have an equivalent martingale measure @ given by (12.2.2)
and the market has no arbitrage, by Theorem 12.1.8. Moreover, the market
is complete by Corollary 12.2.6. Therefore we get by Theorem 12.3.2 that the
price at t = 0 of a European option with payoff given by a contingent 7-claim
Fis

p(F) = q(F) = Eql¢(T)F), (12.3.39)

provided this quantity is finite.
Now suppose that p(t,w) = p(t) and B(t,w) = B(t) are deterministic and
that the payoff F(w) has the form

F(w) = f(X1(T,w))
for some lower bounded function f: R — R such that
Eq[f(X1(T))] < oo

Then by (12.3.39) the price p = p(F) = ¢q(F) is, with z; = X1(0),
T T
p=¢&(T)Eq [f (xl exp ( 0/ B(s)dB(s) + 0/ (o(s) - %m(s))ds))] |

T ~
Under the measure @ the random variable Y = [ 3(s)dB(s) is normally dis-
0

T
tributed with mean 0 and variance 6%: = [ 3?(t)dt and therefore we can write
0

down a more explicit formula for p. The result is the following:
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Theorem 12.3.7 (The generalized Black-Scholes formula)
Suppose X (t) = (Xo(t), X1(t)) is given by

dXo(t) = p(t)Xo(t)dt ; Xo(0) =1 (12.3.40)
dXi1(t) = at,w)X1(t)dt + B(t)X1(t)dB(t) ; X1(0) =21 >0 (12.3.41)
where p(t), B(t) are deterministic and

T

SEET

0

a) Then the market {X(t)} is arbitrage free and complete and the price
at time t = 0 of the European T-claim F(w) = [f(X1(T,w)), where
Eq[f(X1(T,w))] < oo, is

_ ;\(/%F[f(xl exp [y—f—O/T(p(s)—%Bz(s))dsD exp( 2y(;>dy (12.3.42)

p(s)ds) and 6% = fﬁz

where £(T) = exp(—

b) If p,a, 3 # 0 are constants and f € C1(R), then the self-financing portfo-
lio O(t) = (0o(t), 01(t)) needed to replicate the T-claim F(w) = f(X1(T,w))
is given by

i (t,w) = _ [7aw) ewlse+ (- 1) T-0))

\/7_

2(;_2_” — 3BT~ 1)) da (12.3.43)

- exp ([33: —
and 0y (t,w) is determined by (12.1.17) and VO(0) = p.

Proof. Part a) is already proved and part b) follows from Theorem 12.3.4 and
Theorem 12.3.5.

b) The portfolio we seek is by (12.3.33) given by
01(t,w) = Xo(t)(BX1(t,w)) " o(t,w)
where ¢(t,w) is given by (12.3.28) with h(y) = f(y) and

X1(t) = 21 exp{BB(t) + (p — 18%)t} .
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Hence

o (B TSR0,y 8% ()

0
= XD B[ @1 exp{ABT ~ 1) + (0 = 48T = DD, )

= DB/ (w1 exp{SB(T — 1) + (p— 36°)(T - 1)})
p{BBT — 1) + (0= 3BT =D},

01(t,w) = " (BX1(t,w) ™"

p(t—T)
\/ﬁ f Xl t w) exp{ﬁx—l— ( %Bz)(T_t)})
'exp{ﬁ$+(p—562)(T—t)}e 2(T ”dw,
which is (12.3.43). O

An important special case of Theorem 12.3.7 is the following:

Corollary 12.3.8 (The classical Black-Scholes formula)
a) Suppose X (t) = (Xo(t), X1(t)) is the classical Black-Scholes market

dXo(t) = pXo(t)dt ; Xo(0) =1
Xm(t) = aXl(t)dt + BXl(t)dB(t) N Xl(O) =x1>0

where p,a, B # 0 are constants. Then the price p at time 0 of the European
call option, with payoff

Flw) = (X1(T,w) — K)* (12.3.44)

where K > 0 is a constant (the exercise price), is

p=u1®(n+3IBVT) — Ke *Td(n - 16VT) (12.3.45)
where -
_ p-lp—1/2( 21
n=pB"'T (1n = +pT) (12.3.46)
and
)
B(y) = —— [ e ¥4 ER (12.3.47)
= e T ; 9.
y T y

1s the standard normal distribution function.
b) The replicating portfolio 6(t) = (0o(t),01(t)) for this claim F in (12.3.44)

is given by

(t)

0,(t,0) = @(ﬂ*l(T—t)*l/Z‘(m XlT +p(T—t) + %ﬂQ(T—t))) (12.3.48)

with Oy(t,w) determined by (12.1.17) and V9(0) = p.
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Remark. Note that, in particular, 6 (¢,w) > 0 for all ¢ € [0, T]. This means
that we can replicate the European call without shortselling. For the European
put the situation is different. See Exercise 12.16.

Proof. a) This follows by applying Theorem 12.3.7a) to the function

flz)=(z—K)".
Then the corresponding integral (12.3.42) can be written

00
2

(wvexply + (p = $62)T] — K) exp ((— zng)dy

e=rT

NG
Y

where v = ln(f—l) — pT + 1 8°T.

This integral splits into two parts, both of which can be reduced to integrals
of standard normal distribution type by completing the square. We leave the
details to the reader. (Exercise 12.13.)

b) This follows similarly from Theorem 12.3.7b). The function f(z)=(2—K)*
is not C!, but an approximation argument shows that formula (12.3.43) still
holds if we represent f’ by

f(2) = Xk 00y (2) -

Then the rest follows by completing the square as in a). (Exercise 12.13.)
O

American options

The difference between European and American options is that in the latter
case the buyer of the option is free to choose any exercise time 7 before or at
the given expiration time 7' (and the guaranteed payoff may depend on both
7 and w.) This exercise time 7 may be stochastic (depend on w), but only in
such a way that the decision to exercise before or at a time ¢ only depends on
the history up to time ¢t. More precisely, we require that for all ¢ we have

{w; 7(w) <t} € ft(m) .
In other words, 7 must be an ft(m)—stopping time (Definition 7.2.1).

Definition 12.3.9 An American contingent T-claim is an f,f(m)—adapted,
(t,w)-measurable and a.s. lower bounded continuous stochastic process F(t) =
F(t,w); t € [0,T], w € 2. An American option on such a claim F(t,w)
gives the owner of the option the right (but not the obligation) to choose any
stopping time 7(w) < T as exercise time for the option, resulting in a payment
F(r(w),w) to the owner.
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Let F(t) = F(t,w) be an American contingent claim. Suppose you were
offered a guarantee to be paid the amount F(r(w),w) at the (stopping) time
7(w) < T that you are free to choose. How much would you be willing to pay
for such a guarantee? We repeat the argument preceding Definition 12.3.1:

If I — the buyer — pay the price y for this guarantee, then I will have an
initial fortune (debt) —y in my investment strategy. With this initial fortune
—y it must be possible to find a stopping time 7 < 7T and an admissible
portfolio ¢ such that

ny(T(w)aw) + F(T(W),w) > 0 a.s.
Thus the maximal price p = pa (F') the buyer is willing to pay is

(Buyer’s price of the American contingent claim F) (12.3.49)
pa(F) = sup{y; There exists a stopping time 7 < T
and an admissible portfolio ¢ such that
7(w)
VI (T(w),w):= —y + / o(s)dX(s) > —F(r(w),w) a.s.}
0
On the other hand, the seller could argue as follows: If I — the seller — receive
the price z for such a guarantee, then with this initial fortune z it must be

possible to find an admissible portfolio v which generates a value process
which at any time is not less than the amount promised to pay to the buyer:

VY(t,w) > F(t,w) as. forall t€0,T].
Thus the minimal price ¢ = ga (F’) the seller is willing to accept is

(Seller’s price of the American contingent claim F) (12.3.50)
ga(F) = inf{z; There exists an admissible portfolio
such that for all ¢ € [0,7] we have

VY (t,w):=z+ /1/J(s)dX(s) > F(t,w) a.s.}
0

We can now prove a result analogous to Theorem 12.3.2. The result is basically
due to Bensoussan (1984) and Karatzas (1988).

Theorem 12.3.10 (Pricing formula for American options)

a) Suppose (12.2.12) and (12.2.13) and let Q be as in (12.2.2). Let F(t) =
F(t,w); t € 0,T] be an American contingent T-claim such that
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SligEQ[f(T)F(T)] < 00 (12.3.51)
Then
pa(F) < sup Eglé(r)F(7)] < qa(F) < oo (123.52)

T<T
b) Suppose, in addition to the conditions in a), that the market {X(t)} is
complete. Then

pa(F) = sup EQ[§(T)F(7)] = qa(F) . (12.3.53)

Proof. a) We proceed as in the proof of Theorem 12.3.2: Suppose y € R and
there exists a stopping time 7 < T and an admissible portfolio ¢ such that

T

ny(T,w) =—y+ /w(s)dX(s) >—F(1) as.
0

Then as before we get
—y+ / Y wils)E(s)oi(s)dB(s) = V2, (1) = E(1)V5, (1) = —=E()F(r)  aus.
o i=1

Taking expectations with respect to @ we get, since V,y (t) is a Q-supermar-
tingale

y < Ble(nF(r)] < sup Eqle(r)F(r)]
Since this holds for all such y we conclude that
pa(F) < sggEQ[f(T)F(T)] . (12.3.54)

Similarly, suppose z € R and there exists an admissible portfolio ¥ such that
t
VY (tw) =2+ /w(s)dX(s) > F(t) as. forall tel0,7].
0
Then, as above, if 7 < T is a stopping time we get

z+/Z%@&M@ﬁ®=Wﬁhamﬁmzwﬁw as.
0 =1
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Again, taking expectations with respect to (Q and then supremum over 7 < T
we get
z > sup Eqlé(T)F(1)] .
T<T

Since this holds for all such z, we get

qa(F) = sup Eqls(r)F(7)] - (12.3.55)

b) Next, assume in addition that the market is complete. Choose a stopping
time 7 < T. Define

B [k if F(t,w)>k
Fi.(t) = Fi.(t,w) = {F(t,w) if Ft,w) <k

and put
Gr(w) = Xo(T)E(7) Fi () -

Then Gy, is a bounded T-claim, so by completeness we can find y; € R and a
portfolio #*) such that

T
—yk+/6’ s) = —Gr(w) as.
0

and such that

t
i / M)
0

is a @-martingale. Then, by (12.2.8)—(12.2.9),

T
“yit [ DX () = ~€(T)Gu(w) = ~E(AL(7)
0

and hence

T

T
_yk+/9<k>(s)dY(s) yk+/9 |f(m}
0

0
= Bq[=&(r)Fi(7) | FI™] = —&(r) Fi(7) -
From this we get, again by (12.2.8)—(12.2.9),

_yk+/9 = —Fk( ) a.s.

0

and
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yr = EQl€(T) Fi(T)] -

This shows that any price of the form Eg[£(7)Fy(7)] for some stopping time
7 < T would be acceptable for the buyer of an American option on the claim
Fy(t,w). Hence

pa(F) > pa(Fy) > sup Eq[&(T)Fi.(7)] .

T<T

Letting k — oo we obtain by monotone convergence

pa(F) = sup EQ[¢(r)F(7)] -

<T
It remains to show that if we put
z= sup Egl[&(T)F(1)] (12.3.56)
0<7T<T

then there exists an admissible portfolio 6(s,w) which superreplicates F(t,w),
in the sense that

¢
z+ /H(S,w)dX(s) > F(t,w) for a.a. (t,w) € [0,T] x 2. (12.3.57)

0
The details of the proof of this can be found in Karatzas (1997), Theorem 1.4.3.

Here we only sketch the proof:
Define the Snell envelope

S(t) = sup Eglé(n)F(n)|F™];  0<t<T.

Then S(t) is a supermartingale w.r.t. @ and {ftm)}, so by the Doob-Meyer
decomposition we can write

S(t)=M(@t) —A@t); 0<t<T

where M (t) is a @, {ft(m)}-martingale with M(0) = S(0) = z and A(t) is a
nondecreasing process with A(0) = 0. It is a consequence of Lemma 12.2.1
that we can represent the martingale M as an It6 integral w.r.t B. Hence

-t /¢(s,w)d§(s) S M) = S()+ A@t) > S(t);  0<t<T (12.358)
0

for some ]—"t(m)—adapted process ¢(s,w). Since the market is complete, we know

by Theorem 12.2.5 that o(f,w) has a left inverse A(t,w). So if we define § =
(91,...,6‘n) by R
e(ta w) = XO (t)¢(ta W)A(ta w)
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then by (12.3.58) and Lemma 12.2.4 we get
¢ t ¢
z+/§d7=z+/2§6md§:z+/¢d§zS(t); 0<t<T.
0 o =1 0
Hence, by Lemma 12.2.3,

2+ /H(S,w)dX(s) > Xo()S(t) > Xo()EW)F(t) = F(t); 0<t<T.
0

The It6 Diffusion Case: Connection to Optimal Stopping

Theorem 12.3.10 shows that pricing an American option is an optimal stopping
problem. In the general case the solution to this problem can be expressed in
terms of the Snell envelope. See e.g. El Karoui (1981) and Fakeev (1970). In
the Ito diffusion case we get an optimal stopping problem of the type discussed
in Chapter 10. We now consider this case in more detail:

Assume the market is an (n + 1)-dimensional Itd diffusion X(t) =
(Xo(t), X1(t),...,Xn(t)); t > 0 of the form (see (12.1.1)-(12.1.2))

dXQ(t) = p(t,X(t))Xo(t)dt N XQ(O) =x9>0 (12359)
and
dXi (t) = M (f, X(t))dt + i Oij (f, X(t))d37 (f) (12360)
j=1
= pi(t, X(1))dt + 05(t, X (1))dB(t) ;. Xi(0) =2,

where p, p; and o;; are given functions satisfying the conditions of Theo-
rem 5.2.1.
Moreover, assume that the American claim F'(t) is Markovian, i.e.

F(t) = h(X(t)) (12.3.61)

for some lower bounded function h : R**! — R. Define

Y(t) = B(‘(Lt;] € R"*? (12.3.62)

and put

g(y) = g(s,x) = x5 'h(x) ; r = (20, 21,...,7,) € R" . (12.3.63)
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Then the problem to find the price

pa(F) = qa(F) = sgI:T) Eqlé(T)F(T)] (12.3.64)

in (12.3.53) can be regarded as a special case of the general optimal stopping
problem considered in Section 10.4. Indeed, if we put

P(y) = sup EQlg(Y(7))] (12.3.65)
TSTG
where
7o =inf{t >0;s+t>T}=T—s (12.3.66)

is the first exit time of Y (¢) from the region
G={(s,2);s<T} cR" (12.3.67)

then
pa(F)=&(0,1,21,...,2,) . (12.3.68)

To apply the theory of Section 10.4 to problem (12.3.65) we must rewrite
equations (12.3.59)—(12.3.60) in terms of B(t). Using (12.2.12) and (12.2.3)
we get, as in (12.3.24)—(12.3.25),

dXo(t) = p(X ()t ;  Xo(0) =9 >0 (12.3.69)
dX;(t) = p(X () X;(t)dt 4+ o5(X (£))dB(t); X;(0) =z; 1 <i<n (12.3.70)

We summarize this as follows:

Theorem 12.3.11  Suppose the market {X(t)} has the Markovian form
(12.3.59)—(12.3.60), which is equivalent to (12.3.69)-(12.3.70), and that the
American claim F(t) has the Markovian form (12.3.61). Then the price pa(F)
of the American option with this payoff F is the solution of the optimal stop-
ping problem (12.3.65) at y = (0,1,21,...,2y).

Example 12.3.12 (The American put)
Consider the Black-Scholes market
dXo(t) = pXo(t)dt ; Xo(O) =1

where p, , 8 # 0 are constants. In terms of B the system becomes

dXo(t) = pXo(t)dt ; Xo(O) =1
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Therefore the generator L of the process Y (¢) defined in (12.3.62) is given by

of of of 0*f
s TP 0 Dzg +P$1—+2[32Ifa—x%

Lf(S,Io,.Il) P

(12.3.71)

for f € C3(R?).
Therefore, according to Theorem 10.4.1, to find the value function @ in
(12.3.63)—(12.3.65) we look for a C'! function ¢ such that

B(s,z0,21) > x5 h(wg,21) forall s <T (12.3.72)
O(T, x0,21) = x5 ' h(xo, 1) - (12.3.73)

Define the continuation region
D = {(s,z0,21); ¢(s, 0, 1) > x5 "h(xo, 1)} . (12.3.74)
Then we require ¢ to be C? outside 0D and
Lo(s,z0,71) <0 outside D (12.3.75)

and
Lo(s,z9,21) =0 on D. (12.3.76)

Suppose
F(t) = (K — X;(t))* (the American put)

Then the function g in (12.3.63) is
9(s, g, 1) = xal(K —x) T =e (K —2p)7"

so we can disregard the variable xg and use s instead. Then the variational
inequalities (12.3.72)—(12.3.76) get the form

(s, 21) > e P (K —x1)" forall s<T (12.3.77)
¢(T, x1) =e PT(K — )" (12.3.78)

= {(s,21); 0(s,21) > efpS(K —z1)"} (12.3.79)
? + px1§—¢ + $8%7 ¢ < outside D (12.3.80)
99 + pxlﬁ + $8%7 “b =0 inD. (12.3.81)

s

In this case we cannot factor out e™”° as we often did in Chapter 10, because
that would lead to a conflict between (12.3.78) and (12.3.81).

If such a ¢ is found, and the additional assumptions of Theorem 10.4.1
hold, then we can conclude that

(s, x1) = D(s, 1)
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and hence pa (F) = ¢(0,x1) is the option price at time ¢t = 0. Moreover,
T = D = inf{t > 0; (S+t,X1(f)) Q/ D}

is the corresponding optimal stopping time, i.e. the optimal time to exercise
the American option. Unfortunately, even in this case it seems that an explicit
analytic solution is very hard (possibly impossible) to find. However, there
are interesting partial results and good approximation procedures. See e.g.
Barles et al (1995), Bather (1997), Jacka (1991), Karatzas (1997), Musiela
and Rutkowski (1997) and the references therein. For example, it is known
(see Jacka (1991)) that the continuation region D has the form

D ={(t,z1) € (~00,T) xR, a1 > f(t)},

i.e. D is the region above the graph of f, for some continuous, increasing
function f:(0,7) — R.

Figure 12.1. The shape of the continuation region for the American put.

Thus the problem is to find the function f. In Barles et al (1995) it is
shown that

f(t) ~ K — BKA\/(T —t)|In(T —t)]| as t — T,

in the sense that

1) - K »

“BE\T - DI(T — 0]
This indicates that the continuation region has the shape shown in the Fig-
ure 12.1. But its exact form is still unknown.

For the corresponding American call option the situation is much simpler.
See Exercise 12.14.

as t — T~




308

12. Application to Mathematical Finance

Exercises

12.1.

12.2.

12.3.

a) Prove that the price process {X(t)}+cjo,7] has an arbitrage iff the
normalized price process {X (£)}+cjo,r) has an arbitrage.

b) Suppose {X (t)}ie[o,r) is normalized. Prove that {X()}.c[0,r) has
an arbitrage iff there exists an admissible portfolio 6 such that

V90)<VT) as.and PVYT)>V?0)]>0. (12.3.82)

In other words, in normalized markets it is not essential that we
require V?(0) = 0 for an arbitrage #, only that the gains V9 (T) —
V9(0) is nonnegative a.s. and positive with positive probability.

(Hint: If 6 is as in (12.3.82) define 6(t) = (6o(t), .. ., 0, (t)) as follows:
Let 0;(t) = 0(¢) for i = 1,...,n; t € [0,T]. Then choose 6y(0) such

that V?(0) = 0 and define fy(t) according to (12.1.15) to make 6
self-financing. Then

Vi) =) -X(t):/é(s)dX(s):/e(s)dX(s)zvf’(t) —V00))
0 0

Let 6(t) = (Ao, ..., 0,) be a constant portfolio.
Prove that 0 is self-financing.

Suppose {X (t)} is a normalized market and that (12.2.12) and (12.2.13)
hold. Suppose n = m and that ¢ is invertible with a bounded inverse.
Suppose every bounded claim is attainable. Show that then any lower
bounded claim F' such that

Eg[F? < >
is attainable.
(Hint: Choose bounded T-claims F}, such that

F, — F in L*(Q) and E[Fy]= E[F].

By assumption there exist admissible portfolios ) = (Hék), cee 97(116))
and constants V;(0) such that

T T
Fr(w) = Vi (0) + / 0%) (s)dX (s) = Vi (0) + / 0" (s)o(s)dB(s)
0 0

where 90 = (6%, 6). Tt follows that Vj(0) = Eg[Fk] — Eg[F]
as k — oo.
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By the It isometry the sequence {é\(k)a}k is a Cauchy sequence in

L?(\ x Q) and hence converges in this space. Conclude that there exists
an admissible 6 such that

T
F(w) = Eq[F] + /G(S)dX(s) )
0

Let B(t) be 1-dimensional Brownian motion. Show that there exist
01(t,w), 02(t,w) € W such that if we define

Vi(t)=1+ [ 01(s,w)dB(s), Va(t)=2+ [ O2(s,w)dB(s); t€]0,1]
/ /
then
Vi(1)=12(1) =0
and

Viit) >0, Va(t) >0
for a.a. (t,w).
Therefore both 6;(t,w) and 03(t,w) are admissible portfolios for the
claim F(w) = 0 in the normalized market with n = 1 and X (¢) = B(t).
In particular, if we drop the martingale condition in Definition 12.2.4b)
we have no uniqueness of replicating portfolios, even if we require the
portfolio to be admissible. (Note, however, that we have uniqueness if
we require that 6§ € V(0,1), by Theorem 4.3.3).
(Hint: Use Example 12.1.4 with M = —1 and with M = —2. Then
define, for i = 1, 2,

L for 0 <t<a_;
0;(t) = Vit
0 for a_; <t<1

and
Vi(t):i—i-/ﬁi(s)dB(s)=i+Y(t/\a_i); 0<t<1.)
0

Prove the first part of Lemma 12.2.1, i.e. that B(t) given by (12.2.3) is
an ft(m)—martingale (see the Remark b) following this lemma).

12.6.* Determine if the following normalized markets { X (t)}.c[o,) allow an

arbitrage. If so, find one.
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a) (n=m=2)

dX(t) = 3dt + dB1(t) + dBs(t),

dX5(t) = —dt + dBi(t) — dB(2).
b) (n=2, m=3)

dX,(t) = dt + dBi(t) + dBa(t) — dBs(t)

dX5(t) = 5dt — dBi(t) + dBs(t) + dB3(t)
c) (n=2,m=3)

dX,(t) = dt + dBi(t) + dBa(t) — dBs(t)

dXs(t) = 5dt — dB1(t) — dBa(t) + dBs(t)
d) (n=2,m=3)

dX\(t) = dt + dB () + dBs(t) — dBs(t)

dXs(t) = —3dt — 3dB1(t) — 3dB2(t) + 3dBs(t)
e) (n=3,m=2)

dX1(t) = dt + dBi(t) + dBs(t)

dX5(t) = 2dt + dBy(t) — dBaf(t)

dXs(t) = 3dt — dB1(t) + dBa(t)
f) (n=3,m=2)

dX1(t) = dt + dBi(t) + dBs(t)

ng(t) — 2dt + dB, () — dBa(t)

Xs5(t) = —2dt — dB1(t) + dBa(t)

12.7.* Determine which of the nonarbitrage markets {X (t)}.c[0,1) of Exer-

12.8.

cise 12.6 a)—f) are complete. For those which are not complete, find a
T'-claim which is not attainable.

Let B; be 1-dimensional Brownian motion. Use Theorem 12.3.3 to find
z € R and ¢(t,w) € V(0,T) such that

T
z—i—/(btde
0

in the following cases:
(i) F(w)=B*T,w)
(i) F(w)= B3(T,w)
(iii) F(w) = exp B(T,w).
(Compare with the methods you used in Exercise 4.14.)

12.9.* Let B; be n-dimensional Brownian motion. Use Theorem 12.3.3 to

find z € R and ¢(¢,w) € V*(0,T) such that

T
=z+/¢tde
0

in the following cases
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() F(w)=B*T,w) (= B{(T,w) + -+ Bi(T,w))
(i) F(w)=exp(B1(T,w)+ -+ By(T,w)).

12.10. Let X (¢) be a geometric Brownian motion given by
dX(t) = aX(t)dt + X (t)dB(t) ,

where o and 3 are constants. Use Theorem 12.3.3 to find z € R and
é(t,w) € V(0,T) such that

T
+/¢tde
0

12.11. Suppose the market is given by

dXo(t) = pXo(t)dt ; Xo(0) =1
Xm(t)Z(m—Xl(t))dt—f—O'dB(t) ; Xl(O):JJl >0.
(the mean-reverting Ornstein-Uhlenbeck process) where p > 0, m > 0

and o # 0 are constants.
a) Find the price Eg[¢(T)F] of the European T-claim

Fw)=X1(T,w) .

b) Find the replicating portfolio 8(t) = (6o(t),01(t)) for this claim.
(Hint: Use Theorem 12.3.5, as in Example 12.3.6.)

12.12.* Consider a market (Xo(t), X1(t)) € R? where
dXo(t) = pXo(t)dt ; X0(0) =1 p >0 constant) .
Find the price Eq[¢(T)F] of the European T-claim
F(w) = B(T,w)

and find the corresponding replicating portfolio 6(t) = (0y(t),01(t)) in
the following cases

a) dX1(t) = aX;(t)dt + fX1(t)dB(t); «, constants, 5 # 0

b) dXi(t) =cdB(t); c¢#0 constant

c) dX1(t) = aX;(t)dt + 0dB(t) ; «,oc constants, o # 0.

12.13. (The classical Black-Scholes formula).
Complete the details in the proof of the Black-Scholes option pricing

formula (12.3.45) and the corresponding replicating portfolio formula
(12.3.48) of Corollary 12.3.8.
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12.14. (The American call)
Let X(t) = (Xo(t),X1(t)) be as in Exercise 12.13. If the American
T-claim is given by

F(t,w) = (X;(t,w) — K)* | 0<t<T,

then the corresponding option is called the American call.
According to Theorem 12.3.10 the price of an American call is given by

pa(F) = fggEQ[efm(Xl(T) - K)'].

Prove that
pa(F) = e T Eq[(X1(T) — K)],

i.e. that it is always optimal to exercise the American call at the ter-
minal time 7', if at all. Hence the price of an American call option
coincides with that of a European call option.
(Hint: Define

Y(t) =e P(X1(t) - K) .

a) Prove that Y'(¢) is a @-submartingale (Appendix C), i.e.
Y (t) < EglY (s)|F] for s >t¢.
b) Then use the Jensen inequality (Appendix B) to prove that
Z(t):=e P (X (t) — K)*"

is also a @)-submartingale.
c¢) Complete the proof by using Doob’s optional sampling theorem (see
the proof of Lemma 10.1.3 e)).

12.15.*% (The perpetual American put)
Solve the optimal stopping problem

P(s,x) = 51;;3 E* [eiP(SJ”)(K - X))

where
dX(t) = aX(t)dt + X (t)dB(t) ; X0)=z>0.

Here p > 0, K > 0, a and 3 # 0 are constants.
If o = p then P(s,x) gives the price of the American put option with
infinite horizon (T' = o). (Hint: Proceed as in Example 10.4.2.)

12.16.*% Let

dXo(t) = pXo(t)dt;  Xo(0) =1
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be the classical Black-Scholes market. Find the replicating portfolio
0(t) = (0o(t), 01(t)) for the following European T-claims:
a) F(w) = (K — X1(T,w))" (the European put)
b) F(w) = (X1(T\w)).
Remark. Note that in case a) we get 61 (¢t) < 0 for all ¢ € [0, 7], which means

that we have to shortsell in order to replicate the European put. This is
not necessary if we want to replicate the European call. See (12.3.48).



Appendix A: Normal Random Variables

Here we recall some basic facts which are used in the text.

Definition A.1 Let (£2,F,P) be a probability space. A random wvariable
X: 2 — R is normal if the distribution of X has a density of the form

pxta) = ——-enp (- 20, (A1)

where 0 > 0 and m are constants. In other words,

PX €G] = /pX(:zr)da: , for all Borel sets G CR..
G

If this is the case, then

E[X] = / XdP = Z epx (z)dz = m (A.2)

and
var[X] = E[(X — m)?] = / (z — m)?px (z)dz = o2 . (A.3)
R

More generally, a random variable X:{2 — R" is called (multi-)normal
N (m,C) if the distribution of X has a density of the form

px(@1, e an) = viAl - exp ( — 5> (25— my)ag(zy — mk)) (A.4)

n/2
(2m)/ ik
where m = (mq,---,m,) € R" and C~! = A = [aj;] € R"*" is a symmetric
positive definite matrix.
If this is the case then
EX]=m (A.5)

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6, © Springer-Verlag Berlin Heidelberg 2013
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and

A7t =C =[c;x] is the covariance matrix of X i.e.
cjr = El(X;5 —m;)(Xi —my)] . (A.6)

Definition A.2 The characteristic function of a random variable
X:02 — R"™ is the function ¢x:R™ — C (where C denotes the complex
numbers) defined by

dx(u1, -, up)=Elexp(i(u1 X1+ 4+upnX,))]= /e““’””> -P[X edz], (A7)

R"

where (u, ) = w121 + -+ + up®y, (and i € C is the imaginary unit). In other
words, ¢x 1is the Fourier transform of X (or, more precisely, of the measure
P[X € dx]). Therefore we have (see Kallenberg (2002), Thm. 5.3)

Theorem A.3 The characteristic function of X determines the distribution
of X uniquely.

It is not hard to verify the following:
Theorem A.4 If X: Q2 — R" is normal N'(m,C), then

bdx(ut, -, up) = exp (— %Zujcjkuk—i—iZujmj) . (A.B)
J.k J

Theorem A.4 is often used as a basis for an extended concept of a normal
random variable: We define X: {2 — R"™ to be normal (in the extended sense)
if px satisfies (A.8) for some symmetric non-negative definite matrix C' =
[cjx] € R™*™ and some m € R™. So by this definition it is not required that
C be invertible. From now on we will use this extended definition of normality.
In the text we often use the following result:

Theorem A.5 Let X;: 2 — R be random variables; 1 < j <n. Then
X =(X1, -, Xn) is normal
if and only if
Y=MX14+ -+ X, s normal for all \,....,\, € R.
Proof. If X is normal, then

Elexp(iu(M X1+ -+ A Xp))] = exp ( - %Z UNjCjRUNL + 1 Zu)\jmj)

J.k J

= exp < — %uQ Z AjCiE AL + iuZ)\jmj) ,
Jik J
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so Y is normal with E[Y] = >~ \jm;, var[Y] = > \jcjuAk.
Conversely, if Y = M X7 + -+ + A\, X, is normal with E[Y] = m and
var[Y] = o2, then
Elexp(iu(A X1+ -+ + A Xn))] = exp(—3u’0® + ium) ,
where

m= Y NBEGLo = | (A%, - ZAJ’E[XJ’OQ]

= EK;)\;'(X;' - mj))T = ;/\j/\kE[(Xj —m;) (X —mi)]

where m; = E[X;]. Hence X is normal.

Theorem A.6 Let Yy,Yq,...,Y, be real, random wvariables on (2. Assume

that X = (Yo, Y1,...,Y,) is normal and that Yy and Y, are uncorrelated for

each 7 > 1, i.e

E[(Yo - EYo)(Y; — E[Y;)]=0;  1<j<n.

Then Yy is independent of {Y1,---,Y,}.

Proof. We have to prove that

P[YO EG(),Yl EGl,...,Yn EGn] :PD/Q S GQ]PD/l EGl,...,Yn EGn] ,
(A.9)

for all Borel sets Gy, G1,...,G, C R.

We know that in the first line (and the first column) of the covariance
matrix ¢ = E[(Y; — E[Y;])(Yi — E[Y%])] only the first entry coo = var[Yy],
is non-zero. Therefore the characteristic function of X satisfies

Ox (uo, ut, ..., Un) = Oy, (Uo) - P(vy,...v,) (UL, - ooy Un)
and this is equivalent to (A.9).
Finally we establish the following:

Theorem A.7 Suppose Xi: 2 — R" is normal for oll k and that X — X
in L?(02), i.e.
E|X,—X*—0 as k— cc.
Then X s normal.
Proof. Since |e!{"®) — eiw¥)| < |u| - |z — y|, we have
E[{exp(i{u, X)) — exp(i(u, X))}?] < |ul?- E[| X — X[*] = 0 as k — oo
Therefore
Elexp(i{u, Xi))] — Elexp(i({u, X))] as k — o0

So X is normal, with mean E[X] = lim E[X}] and covariance matrix
C = lim Cy, where C}, is the covariance matrix of Xj.
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Let (2, F, P) be a probability space and let X:{2 — R™ be a random vari-
able such that E[|X|] < co. If H C F is a o-algebra, then the conditional
expectation of X given H, denoted by E[X|H], is defined as follows:

Definition B.1 E[X|H] is the (a.s. unique) function from 2 to R™ satisfy-
mg:

(1) E[X|H] is H-measurable
(2) [E[X|H]dP = [ XdP, for all H € H.
H H

The existence and uniqueness of E[X|H] comes from the Radon-Nikodym
theorem: Let p be the measure on ‘H defined by

u(H):/XdP; HeH.
H

Then g is absolutely continuous w.r.t. P|H, so there exists a P|H-unique
H-measurable function F' on {2 such that

w(H) :/FdP forall HeH.
H

Thus E[X|H]:= F does the job and this function is unique a.s. w.r.t. the
measure P|H.
Note that (2) is equivalent to

2y /Z - E[X|H]dP = /Z - XdP for all H-measurable Z .
2 2

B. @ksendal, Stochastic Differential Equations, Universitext,
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We list some of the basic properties of the conditional expectation:

Theorem B.2 Suppose Y: 2 — R™ is another random variable with
E[lY|] < oo and let a,b € R. Then

a) FElaX + Y |H] = aE[X|H] + bE[Y|H]

b) E[E[X[H]] = E[X]

c) E[X|H] =X if X is H-measurable

d) E[X|H] = E[X] if X is independent of H

e) ElY - X|H] =Y - E[X|H] if Y is H-measurable, where - denotes the usual
inner product in R™.

Proof. d): If X is independent of H we have for H € H
/Xsz/X-XHsz/XdP-/XHszE[X]-P(H),
H 2 Q Q

so the constant E[X] satisfies (1) and (2).

e): We first establish the result in the case when Y = Xy (where X’ denotes
the indicator function), for some H € H.
Then for all G € H

/Y-E[X|H]dP: / E[X|H]dP = / XdP:/YXdP,
G GNH GNH G

so Y- E[X|H] satisfies both (1) and (2). Similarly we obtain that the result
is true if Y is a simple function

Y =) ¢X, , where HjeH.
j=1

The result in the general case then follows by approximating Y by such
simple functions. O

Theorem B.3 Let G,’H be o-algebras such that G C 'H. Then

E[X|G] = E[E[X|H]|G] .

Proof. If G € G then G € H and therefore

CZE[X|H]dP = G/Xdp.

Hence F[E[X|H]|G] = E[X|G] by uniqueness. O
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The following useful result can be found in Chung (1974), Theorem 9.1.4:

Theorem B.4 (The Jensen inequality)
If R — R is convezx and E[|¢(X)|] < oo then

P(E[X|H]) < E[¢(X)|H] .

Corollary B.5 (i) |E[X[|H]| < E[|X]|| H]
(i) [E[X[H]]* < E[IX]* | H] .

Corollary B.6 If X,, — X in L? then E[X,, | H] — E[X | H] in L.



Appendix C: Uniform Integrability and
Martingale Convergence

We give a brief summary of the definitions and results which are the back-
ground for the applications in this book. For proofs and more information we
refer to Doob (1984), Liptser and Shiryaev (1977), Meyer (1966) or Williams
(1979).

Definition C.1 Let (£2,F, P) be a probability space. A family {f;}jecs of real,
measurable functions f; on (2 is called uniformly integrable if

do (ol [ et o

{If;1>M}

One of the most useful tests for uniform integrability is obtained by using
the following concept:

Definition C.2 A function :]0,00) — [0,00) is called a u.i. (uniform in-
tegrability) test function if ¥ is increasing, conver (i.e. YAz + (1 — N)y) <
M(z) + (1= XN)(y) for all z,y € [0,00), A € [0,1]) and

lim (@) =

r—oo I
So for example (x) = xP is a u.i. test function if p > 1, but not if p = 1.
The justification for the name in Definition C.2 is the following:

Theorem C.3 The family {f;};es is uniformly integrable if and only if there
s a u.i. test function v such that

igg{/w(lfjl)dp} <oo.

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6, © Springer-Verlag Berlin Heidelberg 2013
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One major reason for the usefulness of uniform integrability is the following
result, which may be regarded as the ultimate generalization of the various
convergence theorems in integration theory:

Theorem C.4 Suppose {fr}3, is a sequence of real measurable functions
on {2 such that

klirxgo fr(w) = f(w) for a.a. w .

Then the following are equivalent:
1) {fx} is uniformly integrable
2) feLYP) and fr, — [ in LY(P), i.e. [|fx— f|dP — 0 as k — oc.

Note that 2) implies that

/fde—>/fdP as k— 00.

An important application of uniform integrability is within the conver-
gence theorems for martingales:

Let (£2,N,P) be a probability space and let {N;};>0 be an increasing
family of o-algebras, Ay C A for all t. A stochastic process N;: 2 — R is
called a supermartingale (w.r.t. {N;}) if N; is Ni-adapted, E[|N¢|] < oo for
all ¢t and

Ny > E[Ns| V] for all s >1. (C.1)

Similarly, if (C.1) holds with the inequality reversed for all s > ¢, then NV is
called a submartingale. And if (C.1) holds with equality then N is called a
martingale.

As is customary we will assume that each N; contains all the null sets
of N, that ¢ — N;(w) is right continuous for a.a.w and that {N;} is right
continuous, in the sense that Ny = [ N; for all ¢ > 0.

s>t
Theorem C.5 (Doob’s martingale convergence theorem I)
Let Ny be a right continuous supermartingale with the property that

sup E[N; | < o0,
>0

where N = max(—Ny,0). Then the pointwise limit
Nw) = tlim Ne(w)
exists for a.a. w and E[N~] < co.

Note, however, that the convergence need not be in L!'(P). In order to
obtain this we need uniform integrability:

Theorem C.6 (Doob’s martingale convergence theorem IT)
Let N; be a right-continuous supermartingale. Then the following are equiva-
lent:
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1) {N¢}e>o is uniformly integrable
2) There exists N € L'(P) such that Ny — N a.e. (P) and N; — N in
LY(P), i.e. [|[Ny—N|dP —0ast— o .

Combining Theorems C.6 and C.3 (with ¢(z) = zP) we get

Corollary C.7 Let M, be a continuous martingale such that

sup E[|M;|P] < o0 for some p>1.
t>0

Then there exists M € L'(P) such that My — M a.e. (P) and
/|Mt—M|dP—>O as t — o0.

Finally, we mention that similar results can be obtained for the analogous
discrete time super/sub-martingales {Ng, Nx}, k = 1,2,.... Of course, no
continuity assumptions are needed in this case. For example, we have the
following result, which is used in Chapter 9:

Corollary C.8 Let My; k = 1,2,... be a discrete time martingale and as-
sume that
sup E[|Mg|P] < o0 for some p>1.
k

Then there exists M € L'(P) such that My — M a.e. (P) and
/|Mk—M|dP—>O as k — oo .

Corollary C.9 Let X € LP(P) for some p € [1,00], let {Ny}32, be an in-
creasing family of o-algebras, Ny, C F and define Ny to be the o-algebra
generated by {N}32,. Then

E[X|Ny] — E[X|Nx) as k — oo,
a.e. P and in LP(P).

Proof. We give the proof in the case p = 1. The process My:= E[X|Nj] is a
u.i. martingale, so there exists M € L*(P) such that My — M a.e. P and in
LY(P), as k — oo. It remains to prove that M = E[X|N]: Note that

My — E[M|Ni]l|p1(p) = (| E[MiNe] — E[M|Ni]|| L1 (p)
SHM]@_MHLI(P)_’O as k— oo .

Hence if F € Ny, and k > ko we have

/(X—M)dP:/E[X—MU\/k]dP:/(Mk—E[MINk])dP —0 as k— oo.
F F F
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Therefore -
/(X—M)dP:O for all F e (J N
k=1
F

and hence
E[X|Nx] = E[M|Ns]| = M .



Appendix D: An Approximation Result

In this Appendix we prove an approximation result which was used in Theo-
rem 10.4.1. We use the notation from that Theorem.

Theorem D.1 Let D CV C R" be open sets such that

0D is a Lipschitz surface (D.1)

and let ¢:V — R be a function with the following properties
pecCt(V)nc(V) (D.2)
¢ € C*(V\OD) and the second order derivatives (D.3)

of ¢ are locally bounded near 0D ,

Then there exists a sequence {¢;}52, of functions ¢; € C*(V) N C(V) such
that

$; — ¢ uniformly on compact subsets of V., as j — 0o (D.4)
Lo; — Lo uniformly on compact subsets of V' \ D, as j — oo (D.5)
{L¢;}521 s locally bounded on V . (D.6)

Proof. We may assume that ¢ is extended to a continuous function on the
whole of R™. Choose a C* function 7: R™ — [0, 00) with compact support
such that
/n(y)dy =1 (D.7)
Rn
and put

Ne(x) = e_"n(£> fore>0, zeR". (D.8)

€

Fix a sequence €; | 0 and define

63(@) = (6 +1.,)(@) = / bz — 2., (2)dz = / o, (x — )y . (D.9)
R R

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6, © Springer-Verlag Berlin Heidelberg 2013
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i.e. ¢; is the convolution of ¢ and ;. Then it is well-known that ¢;(x) — ¢(z)
uniformly on compact subsets of any set in V' where ¢ is continuous. See e.g.
Folland (1984), Theorem 8.14 (c). Note that since n has compact support
we need not assume that ¢ is globally bounded, just locally bounded (which
follows from continuity).

We proceed to verify (D.4)—(D.6): Let W C V be open with a Lipschitz
boundary. Put Vi = W N D, Vo =W\ D.

Then V1, V5 are Lipschitz domains and integration by parts gives, for ¢ = 1,2
and x € W\ 9D

0?
— ). — dy =
V/¢(?J) aykayen ,(@—y)dy

0
[ 90 g0, = vy / S~ y)dy, (D10)

ov;

where n;j, is component number k of the outer unit normal n; from V; at 9V;.
(This outer normal exists a.e. with respect to the surface measure v on 9V;
since JV; is a Lipschitz surface.)

Another integration by parts yields

8¢ B
B BE
/ aj (W)1e; (2 — y)niedv(y) —VV 8%;; (W)ne,(x —y)dy . (D.11)

Combining (D.10) and (D.11) we get

0?
— e — d =
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/ [qﬁ(y)aiylnq (z —y)nir — g—i(y)mj (x = y)nie | dv(y)
oV,

+/ﬂ() (x—y)dy; i=1,2 (D.12)
aykayéynf] y y7 ) . .

i

Adding (D.12) for ¢ = 1,2 and keeping in mind that the outer unit normal for
V; is the inner unit normal for V3_; on 9V, N OVs, we get

82
VZ 00) s 2 = )y =

/ {¢><y>a%nej (x — )Ny j—i<y>nej (z— y)Ne}dV(y)
191%%
32¢
m(@/)% (x —y)dy , (D.13)

where N, Ny are components number k, ¢ of the outer unit normal N from
W at OW.

If we fix € W\ 0D then for j large enough we have 7, (xz —y) = 0 for
all y outside W and for such j we get from (D.13)

o2 9%
[ o nte=wdy= [ G-y, D

R” R»

In other words, we have proved that

8—2¢-(x)* %, ()  for x € V\ 9D (D.15)
0x10xy J o Oyr0ye e ’ ’

Similarly, integration by parts applied to W gives, if j is large enough

0 B 1J0)
/ ¢(y)a—%nej (z —y)dy = 8—%@)776]- (z —y)dy
w w
from which we conclude that
0 [ 0¢
8_xk¢J () = (8—% * nej) (x) for xe V. (D.16)

From (D.15) and (D.16), combined with Theorem 8.14 (c) in Folland (1984),
we get that

20, _ 00

uniformly on compact subsets of V as j — oo (D.17)
oz, x
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and
82 i 82
8azk?x ” — (%jk(;ZE uniformly on compact subsets of V'\ 9D as j — oo .
(D.18)
Moreover {’%j }Oo and { 0°4,; }OO are locally bounded on V, by (D.15)
’ oz j=1 Oz 0z j=1 y ) y . )

(D.16) combined with the assumptions (D.2), (D.3).
We conclude that (D.4)—(D.6) hold. O



Solutions and Additional Hints to Some of the
Exercises

2.4. a) Put A ={w;|X(w)| > A}. Then

/ X (w)[PdP(w / X (w)[PdP(w) > APP(A).

O
b) By a) we have (choosing p = 1)
P[IX[ > A = Plexp(k|X]) > exp(k A)]
< exp(—h \)Elexp(HX])]
O
2.6. P(m UAk)—hm P(UAk)< hm ZPAk —0
m=1k=m k=m
since ZP(Ak) < oo
k=1
Hence
P({w;w belongs to infinitely many Aj’s})
= P{w; (Vm)(3k > m) s.t. w € Ai})
:P({w;w € ﬂ U Ak}) =0
m=1k=m
O

2.7. a) We must verify that
(i) ¢€g
i) FeG=F%¢g
(lll) F,. ... F,beGg=>FUFRU---UF,€§g
Since each element F' of G consists of a union of some of the G;’s, these
statements are easily verified.

B. @ksendal, Stochastic Differential Equations, Universitext,
DOI 10.1007/978-3-642-14394-6, © Springer-Verlag Berlin Heidelberg 2013



332

2.9.

2.13.

Solutions and Additional Hints to Some of the Exercises

b) Let F be a finite o-algebra of subsets of (2. For each z € 2 define
F, :ﬂ{FE]—";x er}

Since F is finite we have F, € F and clearly F) is the smallest set in
F which contains x. We claim that for given x,y € {2 the following
holds:

(i) Either F, N Fy =0 or F, = F,.
To prove this we argue by contradiction: Assume that we both have
(ii) Fy NFy # 0 and F, # F,, e.g. F, \ F, # 0.

Then there are at most two possibilities:

a) x € F,NF,
Then F, N F, is a set in F containing x and F, N Fy is strictly
smaller than F,. This is impossible.

b) zeF,\F,
Then F, \ F, is a set in F containing  and F, \ Fy is strictly
smaller than F,. This is again impossible.

Hence the claim (i) is proved. Therefore there exist x1,...,2, € 2
such that
Fp  Foy,y.o o, Fy,

forms a partition of 2. Hence any F' € F is a disjoint union of some of
these F,’s. Therefore F is of the form G described in a). O

c) Let X : 2 — R be F-measurable. Then for all z € R we have
{lwe X(w)=ct=X""'{c}) e F

Therefore X has the constant value ¢ on a finite (possibly empty) union

of the F}’s, where F; = F, is as in b). |

With

1 if t=w
Xy(w) = {
«w) 0 otherwise

and Y;(w) = 0 for all (t,w) € [0,00) x [0,00) we have
PX: =Y =P[X:=0=P{w;jw#t}) =1.
Hence X; is a version of Y;.

Define D, = {z € R?; |z| < p}. Then by (2.2.2) with n = 2 we have

22492

P°B,e D)) = (2rt)~* // e % drdy.
Dy

Introducing polar coordinates



2.14.

2.15.

2.17.
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x =rcosf;
y=rsinf; 0<r<p 0<60<2m

we get

The expected total length of time that B; spends in the set K is given
by

oo oo ')

E”[/XK(Bt)dt} = /P””[Bt € K]dt = /(zm)"/2/e(223)2 dy =0,

0 0 0 K

since K has Lebesgue measure 0.

P[B;, € F\,...,By, € Fx] = P[B;, € U"'Fy,...,B,, € U'F]
= J p(t1,0,z1)p(ta—t1, z1,22) - - - p(tp—tp—1, Th—1, Tk)
U-1F x--xU-1F,
xdxy - -dry

= [ p(t1,0,y1)p(t2 — t1,y1,y2) - - -tk — th—1, Yr—1, Y )dy1 - - - dys,
Fy XX Fy,

=P[B, € F4,...,By, € Fy],
by (2.2.1), using the substitutions y; = Uz; and the fact that
Uz — Uzja|? = |oj — 2.

0 Bl - 07 = | ( S an - iiolwt)z]

—5({ 3 (aB)? - 2”t>}2}

k=0

2" —1
— 5| S (a8, - 2o aBP-2 )|
7,k=0
2" —1
= Y E[((ABy)* —27"1)’]
k=0
2" —1
= Y E[(ABy)* — 22722 + 272"
k=0
2" —1
=) 2277 =2.27"" >0 asn—o0.
k=0
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b) This follows from the following general result: If the quadratic vari-
ation of a real function over an interval is positive, then the total
variation of the function over that interval is infinite.

3.1.  Using the notation AX; = X; 11 — Xy, we have
tB, = ZA (t; B;) Z( j+1Bi, 41— t;By;)

— Zt AB, +ZB+1At

t
H/sst+/BSds as At; — 0.
0

3.3. a) Suppose X; is a martingale with respect to some filtration {N;}:>o.
Then ng) C N; and hence, for s > t,

BIX 1) = BIEXINIH) = BIXH™) = X0
b) If X; is a martingale with respect to HEX) then

E[X,[H5¥] = Xo
i.e.

E[X:] = E[Xo] forall t>0.

¢) The process X; := B} satisfies (*), but it is not a martingale. To
see this, choose s > t and consider

E[B2|Fi] = B[(Bs — Bt)® + 3B3By — 3B B + B} | F]

= 0+ 3B, E[B2| 7] — 3B/ E[Bs|Fi] + B}

= 3B,E[(Bs — Bi)* 4+ 2Bs By — Bf|Fi] — 2B}

=3Bi(s—t)+ 6B} — 3B} — 2B} =3By(s—t)+ B} # B} .

3.4. (i) If X; = B; +t then F[X;] = B(0) +t # E[Xo], so X; does not

satisfy (%) of Exercise 3.3 b). Hence X; cannot be a martingale.
(i) If X; = B? then E[X;] = nt + B3 # E[Xy], so X; cannot be a
martingale.

t
(iii) If X; = ¢?B; — 2 [ r B,.dr then, for s >,
0

S

t
E[X,|F] = E[s*B,|F;] — 2/TBTdr - 2/TE[BT|ft]dr
0

t
s

t
:$2Bt—2/rBTdr—2Bt/rdr
0

t
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t t
=s°B; — 2/7~Brdr — By(s* —t*) =B, — 2/TBTdr =X, .
0 0

Hence X; is a martingale. a

(iv) If X; = By (t)Bs(t) then

E[X|F:] = E[B1(s)Ba(s)|F:

]
= E[(B1(s) — B1(t))(B2(s) — Ba(t))|F]
+E[B1(t)(Ba2(s) — Ba(t))| 7]
+E[By(t)(Bi(s) — Bi(t))| 7] + E[B1(t)Ba(t)| ]
= E[(Bi(s) — Bi(t)) - (B2(s) — B2(t))] + 0+ 0 + Bi1(t) Ba(t)

+
= E[B1(s) — B1(t)] - E[Ba(s) — Ba(t)] + Bi(t) B2(t)
= By1(t)Ba2(t) = X; .
Hence X; is a martingale. a
3.5. To prove that M; := B? —t is a martingale, choose s > t and consider
E[M,|F] = E[B? — s|F,] = E[(Bs; — B;)*> + 2B;B; — B} | 4] — s

=s—t+2B? - B} —s=B}—t=M,.
0

3.6. To prove that N; := Bf — 3tB; is a martingale, choose s > t and
consider
E[N, | F/] = E[(Bs; — B;)® + 3B2B; — 3B,B? + B} | F;] — 3sB;
=3B,E[B? | ,] — 3B?B; + B} — 3sB,
= 3B,E[(Bs — B;)? + 2B,B; — B} | F1] — 2B} — 3sB;
=3By(s—t)+ B} —3sB, = B} —3tB, = N, .

3.8. a)If M, =E[Y | F] then for s > t,

E[M, | Ft] = E[E[Y | F] | 2] = E[Y | Fi] = My

T
3.9. [ByodBy=4B3 if By=0.
0

3.12. (1) a dXt = (’}/ + %a2)Xtdt + OéXtdBt .

)
) dXy =1 inXt[cos X; — t2)dt + (t* + cos X;)dB; .
)
)

=)

(ll) a dXt (T - —O[ )Xtdt + O[Xt o dBt .

=)
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3.15. Suppose
T T
C—I—/f(t,w)dBt(w) :D—i—/g(t,w)dBt(w)
S S

By taking expectation we get
C=D.

Hence
T

T
[ @B = [ gtwiisiw)
s s
and therefore, by the It6 isometry,

T

T
0= [( [(t.w) - gtwnaso) | - | S/ ((t,) ~ g(t,))dr],

S

which implies that

ft,w) = g(t,w) for a.a. (t,w) € [S,T] x £2.

4.1. a) dY; =2B,dB, +dt .
b) d}/t = (1 + %er)dt —|— erdBt .

d) dY; = [d‘gt} _ m dt + m dB, .

dYy(t) = dt — By(t)dBy(t) + 2Ba(t)dBa(t) — Bi(t)dBs(t)

B (t)
dmﬂ P} [1 1 1}
dY; = = |at dBs(t) |.
== 11+ m 2m -moo frin
4.2. By Ito’s formula we get
d(%B}) = B{dB; + Bdt .

Hence
t t

gw:/mwﬁjém.
0 0
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4.14.

Solutions and Additional Hints to Some of the Exercises 337

If we apply the It6 formula with g(z,y) = z - y we get

0 0
d(X,Yy) = d(g(X,,Yr)) = 8—§(Xt, Y,)dX; + a—g(xt, Y;)dY;

2 2 2

0%g
+%ﬁ(XtaY;€) (dXt)2 D20y (Xtayi)dXtdYt 28 o)

= Y:dX; + X1 dY: + dX:dY; .

9 (X, Y3)-(dY3)?

From this we obtain

t t
X,Y; = XoYo +/YSdXS +/XSdYS +/dXSdYS :
0 0

O
E[BS] = 15> if By =0.
b) By the It6 formula we have
d(e?'sin By) = Le3'sin Bydt + 3" cos BydB, + e3*(—sin By)dt

— et cos B:dB; .

Since
f(t) :=e3tcos B, € V(0,T)  forall T,

we conclude that X; = e? sin B, is a martingale. O

¢) By the It6 formula (or Exercise 4.3) we get

d((Be +t) exp(=B; — 3t)) = (By +t) exp(—By — 3t)(—
+exp(—B; — t)(dBt + dt) + exp(—B; — 5t)(— 1)
= exp(—Bt — %t)(l —t— Bt)dBt 5

where we have used that
d(exp(—B; — 1t)) = —exp(—B; — 1t)dB; .

Since
f(t) = exp(—Bt - %t)(l —t— Bt) S V(O T)

for all T > 0, we conclude that X; = (B; + t)exp(—B; — 3t) is a
martingale. O

a)  Br(w f1 dB; . O

b) By integration by parts we have

T T T
/Btdt:TBT—/tdBt:/(T—t)dBt.
0 0 0
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¢) By the It6 formula we have d(B

d) By the It6 formula we have
d(B}) = 3B}dB; + 3Byt .

Combined with 4.14 b) this gives
T T
Bj /3B2dBt +3/Btdt / (3B7 +3(T

0

0
B:—1t
e ' 2°dB; we have

e) Since d(e Fﬁt) =

or

f) By Exercise 4.11 b) we have

-

sin Bt) —e? cos B:dB;

1
3t

d(e
or

T
sin B :/ %tcothdBt.
0

Hence

= 2BydBy; + dt. This gives

— #))dB; .

5.3. X,=X, ~eXp(( ~1%g )t + 3 aBi(t)) (if B(0) = 0).
k=1

k=1

5.4. (i) X1(t) = X1(0) +t+ Byi(t),

Xg(t) = XQ(O) + Xl(O)BQ(t) + deBQ(S) + fBl(S)dBQ(S), as-
0

0
suming (as usual) that B(0) = 0.
¢
(i) X, =e'Xo+ [e*dB, .
0
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(ili) Xy =e 'Xo+e 'B; (assuming By = 0).
By the It6 formula we have
dF, = F)(—adBy + $a°dt) + 3 Fa’dt
= Fy(—adB; + o?dt) .
Therefore, by Exercise 4.3,
d(FyY:) = F,dY; + YidFy + dFdY;
= F,dY; + Y, Fy(—a dB; + o*dt) + (—a FidB;)(a Y;dBy)
= F;(dY; — aYidB;) = Fyrdt .

Integrating this we get
t

FyY, = FoYo + /’I”Fsds

0
or
t
Y, = YoF '+ F! /TFSds
0
= Ypexp(a B, — 1a®t) + r/ exp(a By) — 2a?(t —s))ds .
0
t
a) Xy =m+ (Xo—m)e " +o [eS'dB; .
0

b) E[Xi]=m+ (XO —m)e L.
Var[X,] = "7[1 —e .

X(t) = {?28” = exp(tJ) X (0) + exp(tJ) jexp —sJ)MdB(s), where

p= [0 ) we=[g 8] aor= 22

t2 t
eXp(tJ):I—|—tJ+EJ2+~-~—|—EJ"+~-~€R2X2.

and

Using that J? = —1I this can be rewrittertl as
X1(t) = X1(0) cos(t) + X2(0) sin(t) + [ acos(t — s)dBi(s)
0

+Ojﬁsin(t — 8)dBa(s) ,
Xa(t) = —X1(0) sin(¢) + X2(0) cos(t) — ftozsin(t — $)dBi(s)
0

—l—ﬁjcos(t — 8)dBa(s) .
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t t
5.11. Hint: To prove that }in%(l —t) [4B: =0 as., put M, = [ for
- 0 0
0 <t <1 and apply the martingale inequality to prove that
Plsup{(1 —t)|My;t € [1 =271 -2"""1} > ¢ <2e72.27"

Hence by the Borel-Cantelli lemma we obtain that for a.a. w there
exists n(w) < oo such that

n>nlw)=>wé¢A,,
where
A = {wisup{(1 — t)| M|t € [1 — 27", 1 — 27771} > 27 1} .

5.12. a) If we introduce

then the equation

can be written
X [HO] Z [¥0] _ [0
z5(t) y"(t) —(1 4 W)z (t)
which is intepreted as the stochastic differential equation

o(t)dt
dX(t) = [ L (t)dt — exy (t )dB(tJ

= o) [20) =< [35] [ 20 e
=K X(t)dt — e L X(t)dB;

where

01 00
K= {_10} and L= {10].

b) By the above interpretation we have

t t t

0=y O+ [vds =y 0 - [ys)is e [us1a.

0 0 0
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Hence, if we apply a stochastic Fubini theorem,

(
(

(r—t)y(r)dr + € /(r —t)y(r)dB, .
0

y(r) dBT) ds

y(r)ds) dr —e y(r)ds) dB,

oL O~

/
/

=y(0)+y'(0)t +

t 1/2
5.16. c) X; = exp(aB; — 1a%t) [;102 + 2 [ exp(—2aB; + azs)ds]
0

6.15. We have

a

) Xy = Xoexp(odB; + (p— 10%)t) = vexp(& — 30°t) .
Therefore

M; C N .

On the other hand, since
X
& =1o%t+m =t
T

we see that N; C M;. Hence M; = N;.

b) Consider the filtering problem
(system) dp =0, i = Elp), a® = E[(p — p)*) = 0"
(observations) d&; = udt + o dBy; & =0

By Example 6.2.9 the solution is

02ﬂ a®
o2+ a’*t  o2?2+a%t
= (040720 @b+ 07%E,) .

= E[plN] = &

¢) The innovation process N; of the filtering problem in b) is

t
Nt = gt — //J\,(S)dS .
/

341
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Therefore, by a)

t
B, = /a‘l(u — E[u|Mq))ds + By
t
= /U_l(u — E[u|M,])ds + By = 0 ' N,
is a Brownian motion by Lemma 6.2.6.

d) Since Et =0~ f,u )ds) we see that Bt is Ni-measurable and
hence M;-measurable by a).

e) We have

> ~ it + o2&
Hence
dé, — gt = —" g1+ 0B
E a2t T o2t K

which gives

t

t
ds 0 ~
{}exp / 29—|—s eXp(_/029+s)[9+0*2tdt+0d3t}
0 0

or

d(a2§t+ t) - 0291+ ! {9 Jff*tdt to dét} '

We conclude that

t

f— - 020 N / dBs
t =4 020+t 7 020 +s’
0

which shows that &, is ]?t—measurable.
f) By combining (6.3.20), (6.3.24) and a) we have
dXt = Xt(,u dt + O'dBt) = Xtdft

= X, (fi(t)dt + o dB;)
= BluM| Xdt + o X, dB; .

7.1. a) Af(z) = pxf'(z) + %azf”(a:); feCE(R).
b) Af(z) =razf'(z) + %a2x2f”(;v); f € C2(R).
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) Af(y) =7rf'(y) + 309" (y); feCR).

d) Af(t,;v)za—f—i-u:v +102%L e CRRY).

e) Af(x1, o) = 2L +mfl +1 mgwg, f e C3(R2).

£) Af(zy,22) = g;fl +;gwf+% 8—f f € C2(R2).

g) Af(z1,...,z5) = Z Tkﬂika—f 3 lel’ﬂ?g(z O‘zk%k)a;afm]?
€ CZR"M).

7.2. a) dX;=dt++/2dB; .
_ldxa@) | 1 0
b) dX(t) = |:dX2(t):| = [cXg(t)] dt + [aXQ(t)] dBy .
C[axi)] 2Xa (1) X1(t) 1] [dBi(t)
¢) dX(t)= {dXz(t)} [ln(l—&-Xlz(t)—kX%(t))} di+ [ 1 0] {de(t)]'
(Several other diffusion coefficients are possible.)
7.4. a),b). Let 7, =inf{t > 0;Bf =0 or Bf =k}; k> x> 0 and put
Pk = ]DI[BT,C = k] .

Then by Dynkin’s formula applied to f(y) = y? for 0 <y < k we get

Em[Tk] = kzpk — .%'2 . (Sl)

On the other hand, Dynkin’s formula applied to f(y) =y for 0 <y < k
gives

kpr, =z . (S2)

Combining these two identities we get that
E®[r] = klim E®[m) = klim z(k—1x)) =00. (S3)
Moreover, from (S2) we get
P7[3t <00 with By=0]= lim P*[B,, =0]= lim (1-py)=1, (S4)
so T < oo a.s. P7.
7.15. By the Markov property (7.2.5) we have

B[ Xk 00)(Br) | Ft] = E*[0: Xk 00)(Br—t) | T3]
= EP' Xk 00)(Br—1)] = EY[f(Br—1))y=,

R

:|y:Bt
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8.1.
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where
f(@) = X 00) () -
a) Define
@ -f@
ST R T R L

Then

Lw(x) =0 in D:=(a,b)
and

w(a) =0, wbd)=1.
Hence by the Dynkin formula

1-P*[X, = b+ 0- P[X, = a] = w(z) + E* [/TLw(Xt)dt} = w(z)
0

i.e.

) glt,) = B[0(B)].
b) u(x) = E*[[ e~ "¢ (By)dt] .
For T >0 deﬁr?e the measure Q1 on Fr by
dQr(w) = exp(~B(T) - 4T)dP(w)  on Fr.

Then by the Girsanov theorem Y (¢): =t + B(t); 0 <t < T is a Brow-
nian motion with respect to Q. Since

Qr=Qs on F forall ¢t <min(S,T)
there exists a measure () on F, such that
Q=Qr on Fr forall T < oo

(See Theorem 1.14 in Folland (1984).)
By the law of iterated logarithm (Theorem 5.1.2) we know that

where
N = {w;tlirgo Y (t) = oo}

On the other hand, since Y (¢) is a Brownian motion w.r.t. @ we have
that
QIN]=0.

Hence P is not absolutely continuous w.r.t. Q.
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9.1.

9.2.

Solutions and Additional Hints to Some of the Exercises

Here the equation

ot w)u(t,w) = B(t,w)
ERYIHEH
=[] =[]

Hence we define the measure @ on fg) by

has the form

which has the solution

dQ(w) = exp(3B1(T,w) — Ba(T,w) — 5T)dP(w) .

a) dX, — [‘(ﬂdw {g]dBt.

=3

) dX, = [Z]dt+ [(1) ?]dBt.

) dXt = O[Xtdt + ﬁdBt .
d) dXt = adt + BXtdBt .
)

dX1 (¢ In(1+X? Xo(t) 0 dB1 (¢
Xt:[dxégtﬂz[ " 1(t))}dt+\/§[){fét§ Xl(t)H 0

U

¢ X»(t)

(i) In this case we put

e (][ [ w2

and
D:{(s,x) €R2;S<T}.
Then
p = inf{t > 0;(s +t,B;) ¢ D} =T — s
and we get

u(s,z) = E>* [WBTD) + /Dg(Xt)df}
0

S

T—
W(BE_,) /¢s+tBt dt}
0

where BY is Brownian motion starting at x.
(ii) Define X; by

dXt:OéXtdt—FﬂXtdBt, )(0:.I>07

dBs(1)]"

345
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9.3.

9.8.

9.10.

Solutions and Additional Hints to Some of the Exercises
and put

D = (0, ,To) .
If a > 182 then 7p = inf{t > 0; X; € D} < oo a.s. and

X:p, =z as. (see Example 5.1.1).

Therefore the only bounded solution is
u(z) = B*[(X,,)?] = 5 (constant).
(iii) If we try a solution of the form
u(z) =27 for some constant 7y

we get
ax'(z) + 38°0%0" (2) = (a + 36%(y = 1))2”,
so u(x) is a solution iff

2c

With this value of 7 we get that the general solution of
aa(2) + 4% (x) = 0

is

u(z) = C1 4 Cax”
where C1,Cy are arbitrary constants. If o < %BQ then all these solu-
tions are bounded on (0, 2) and we need an additional boundary value
at © = 0 to get uniqueness. In this case P[rp = oo] > 0. If o > 1

then u(z) = C is the only bounded solution on (0, z), in agreement
with Theorem 9.1.1 (and (ii) above).

a) u(t,x) = E*[¢(Br—)] -
b) u(t,z) = E*[{(By)] .

a) Let X; € R? be uniform motion to the right, as described in Ex-
ample 9.2.1. Then each one-point set {(x1,z2)} is thin (and hence
semipolar) but not polar.

b) With X; asin a) let Hy = {(ax,1)}; £ =1,2,... where {ap}7>, is
the set of rational numbers. Then each Hj, is thin but
Q[T =0]=1forallz; € R.

Let V; =Y, = (s + ¢, X¥) for t > 0, where X; = X} satisfies

dXt:O[Xtdt—FﬁXtdBt, tZO, X0:I>O
Then the generator AofY, is given by
~ 0 0
Af(S,I) _f+a f 2ﬁ2 _éla fECg(RQ)

0s Ox
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Moreover, with D = {(¢,z);2 > 0 and ¢ < T} we have
tp:=1inf[t > 0;Y; ¢ D} =inf{t >0;s+t>T} =T —s.
Hence
Y., = (T, Xr_s) .
Therefore, by Theorem 9.3.3 the solution is

T—s
f(s,2) = E|e " To(X5_ ) + / e P F (X7 dt |
0

9.15. a) If we put w(s,x) = e P°h(z) we get

Pw  Oow s
%W + 55 = ¢ P (%h”(,T) — ph()),

and the boundary value problem reduces to
(1) $h'(z)—ph(z)=—02% a<az<b
(2)  h(a) =4(a), h(b) =1(b)

The general solution of (1) is

9 0
h(z) = CreV?* + Coe V¥ 4 —a® — —
p p

where C1,Cy are arbitrary constants. The boundary values (ii) will
determine C7,Cy uniquely.

b) To find
9(x,p) = g(x):= E[e7"™"]

we apply the above with v =1, § = 0 and get
g(z) = C1eV?® 4 Che V202,

where the constants C,Cy are determined by

After some simplifications this gives

_sinh(y/2p(b — x)) + sinh(y/2p(z — a))
sinh(y/2p(b — a))

10.1. a) g*(z) = oo, 7* does not exist.
b) ¢g*(z) = 0o, 7* does not exist.
¢) g*(z) =1, 7 =inf{t > 0;B, = 0}.
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10.3.

Solutions and Additional Hints to Some of the Exercises

d) If p<
Ifp>

then ¢g*(s,z) = oo and 7* does not exist.

ST

then g*(s,z) = g(s,x) = e *coshz and 7* =0 .

a) Let W be a closed disc centered at y with radius p < |z —y|. Define
7, = inf{t > 0; Bf € W} .

In R? we know that 7, < oo a.s. (see Example 7.4.2). Suppose there
exists a nonnegative superharmonic function u such that

(1) u(@) <uly) -
Then
(2) u(z) > E*[u(B;,)].

Since u is lower semicontinuous there exists p > 0 such that
(3) inf{u(z);z € W} > u(x) .
Combining this with (2) we get the contradiction

u(z) > E*[u(B;,)] > u(x) .

O
b) The argument in a) also works for R. Therefore
x —a 1
g*(z) =sup{g(z);z € R} =sup{zre ;2 >0} = .
¢) For x # 0 we have
n 2 n e n 9 ~ n 71
_ 2 _ 2
s 3 (S5 ) - (G5 e

So |z|7, and hence f,(x) = min(1,|z|"), is superharmonic iff
(v +n—-2)<0,ie.
2—-n<~v<L0.

g > 0 is given implicitly by the equation

AR
To = PO 20 0 ’
P e -1
2 cosh(v/2px)

and g*(s,r) = e_psxom for =z <z < 2, where
coshé = 3(ef +e7%) .
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10.9. If 0 < p <1 then §(z) = 1332 —I— > but 7* does not exist. If p > 1 then

1,2, 1 o
B(z) = { p2év + 2+ Ccosh(y/2px) for |z| <z
z for |z| > x*

where C' > 0, * > 0 are the unique solutions of the equations

C cosh(y/2pz*) = (1 _ l) ()2 — %
C+\/2p sinh(y/2pz* (1_%) .

10.12. If p > r then g*(s,2) = e™"*(zo — 1)¥(;5)” and
7 =inf{t > 0; X; > o}, where

y=a"2 [%cﬁ —r4 \/(%cﬂ —r)? +20¢2p}

and .
= — >lep>r).
o -1 (v p>r)
10.13. If a < p then 7* =0.
If p <a < p+ A then
e ( ) e pqg if 0<pg<wyo
S = s .
prd e (CLlpg)" + s ~pa— %) if pa=>yo

where

vl=ﬁ‘2[%ﬁ2+A—a—\/(%62+A—a)2+2p/32

_EmE(p+A—ao)

gy s

and
1—71

_ (a=pyg
@ = (—71)(p+A—a)

The continuation region is

D = {(s,p,q);pq > yo} -
Ifp+A<athen G =c0.

10.14. First assume that
Case 1: p>a.
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Note that
/ e P P, — e_”s{ / PPyt — / e—PfPtdt}
T 0 0
and
/ ptPtdt /e_ptE[p exp(B By + (a — 28%)t)]dt
0
:/pe(o‘_”)tdtz L
p—«
0
Therefore _
pe””
P(s,p) = pp ~ +¥(sp),
where

¥ (s,p) = sup BP) / e PO Pt — C e P+ |
! 0

This is a problem of the form discussed in Section 10.4, with

Y(t) = {S;tt], Y(0) = m —yeR?

and
fly)=f(s,2)=—ep, g(s,x)=—-Ce™ .

To get an indication of where the continuation region D is situated,
we consider the set

U={y;Lg(y) + fy) >0}  (see (10.3.7)).
In this case the generator L is given by

o 1o} 9?
Lo(s,p) = a—f + apa—z + %521)28—];5

and so
U={(5p); (=p)(=C) =p >0} = {(s,p);p < pC}.
In view of this we try a continuation region D of the form
D ={(s,p);0 <p <p*}

for some p* > 0 (to be determined).
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We try a value function candidate of the form

#(s,p) = e "Y(p)

where, by Theorem 10.4.1, the function 1 is required to satisfy the
following conditions:

(1) Lop(p) :== —p(p) + apy’(p) + 55°p*¢" (p) —p=0; 0 < p < p*
(2) Loy(p) <0; p>p
3) v =-C; p>p
(4) () >-C; 0<p<p"
The general solution of (1) is
Y(p) = K1 p" + Kop™ + —2—
a—p

where

() w=p7[38 —ax (382 o) +20p2 ], i=12
with
72<0<”y1

and K7, K, are arbitrary constants.
Since ¥ (p) must be bounded near p = 0 we must have Ky = 0. Hence
we put

_[Kiph 4+ 55 0<p<p”
©) v = {4 oo

If we require 1(p) to be continuous at p = p* we get the equation

7 Ki(p")™ =-C
7) )+
If ¢ (p) is also C* at p = p* we get

1
8 Ky (p*) =0
(8) ()" A = .
Combining these two equations we get

mn-—1

and
(10) - B

C mlp—a)
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It is easy to see that
n>lep>a

Since we have assumed p > a we get by (9) that p* > 0 and by (10)
that K7 > 0.

It remains to verify that with these values of p* and K7 the function

(;5(8,]9) = e_ps"/}(p) )

with @ given by (6), satisfies all the conditions of Theorem 10.4.1.
Many of these verifications are straightforward. However, to avoid false
solutions, it is important to check (ii) and (vi), which correspond to
(4) and (2) above:
Verification of (4):
Define  h(p) = ¥(p)+C
Then

h(p*) =h'(p*) =0 by (7) and (8) above.

Moreover, if 0 < p < p* then

h'(p) = Kimi(y — Dp" =2 >0
which implies that h'(p) < 0 and hence h(p) > 0 for 0 < p < p*, as
required.

Verification of (2):
For p > p* we have ¢(p) = —C and hence

Loy(p) = (=p)(=C) —=p=pC —p,

&)
Loy(p) <0 for all p > p*

if and only if
pr=pC,

which holds because U = {(s,p);p < pC} and U C D.
The remaining cases,

Case 2: p=a«

Case 3: p<a

are left to the reader.

« _ ai—azto2(1—y)
ut = —2—(0%03)(177) (constant),
D(s,x) = ATy for t <t1,2>0

where

A= 571 =)of(u")® + o5 (1 —u)?] = vlaru” + az(l — )] .
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11.7. Define
dt 1 0 s
=[] = [ ]we [ ] vo=[]

and

G={(s,z);x >0 and s <T}.
Then

P(s,x) = P(y) = sup EY[g(Yz.)l,
where

9(y) = g(s,x) = 27

and

T =inf{t >0;Y(t) G} =7.
We apply Theorem 11.2.2 and hence look for a function ¢ such that

(1) Sglg{f”(y) + (L") (y)} =0 forall yeG,

where in this case f(y) = 0 and

0 o 92
L*9(y) = L*0(s,2) = 2 +av 0 4 1?28

If we guess that 227‘5 < 0 then the maximum of the function v —

LV¢(s,x) is attained at
99 (s

(2) v=0%(s,x) = 45, (5,2)

o)
52 (s, 2)

We try a function ¢ of the form
3) ¢(s,z) = f(s)x”
for some function f (to be determined). Substituted in (2) this gives

. _af(syyart ax
) Vs, o) = fy(y=1)a7=2  1—x

and (1) becomes

2 axr

-y

PO + 1= fshy a4 3 ({5) e =10 =0

1—

or
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Solutions and Additional Hints to Some of the Exercises

Combined with the terminal condition

d(y) =g(y)  for y € IG

ie.
(6) fT) =1
the equation (5) has the solution
_ a*y .
(7) f& = (g T-9);  s<T,

With this value of f it is now easily verified that

¢(s,x) = f(s)a”

satisfies all the conditions of Theorem 11.2.2, and we conclude that the
value function is

P(s,x) = ¢(s,z) = f(s)2”

and that
ax

1—nv

u(s,x) =v*(s,x) =

is an optimal Markov control.

Additional hints:
For the solution of the unconstrained problem try a function ¢y (s, x)
of the form

oa(s, ) = ax(s)x?® 4+ ba(s) ,

for suitable functions ax(s),bx(s) with A € R fixed. By substituting
this into the HJB equation we arrive at the equations

a\(s) = %ai(s) -1 for s <ty
ax(ty) = A

and
bh(s) = —cax(s)  for s <ty
ba(t1) =0,

with optimal control u*(s,z) = —%ax(s)z .

Now substitute this into the equation for X®** and use the terminal
condition to determine Ag .
If we put s = 0 for simplicity, then A = Ay can be chosen as any solution
of the equation

AN+ BN +CA+D=0,
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where

2(€t1 7t1)2

2

(62t1 + 2 72t1) _ 0,2(et1 _ €7t1)2
2(—e* 4+ 24 3e7) — 42? — 20%(1 — M)
D = _m2( t1 +e tl) +4$ —|—O'2(62t1 _ 672151) ]

11.12. If we introduce the process

dv (1) = {dﬁt} - [ut} dt + { }dBt, Y(0) =y = B]

then the problem can be written
(s, x) mf Ey /f dt}
0

where
flysu) = f(y) = [(s,2) = e P (2® + O u?).

In this case we look for a function v such that

- o >y
PS (.2 2 1 —0- 2
(1) Ulgf {e (x*+0v°) + s +v o +1 8352} 0; (s,z)eR”.

If we guess that 1) has the form
(s, ) = e P (ax® + b)
then (1) gets the form

(2) in%{a:2—|—91)2 — plaz® +b) + v2az + $0°2a} = 0; zreR.
IS

The minimum is attained when

(3) v:v*(s,x):—%

and substituting this into (2) we get
a2
x2[1—pa—7}+02a—pb20 forall x € R.

This is only possible if

(4) a’+pha—0=0
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and

0'2(1

The positive root of (4) is

(6) az%{—p@—i-\/M}.

We can now verify that with the values of a and b given by (6) and
(5), respectively, the function

P(s,x) = eff’s(azzc2 +b)

satisfies all the requirements of Theorem 11.2.2 and we conclude that
the value function is

¥(s,x) = Y(s,x) = e P*(az’® +b)

and that

is an optimal control.
11.13. If we introduce

dY(t)=[d(§J={ ' ]dt—k[o}dBt; Y(O):H

1—uy o
and
G = {(s,r) € R*z > 0},
then the problem gets the form

TG

&(s, ) :sngy[/f(Y(t),ut)dt ,
0

where
f(y7u) = f(S,.’II,’U,) =e Pu.

The corresponding HJB equation is

oler op | 0%
Ps —_ — ) —= gL\ —
(1) ’USI[IOF)I]{G v+ +(1-v) - + 50 x2}

If we substitute

o e =L (1o (~/2))
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then (1) gets the form

(3) s,11;>v€[071]{—14r 2, exp <—\/§§x>
)

If p > 5 = then 1 — 2 exp < 2@ > 0 for all x and hence the

[ea

supremum in (3) is attalned for
v=u"(s,z)=1.

Moreover, we see that the corresponding supremum in (2) is 0. Hence
by Theorem 11.2.2 we conclude that & = ¢ and u; = 1.

a) no arbitrage

b) no arbitrage

¢) 0(t) = (a,1,1) is an arbitrage, where a € R is chosen such that
Vo(0) =0

d) no arbitrage

e) arbitrages exist

f) no arbitrage.

) complete
) not complete. For example, the claim

T
Fw) = [ Ba(o)dBa(t) = $BA(T) - 4T
0

cannot be hedged.
) (arbitrages exist)
d) not complete
) (arbitrages exist)
) complete.

For the n-dimensional Brownian motion B(t) = (B (t),..., B,(t)) the
representation formula (12.3.33) gets the form

E*[W(B(T —t))] = E[(B*(T —t))?] = 22 + n(T —t).



358 Solutions and Additional Hints to Some of the Exercises

Hence
sz[h(B(T —1)] =2z

and we conclude that

T n
BX(T) = 2> + nT + / S 2B;(t)dB;(t), with B(0) = .
0

j=1
(ii) If h(z) = exp(a1 + -+ - + x,) We get

E*[W(B(T—t))] = Elexp(z1 + Bi(T—t) + - + 2n + Bu(T—1))]

n

= exp (g(T—t) + Zzz>
i=1

Hence
S BB )] =exp (37 =0+ 3 =)

i=1

and we conclude that if B(0) = = then

exp (i Bi(T)) = exp (gT + ixz)
i=1 i=1

n

T
+ / exp (g(T—t) +y Bi(t)) (dBy(t) + - - + dBy(t))
0

i=1
12.12. ¢) Eg[¢(T)F) = o 1o (1 — 21— e~PT). The replicating portfolio is
o(t) = (90(t), 61 (t))a where

0u(0) =071 - S - )|

and 0y(t) is determined by (12.1.17).

12.15. ( ) ‘
e (K —x or z<gzg*
s, @) = {e"’S(K —z*)(&)Y for x>az*
where
_ n—2|1p2 192 2 2
v=5 {ﬁﬂ —a— /(382 )’ + 2082 | <0
and K
* Y
=——¢€(0,K).
x 7_16(, )

*

Hence it is optimal to stop the first time X (¢) < x*.
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If a = p this simplifies to

_ % and x* = 2p K
S R

12.16. Recall that (see Theorem 12.3.5)

viT)=v%0)+ / 0(s)dX (s)

Therefore, if we seek a portfolio 6 such that
VUT)=F as.,

we first find ¢ such that

T
(1) V9(T) = &(T)F = VA (0) + / e
0

and then put

2) B(s) = Xo(5)0(5)A(5),
where A(s) is the left inverse of o(s).

a) F(w) = (K - Xy(T,w))*

In this case (1) gets the form

T
e PT(K — X1 (T,w))" = Egle " (K — X1 (T,w))"] + /¢(s)d1§(s)
0

or
T

3) (K -Xi(T,w)" = El(K — Xi(T\w))"] + /¢0(s)d§(s),

0
where

do(s) = equS(s).
To find ¢y we use Theorem 12.3.3:
In this case we have

dY (t)=dX1(t)=a X1 (t)dt+8 X1 ()dB(t) = p X1 (t)dt+5 X1 (t)dB(t),

with

dB(t) = dB(t) + %dt .
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Moreover

and
ES[h(Y(T —t)] = EG[(K — X1(T — t))*]
= Eq[(K —zm1exp{BB(T —t) + (p — 1) (T — )})*].

From this we deduce that

(@) B (K = (T = 1)) = o[ (o1 exp{ BT — 1
+Hp— 18T -1} - X1 - 1)],

where X{"(T = t) = exp{BB(T — ) + (p — 182)(T - t)}.

Hence

dolt) = d%Eg (K = Xu(T = 0)*], 0 8X1(8) = 7 6(s).

Substituting this into (2) we get
0(t) = 61 (1)
= —e PT=DBo[Xio k) (X1 () exp{ B(T — 1)
+p— 18T = HHXI(T - 1)
=—2m(T - t))_%/X[O,K] (X1(t)exp{By+ (p— 385)(T —1)})
R

) e {8y = 40T -0 - gt b

Note that 61 (t) < 0 for all ¢ € [0, T]. Hence it is necessary to shortsell
at all times in order to replicate the European put option.
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List of Frequently Used Notation and Symbols

Cy = C§(U)
Ck—i—a

CH2(R x R")

Cy(U)

-x C

n-dimensional Euclidean space

the non-negative real numbers

the rational numbers

the integers

the natural numbers

the complex plane

the n X m matrices (real entries)

the transposed of the matrix A

the determinant of the n x n matrix C

i.e. vectors in R™ are regarded as n x l-matrices

the n-dimensional complex space
n

Satife=(21,...,2,) €R"

i=1
n

the dot product > x;y; if . = (z1,...,2,),
i=1

y=W1 - Yn)

max(z,0) if z € R
max(—z,0)if z € R
1 if x>0
{—1 it z<0
the continuous functions from U into V'
the same as C(U,R)
the functions in C'(U) with compact support
the functions in C(U, R) with continuous derivatives
up to order k
the functions in C*¥(U) with compact support in U
the functions in C* whose k’th derivatives are Lips-
chitz continuous with exponent «
the functions f(t,2):R x R"® — R which are C*
wrt. t € Rand C? wrt. z € R"
the bounded continuous functions on U
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372 List of Frequently Used Notation and Symbols

fIK

A=Ax
A= Ax
L=1Lx

Bt (OI' (Bh]:a ‘vaz))
Dy
v

A
L

R,

iff

a.a., a.e., a.s.
w.r.t.

s.t.

E[Y] = E*[Y] = [ Ydu

EY|N]

oo

ftaft(m)

V(S,T),V"(S,T)
w,wn

(H)

HIB

In

the restriction of the function f to the set K

the generator of an It6 diffusion X

the characteristic operator of an It diffusion X
the second order partial differential operator which
coincides with Ay on C? and with Ax on C?
Brownian motion

the domain of definition of the operator A

the gradient: Vf = (2L, ... 2L)

Oz ) Oxm

the Laplace operator: Af =" g—iﬁi
i %

a semielliptic second order partial differential oper-
2
ator of the form L = Zbia%i + Zaij#azj
i i,

the resolvent operator
if and only if
almost all, almost everywhere, almost surely
with respect to
such that
coincides in law with (see Section 8.5)
the expectation of the random variable Y w.r.t. the
measure f
the conditional expectation of Y w.r.t. A
the o-algebra generated by |J Fi
>0
the Borel o-algebra -
the o-algebra generated by {Bs;s < t}, Bs is m-
dimensional
the o-algebra generated by {Bsar;s > 0} (7 is a
stopping time)
orthogonal to (in a Hilbert space)
the o-algebra generated by {Xs; s <t} (X; is an It
diffusion)
the o-algebra generated by {Xsar;s > 0} (7 is a
stopping time)
the boundary of the set G
the closure of the set G
the complement of the set G
G is compact and G C H
the distance from the point y € R™ to the set K CR"
the first exit time from the set G of a process
X1 =inf{t > 0; X, ¢ G}
Definition 3.3.1
Definition 3.3.2
Hunt’s condition (Chapter 9)
the Hamilton-Jacobi-Bellman equation (Chapter 11)
the n x n identity matrix



Xa

P
pP=p°

x

R(s2)

Qs,m
P<x@

P~Q
E®, E(s,m), EST

X(t)
€ﬂ
lim , Tim
essinf f
esssup f
O
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the indicator function of the set G Xg(x) = 1 if
r€G, Xg(z)=0ifx ¢ G
the probability law of B; starting at x
the probability law of B, starting at 0
the probability law of X starting at x (Xo = z)
the probability law of Y; = (s +t), X} ) t<o with
Yo = (s,z) (Chapter 10)
the probability law of Y; = (s + ¢, X.),)i>0 with
Yo = (s,z) (Chapter 11)
the measure P is absolutely continuous w.r.t. the
measure )
P is equivalent to @, i.e. P < @ and Q < P
the expectation operator w.r.t. the measures Q%,
R%) and Q**, respectively
the expectation w.r.t. the measure @
the expectation w.r.t. a measure which is clear from
the context (usually P?)
the minimum of s and ¢ (= min(s,t))
the maximum of s and ¢ (= max(s,t))
the transposed of the matrix o
the unit point mass at x
Sy =1ifi=j, 6, =0ifi #
the shift operator: 0;(f(Xs)) = f(X¢+s) (Chapter 7)
portfolio (see (12.1.3))
=60(t) - X(t), the value process (see (12.1.4))

¢

= z+ [0(s)dX (s), the value generated at time ¢ by

the selof—ﬁnancing portfolio 6 if the initial value is z
(see (12.1.7))

the normalized price vector (see (12.1.8)—(12.1.11))
the discounting factor (see (12.1.9))

equal to by definition

the same as lim inf, lim sup

sup{M € R; [f>M as.}

inf{NeR; f<Nas.}

end of proof

“increasing” is used with the same meaning as “nondecreasing”, “decreas-
ing” with the same meaning as “nonincreasing”. In the strict cases “strictly
increasing/ strictly decreasing” are used.



Index

adapted process 25

adjoint operator 172

admissible control 245

admissible portfolio 273

o-algebra 7

generated by a family of sets 8
generated by a random variable &,

25

almost surely (a.s.) 8

American call option 312

American contingent T-claim 299

American options 299-308

American put option 305-308

American put option, perpetual 312

analytic functions (and Brownian
motion) 81,161

approximate identity 28

arbitrage 273

asymptotic estimation 108

attainable claim 282

Banach spaces 10

bankruptcy time 267, 268

Bayes’ rule 163 (8.6.3)

Bellman principle 263

bequest function 244

Bessel process 49, 150

Black-Scholes equation 210-211

Black-Scholes formula 5,173, 211, 297,
311

Borel-Cantelli lemma 17, 33

Borel sets, Borel o-algebra 8

borrowing 255

Brownian bridge 79

Brownian motion
complex 80
on the ellipse 77
the graph of 126
on a Riemannian manifold 160

in R" 3,12-15
on the unit circle 69, 130
on the unit sphere 159-160

w.r.t. an increasing family H: of
o-algebras 74

capacity 176

carrying capacity 81

Cauchy sequence (in L?) 20

change of time 156

change of variable in an It6 integral
158

characteristic function 316

characteristic operator 129

Chebychev’s inequality 16

closed loop control 245

coincide in law 151, 152

combined Dirichlet-Poisson problem
181, 200

complete market 282

complete normed linear space

complete probability space 8

complex Brownian motion 80

conditional expectation 319-320

conditioned Brownian motion 137

contingent T-claim (American) 299

contingent T-claim (European) 282

continuation region 219, 306

continuous in mean square 41

10, 20
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control, deterministic (open loop) 245

control, feedback (closed loop) 245
control, Markov 245

control, optimal 245

convolution 328

covariance matrix 13,316
cross-variation processes 163
crowded environment 81

density (of a random variable) 16
deterministic control 245
diffusion coefficient 115
diffusion, Dynkin 130
diffusion, It6 115
Dirichlet-Poisson problem
200

Dirichlet problem 3,185, 187

generalized 192

stochastic version 187
distribution

of a process 11, 18

of a random variable 9
distribution function (of a random

variable) 15

Doob-Dynkin lemma 9,41, 50
Doob-Meyer decomposition 303
Doob’s h-transform 136
drift coefficient 115
Dudley’s theorem 275
Dynkin’s formula 127

181-185,

eigenvalues (of the Laplacian) 204
electric circuit 1
elementary function/process 26
elliptic partial differential operator
181
equivalent (local) martingale measure
168, 178, 276, 281
estimate (linear/measurable) 91
estimation
exact asymptotic 108
of a parameter 104
European call option 5,288,311, 313
European contingent T-claim 282
European option 287
European put option 288
events 8
excessive function 217
expectation 9

explosion (of a diffusion) 71,82
exponential martingale 55

feedback control 245
Feller-continuity 71, 143
Feynman-Kac formula 145, 208
filtering problem,

general 2, 8687
linear 2,87-108
filtration 31, 38

finite-dimensional distributions (of a
stochastic process) 11

first exit distribution (harmonic
measure) 123,138

first exit time 119

Gaussian process 13
generalized (distribution valued) process
22
generator (of an It6 diffusion) 124, 126
geometric Brownian motion 67
geometric mean reversion process 83
Girsanov’s theorem 61, 162-171
Girsanov transformation 165

Green
formula 202
function 176, 201-203
measure 19,201, 259

operator 176
Gronwall inequality 72, 82-83

Hamilton-Jacobi-Bellman (HJB)
equation 245-250
harmonic extension (w.r.t. an Itd
diffusion) 131
harmonic function 3,133 (and
Brownian motion) 161
harmonic function 3,133
and Brownian motion 161
w.r.t. a diffusion 186-187
harmonic measure
and Brownian motion
of a diffusion 123, 138
Hausdorff measure 176
heat
equation 184
operator 127
hedging portfolio 282, 290-295
Hermite polynomials 38

133, 208



high contact (smooth fit) principle
230, 232, 239, 240

Hilbert space 10

hitting distribution 122,123

‘H:-Brownian motion 74

h-transform (of Brownian motion) 136

Hunt’s condition (H) 192

independent 10

independent increments 14, 22

innovation process 92, 96

integration by parts (stochastic) 46,
55

interpolation (smoothing) 110

irregular point 190-192, 206

iterated It6 integrals 38

iterated logarithm (law of) 68

It6 diffusion 115,116

It6 integral 24-37

It6 integral; multidimensional 34-35

Itd interpretation (of a stochastic
differential equation) 36, 66, 85

1t6 isometry 26, 29

1t6 process 44,48

1t6 representation theorem 52

1t0’s formula 44, 49

Jensen inequality 321

Kalman-Bucy filter 2, 87,101, 107, 155
Kazamaki condition 56

Kelly criterion 256

kernel function 136

killing (a diffusion) 147

killing rate 148, 177

Kolmogorov’s backward equation 141
Kolmogorov’s continuity theorem 14
Kolmogorov’s extension theorem 11
Kolmogorov’s forward equation 172

Langevin equation 77

Laplace-Beltrami operator 161

Laplace operator A 3,57, 127,133

Laplace transform 139

law of iterated logarithm 68

least superharmonic majorant 216

least supermeanvalued majorant 216

Lévy’s characterization of Brownian
motion 162

Index 377

Lévy’s theorem 162

linear regulator problem 252,266
Lipschitz continuous 116, 150
Lipschitz surface 234, 327

local martingale 35,135, 168
local time 58,59, 75, 155
LP-spaces 9

Lyapunov equation 109

Malliavin derivative 53
market 269
complete 282, 283
normalized 270, 271
Markov control 245
Markov process 118
Markov property 117
martingale 31, 33, 323
convergence theorem 324
inequality 31, 33
local 35,135
problem 149
representation theorem 49,53
maximum likelihood 105
maximum principle 206
mean (of a random variable) 13
mean-reverting Ornstein-Uhlenbeck
process 78
mean square error 99
mean value property
classical 133
for a diffusion 123
measurable function (w.r.t. a o-algebra)
8
measurable sets (w.r.t. a o-algebra) 8
measurable space 8
moving average, exponentially weighted
103
noise 1-4,21-22, 66
normal distribution 13, 315-319
normalization (of a market process)
271
Novikov condition
numeraire 271

56, 165

observation process 86, 88
open loop control 245
optimal control 245

optimal investment time 241, 242
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optimal performance 245

optimal portfolio selection 4, 254
optimal resource extraction 240
optimal stopping 3, 213-237, 304
optimal stopping existence theorem

219

optimal stopping time 213,219, 223,
234

optimal stopping uniqueness theorem
223

option pricing 4,211, 287-307

Ornstein-Uhlenbeck equation/process
7

orthogonal increments 89

outer measure 8

partial information control 245

path (of a stochastic process) 10

performance function 244

Perron-Wiener-Brelot solution 196

Poisson formula 207

Poisson kernel 207

Poisson problem 185,197

Poisson problem (generalized) 197

Poisson problem (stochastic version)
187

polar set 175,192

Polish space 13

population growth 1,65, 81, 105, 139

portfolio 4,270, 282, 290

prediction 110

probability measure 8

probability space 8

profit rate 212,244

p’'th variation process 19

quadratic variation process 19,57

random time change 156

random variable 9

recurrent 128

regular point 190-192, 206

replicating portfolio 282, 290

resolvent operator 143

reward function 213

reward rate function 214

Riccati equation 99, 102, 106, 253

risky assets 255, 267

risk free assets 255, 267

scaling (Brownian) 19
self-financing portfolio 271
semi-elliptic partial differential operator
181
semi-polar set 192
separation principle 245, 254
shift operator 122
shortselling 255, 299, 313
smoothing (interpolation) 110
Snell envelope 303
square root (of a matrix) 181
stationary process 18,21, 22
stochastic control 4, 243-261
stochastic differential equation
definition 65
existence and uniqueness of solution
70
weak and strong solution 74-76
stochastic Dirichlet problem 187
stochastic integral 44
stochastic Poisson problem 197
stochastic process 10
stopping time 58, 119
Stratonovich integral 24, 35-37, 39, 40
Stratonovich interpretation (of a
stochastic differential equation)
36, 66, 85
strong Feller process 194-195
strong Markov property 118-122
strong solution (of a stochastic
differential equation) 74
strong uniqueness (of a stochastic
differential equation) 70, 74
submartingale 326
superharmonic function 216, 263
superharmonic majorant 216
supermartingale (135), 216, 276, 303,
324
supermeanvalued function 216
supermeanvalued majorant 216
superreplicate 303
support (of a diffusion) 111

Tanaka’s equation 75

Tanaka’s formula 58, 59, 75, 155

terminal conditions (in stochastic
control) 259-261, 266

thin set 192

time change formula It0 integrals 158



time-homogeneous 117, 261
total variation process 19
transient 128

transition

measure 201

operator 178

trap 129

uncorrelated 317

uniformly elliptic partial differential
operator 193, 291

uniformly integrable 135, 323-324

utility function 4,255

value function 245
value process 270
value process, normalized 271

Index 379

variational inequalities (and optimal
stopping) 3, 232-234
version (of a process) 12,14, 32
Volterra equation
deterministic 95
stochastic 79

weak solution (of a stochastic differential
equation) 74

weak uniqueness 74

well posed (martingale problem) 149

white noise 22, 65

Wiener criterion 192

X-harmonic 187

zero-one law 189
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